Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (597)

Search Parameters:
Keywords = nanosecond pulse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1626 KB  
Article
Experimental Evaluation of Pulse Width Effects Under Equal-Dose Pulsed Electric Field Treatment on A375 Cells
by Hongyu Kou, Feiyu Wu, Kai Chen, Shupeng Wang, Runze Liang and Chenguo Yao
Appl. Sci. 2026, 16(2), 1086; https://doi.org/10.3390/app16021086 - 21 Jan 2026
Viewed by 68
Abstract
Pulsed electric fields (PEFs) are widely recognized as a non-thermal, selective physical therapy with wide clinical application in tumor ablation. The pulse width determines how electrical energy is distributed across plasma membrane to intracellular organelles. However, under an engineering-defined equal-dose condition (N·E2 [...] Read more.
Pulsed electric fields (PEFs) are widely recognized as a non-thermal, selective physical therapy with wide clinical application in tumor ablation. The pulse width determines how electrical energy is distributed across plasma membrane to intracellular organelles. However, under an engineering-defined equal-dose condition (N·E2·tp), which serves as a practical control parameter rather than a measure of true cellular energy absorption, systematic and comparable experimental characterization of cellular and subcellular responses across pulse widths from the microsecond to nanosecond range remains limited. In this study, PEFs with pulse widths ranging from 100 μs to 50 ns were applied under equal-dose constraints, and cellular responses were evaluated using transmission electron microscopy (TEM), multi-organelle fluorescence imaging, and flow cytometry. The results indicate that pulse-width-dependent effects were observed under a fixed pulse-number, dose-equalized framework in which electric field strength varied across conditions. Structural and functional changes were observed in multiple organelles, including the nucleus, mitochondria, endoplasmic reticulum, and Golgi apparatus. Notably, nanosecond pulses were more effective in inducing mitochondrial membrane potential loss and increasing the proportion of apoptotic or non-viable cells. These findings demonstrate that, under equal-dose conditions, pulse width is a key temporal parameter governing PEF-induced biological effects, indicating that identical dose constraints do not necessarily result in equivalent biological responses. This work provides experimental foundation for parameter selection and optimization in PEF-based biomedical applications. Full article
Show Figures

Figure 1

20 pages, 5028 KB  
Article
Acoustic Signatures in Laser-Induced Plasmas for Detection of Explosives in Traces
by Violeta Lazic, Biljana Stankov, Fabrizio Andreoli, Marco Pistilli, Ivano Menicucci, Christian Ulrich, Frank Schnürer, Roberto Chirico and Pasqualino Gaudio
Sensors 2026, 26(2), 672; https://doi.org/10.3390/s26020672 - 20 Jan 2026
Viewed by 133
Abstract
In this work we report the results of analysis of the acoustic signal generated by the interaction of a nanosecond laser pulse (30 mJ, 1064 nm) with various residues placed on a silica wafer. The signal was captured by a unidirectional microphone placed [...] Read more.
In this work we report the results of analysis of the acoustic signal generated by the interaction of a nanosecond laser pulse (30 mJ, 1064 nm) with various residues placed on a silica wafer. The signal was captured by a unidirectional microphone placed 30 mm from the laser-generated plasma. The examined sample classes, other than the clean wafer, included particles from soils and rocks, carbonates, nitro precursors, ash, coal, smeared diesel, and particles of explosives. We tested three types of explosives, namely PETN, RDX, and HMX, having different origins. For the explosives, the acoustic signal showed a faster rise, larger amplitude, different width, and attenuation compared with the other sample classes. By subtracting the acoustic signal from the wafer at the same position, obtained after four cleaning laser pulses, the contribution of echoes was eliminated and true differences between the residue and substrate became evident. Through four different features in the subtracted signal, it was possible to classify explosives without the presence of false positives; the estimated limit of detection was 15 ng, 9.6 ng, and 18 ng for PETN, RDX, and HMX, respectively, where the mass was extrapolated from nano-printed samples and LIBS spectra acquired simultaneously. Furthermore, HMX was distinguished from the other two explosives in 90% of the cases; diesel and coal were also recognized. We also found that explosives deposited through wet transfer behaved as inert substances for the tested masses up to 30 ng. Full article
(This article belongs to the Special Issue Laser and Spectroscopy for Sensing Applications)
Show Figures

Figure 1

14 pages, 1350 KB  
Review
Current and Emerging Energy Sources for Atrial Fibrillation Ablation: A Comparative Analysis of Clinical Efficacy, Safety, and Procedural Implementation
by Cristian Martignani, Giulia Massaro, Alberto Spadotto, Jennifer Oppimitti, Maria Carelli, Andrea Angeletti, Alessandro Carecci, Igor Diemberger and Mauro Biffi
J. Clin. Med. 2026, 15(2), 751; https://doi.org/10.3390/jcm15020751 - 16 Jan 2026
Viewed by 179
Abstract
Atrial fibrillation (AF) management has historically relied on thermal ablation modalities—radiofrequency (RF) and cryoballoon—which have established a high benchmark for pulmonary vein isolation (PVI). However, the inherent risk of collateral thermal injury and lesion inconsistency has driven the search for alternative energy sources. [...] Read more.
Atrial fibrillation (AF) management has historically relied on thermal ablation modalities—radiofrequency (RF) and cryoballoon—which have established a high benchmark for pulmonary vein isolation (PVI). However, the inherent risk of collateral thermal injury and lesion inconsistency has driven the search for alternative energy sources. The recent clinical adoption of pulsed-field ablation (PFA), based on irreversible electroporation, represents a significant technological evolution. This narrative review provides a critical appraisal of the transition from thermal to pulsed-field technologies. We synthesized data from pivotal trials and recent health-economic analyses to evaluate the biophysical mechanisms, clinical efficacy, and safety profiles of contemporary devices. We conduct a head-to-head comparison of all modalities regarding critical safety endpoints (esophageal, neurological, and vascular), real-world procedural challenges (anesthesia, lesion assessment), and economic sustainability. While PFA offers distinct advantages in procedural speed and tissue selectivity, we highlight that thermal modalities—particularly cryoballoon and very-high-power RF—retain competitive profiles in terms of cost-effectiveness and established long-term durability. This review aims to provide a balanced roadmap for clinicians navigating the complex choice between established thermal efficacy and the promising, yet evolving, landscape of electroporation. Full article
Show Figures

Figure 1

17 pages, 5957 KB  
Article
Precision Cutting of CF/PEEK by UV Nanosecond Laser for On-Orbit Manufacturing Applications
by Wenqiang Wu, Bing Wei, Yu Huang and Congyi Wu
Micromachines 2026, 17(1), 93; https://doi.org/10.3390/mi17010093 - 11 Jan 2026
Viewed by 300
Abstract
On-orbit cutting is a critical process for the on-orbit manufacturing of carbon fiber reinforced polyetheretherketone composites (CF/PEEK) truss structures, with pulsed laser cutting serving as one of the feasible methods. Achieving high-quality cutting of CF/PEEK remains a major challenge for on-orbit manufacturing. Therefore, [...] Read more.
On-orbit cutting is a critical process for the on-orbit manufacturing of carbon fiber reinforced polyetheretherketone composites (CF/PEEK) truss structures, with pulsed laser cutting serving as one of the feasible methods. Achieving high-quality cutting of CF/PEEK remains a major challenge for on-orbit manufacturing. Therefore, the cutting process of CF/PEEK prepreg tape was studied by an ultraviolet (UV) nanosecond laser. A three-factor, five-level orthogonal experiment was carried out to analyze the influence of laser repetition rate (LRR), laser cutting speed (LCS), and laser scanning times (LCTs) on cutting quality. The ablation mechanism dominated by the photothermal effect between the UV nanosecond laser and CF/PEEK was analyzed, and the by-products in the cutting process were explored. Finally, the optimal cutting quality (the width of slit (Ws) = 41.69 ± 3.54 μm, the heat-affected zone (HAZ) = 87.27 ± 7.30 μm) was obtained under the process conditions of LRR 50 kHz-LCS 50 mm/s-LCT 16 times. The findings show that the WS and HAZ increase with the increase in LRR and LCT and the decrease in LCS, and the carbon fiber decomposes and escapes due to the photothermal effect. Full article
Show Figures

Figure 1

17 pages, 2654 KB  
Article
A Simple Three-Step Method for the Synthesis of Submicron Gold Particles: The Influence of Laser Irradiation Duration, Pulse Energy, Laser Pulse Duration, and Initial Concentration of Nanoparticles in the Colloid
by Ilya V. Baimler, Ivan A. Popov, Alexander V. Simakin and Sergey V. Gudkov
Nanomaterials 2026, 16(2), 79; https://doi.org/10.3390/nano16020079 - 6 Jan 2026
Viewed by 390
Abstract
This work demonstrates a three-step method for the synthesis and production of submicron spherical gold particles using laser ablation in liquid (LAL), laser-induced fragmentation in liquid (LFL), laser-induced nanochain formation, and laser melting in liquid (LML). The nanoparticles were characterized using transmission electron [...] Read more.
This work demonstrates a three-step method for the synthesis and production of submicron spherical gold particles using laser ablation in liquid (LAL), laser-induced fragmentation in liquid (LFL), laser-induced nanochain formation, and laser melting in liquid (LML). The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV–visible spectroscopy. In the first stage, spherical gold nanoparticles with a size of 20 nm were obtained using LAL and LFL. Subsequent irradiation of gold nanoparticle colloids with radiation at a wavelength of 532 nm leads to the formation of gold nanochains. Irradiation of nanochain colloids with radiation at a wavelength of 1064 nm leads to the formation of large spherical gold particles with a size of 50 to 200 nm. The formation of submicron gold particles upon irradiation of 2 mL of colloid occurs within the first minutes of irradiation and is complete after 480,000 laser pulses. Increasing the laser pulse energy leads to the formation of larger particles; after exceeding the threshold energy (321 mJ/cm2), fragmentation is observed. Increasing the concentration of nanoparticles in the initial colloid up to 150 μg/mL leads to a linear increase in the size of submicron nanoparticles. The use of picosecond pulses for irradiating nanochains demonstrates the formation of the largest particles (200 nm) compared to nanosecond pulses, which may be due to the effect of local surface melting. The described technique opens the possibility of synthesizing stable gold nanoparticles over a wide range of sizes, from a few to hundreds of nanometers, without the use of chemical reagents. Full article
Show Figures

Figure 1

21 pages, 7862 KB  
Article
Laser Deposition of Metal Oxide Structures for Gas Sensor Applications
by Nikolay Nedyalkov, Anna Dikovska, Tina Dilova, Genoveva Atanasova, Reni Andreeva and Georgi Avdeev
Materials 2026, 19(1), 176; https://doi.org/10.3390/ma19010176 - 3 Jan 2026
Viewed by 424
Abstract
This work presents results on laser-induced fabrication of metal and oxide structures on glass substrates. The Laser-Induced Reverse Transfer (LIRT) technique is applied using Zn and Sn, sintered ZnO and SnO2, and oxide composite targets. The processing is performed by nanosecond [...] Read more.
This work presents results on laser-induced fabrication of metal and oxide structures on glass substrates. The Laser-Induced Reverse Transfer (LIRT) technique is applied using Zn and Sn, sintered ZnO and SnO2, and oxide composite targets. The processing is performed by nanosecond pulses of a Nd:YAG laser system operated at wavelength of 1064 nm. Detailed analyses of the deposited material morphology, composition and structure are presented, as the role of the processing conditions is revealed. It is found that at the applied conditions of using up to five laser pulses, the deposited material is composed of a nanostructured film covered in microsized nanoparticle clusters or droplets. The use of metal targets leads to formation of structures composed of metal and oxide phases. The adhesion test shows that part of the deposited material is stably adhered to the substrate surface. It is demonstrated that the deposited materials can be used as resistive gas sensors with sensitivity to NH3, CO, ethanol, acetone and N2O, at concentrations of 30 ppm. The ability of the method to deposit composite structures that consist of a mixture of both investigated oxides is also demonstrated. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Third Edition))
Show Figures

Figure 1

14 pages, 8566 KB  
Article
Lithium Niobate Tantalate Solid Solutions Probed by Luminescence Spectroscopy
by Felix Sauerwein, Niklas Dömer, Tobias Hehemann, Moritz Huesmann, Steffen Ganschow and Mirco Imlau
Crystals 2026, 16(1), 1; https://doi.org/10.3390/cryst16010001 - 19 Dec 2025
Viewed by 334
Abstract
The polar oxide Lithium Niobate Tantalate is probed using time-resolved luminescence spectroscopy with the goal of revealing an initial structural insight into the solid solution by analyzing the spectral properties and dynamics of radiatively decaying self-localization phenomena. A blue-green luminescence band can be [...] Read more.
The polar oxide Lithium Niobate Tantalate is probed using time-resolved luminescence spectroscopy with the goal of revealing an initial structural insight into the solid solution by analyzing the spectral properties and dynamics of radiatively decaying self-localization phenomena. A blue-green luminescence band can be induced by ultraviolet nanosecond laser pulses with a temperature-dependent intensity and spectral width, pointing to the radiative decay of optically generated self-trapped excitons as its origin, i.e., electron–hole pairs with strong coupling to either the NbO6- or TaO6-octahedra. The luminescence decay takes place in the microsecond time range and deviates significantly from a single exponential behavior, so the determined lifetime constants of up to ≈70 μs and stretching factors (1/3–1/5) are validated in more detail using alternative evaluation methods. We discuss our findings, considering the interplay of radiative and non-radiative decay channels, the transition from self-trapped to free excitons, and the presence of a structural disorder of the oxygen octahedra in the solid solutions. Overall, our results suggest self-trapped excitons as local probes for an initial structural elucidation and provide essential information about further experimental and theoretical studies on the atomic structure of Lithium Niobate Tantalate, but also for improving the crystal quality in the framework of applications in photonics and quantum optics. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 1792 KB  
Article
Theoretical Study of Ultra-Fast Laser Lift-Off of Carbon Nanotube-Integrated Polyimide Films
by Run Bai, Yachong Xu, Junwei Fu, Zhenzhen Sun, Yanbo Wang, Rui Yang, Zijuan Han, Fanfan Wang and Boyuan Cai
Nanomaterials 2026, 16(1), 1; https://doi.org/10.3390/nano16010001 - 19 Dec 2025
Viewed by 376
Abstract
In this paper, ultra-fast laser lift-off (LLO) of carbon nanotube (CNT)-integrated polyimide film (PI) was investigated by different laser burst mode and pulse intervals using the two-temperature model. By comparing the temperature field distributions of nanosecond, picosecond, and femtosecond lasers at different pulse [...] Read more.
In this paper, ultra-fast laser lift-off (LLO) of carbon nanotube (CNT)-integrated polyimide film (PI) was investigated by different laser burst mode and pulse intervals using the two-temperature model. By comparing the temperature field distributions of nanosecond, picosecond, and femtosecond lasers at different pulse intervals, it can be found that picosecond lasers cause a higher lattice temperature increase at the PI interface with specific pulse interval conditions. With the increase in the pulse interval, the lattice temperature of the three kinds of lasers decreased, indicating that the heat accumulation effect was weakened. In addition, under picosecond laser irradiation, the lattice temperature at the PI/glass interface of integrated CNTs could be significantly increased, which was significantly different from the system without integrated CNTs. The simulation results show that the picosecond laser is more suitable for LLO with an appropriate pulse interval, and the integration of CNTs at the PI/glass interface can effectively reduce the laser energy threshold required for the LLO process. Our work presents a new PI/CNT/glass model for ultra-fast laser low-threshold LLO and promotes the laser debonding technology in the fields of OLED and other optoelectronic chips. Full article
(This article belongs to the Special Issue Nano-Optics and Nanophotonics)
Show Figures

Figure 1

23 pages, 10338 KB  
Article
Numerical Analysis of the Three-Dimensional Interaction Between Nanosecond-Pulsed Actuation and Pulsed H2 Jets in Supersonic Crossflow
by Keyu Li, Jiangfeng Wang and Yuxuan Gu
Aerospace 2025, 12(12), 1113; https://doi.org/10.3390/aerospace12121113 - 17 Dec 2025
Viewed by 203
Abstract
A combined flow control method, integrating nanosecond pulsed surface dielectric barrier discharge (NS-SDBD) with pulsed jets, is proposed to address the challenge of low mixing efficiency in supersonic combustion. Numerical validation and mechanism analysis were conducted by solving the three-dimensional unsteady Reynolds-averaged Navier–Stokes [...] Read more.
A combined flow control method, integrating nanosecond pulsed surface dielectric barrier discharge (NS-SDBD) with pulsed jets, is proposed to address the challenge of low mixing efficiency in supersonic combustion. Numerical validation and mechanism analysis were conducted by solving the three-dimensional unsteady Reynolds-averaged Navier–Stokes (RANS) equations, coupled with the shear stress transport (SST) k–ω turbulence model. The simulations were carried out under a Mach 2.8 inflow condition with a 50 kHz pulsed frequency for H2 jets. The results demonstrate that, compared to the steady jet case, the combined control scheme increases the combustion product mass flow rate by 27.1% and enhances combustion efficiency by 26.8%. The average temperature in the wake region increases by 65 K, while the total pressure recovery coefficient shows only a marginal change. The pressure disturbance center evolves along the outer edge of the counter-rotating vortex pair (CVP) and is eventually absorbed by the vortex core. This process generates favorable velocity and vorticity perturbations, which enhance O2 entrainment into the CVP and increase the average wake temperature. Meanwhile, the strengthened reflected shock induces favorable velocity perturbations in the upper shear layer of the wake and further elevates the local temperature. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 3499 KB  
Article
Photothermal Heat Transfer in Nano-Hydroxyapatite/Carbon Nanotubes Composites Modeled Through Cellular Automata
by Cecilia Mercado-Zúñiga and José Antonio García-Merino
Crystals 2025, 15(12), 1062; https://doi.org/10.3390/cryst15121062 - 17 Dec 2025
Viewed by 312
Abstract
Modeling elementary diffusion processes in nanostructured materials is essential for developing platforms capable of interacting with high-speed physical signals. In this work, the photothermal response of a nano-hydroxyapatite/carbon nanotube (nHAp/CNT) composite was experimentally characterized and modeled through a cellular automaton (CA) framework designed [...] Read more.
Modeling elementary diffusion processes in nanostructured materials is essential for developing platforms capable of interacting with high-speed physical signals. In this work, the photothermal response of a nano-hydroxyapatite/carbon nanotube (nHAp/CNT) composite was experimentally characterized and modeled through a cellular automaton (CA) framework designed to capture the thermal propagation of the hybrid system. Synthesizing nHAp/CNT composites enables the combination of the biocompatible and piezoelectric nature of nHAp with the enhanced photothermal response introduced by CNTs. UV–Vis reflectance measurements confirmed that CNT incorporation increases the optical absorption of the ceramic matrix, resulting in more efficient photothermal conversion. The composite was irradiated with a nanosecond pulsed laser, and the resulting thermal transients were compared with CA simulations based on a D2Q9 lattice configuration. The model accurately reproduces experiments, achieving R2 > 0.991 and NRMSE below 2.4% for all tested laser powers. This strong correspondence validates the CA approach for predicting spatiotemporal heat diffusion in heterogeneous nanostructured composites. Furthermore, the model revealed a sensitive thermal coupling when two heat sources were considered, indicating synergistic enhancement of local temperature fields. These findings demonstrate both the effective integration of CNTs within the nHAp matrix and the capability of CA-based modeling to describe their photothermal behavior. Overall, this study establishes a computational–experimental basis for designing controlled thermal-wave propagation and guiding future multi-frequency or multi-source photothermal mixing experiments. Full article
Show Figures

Figure 1

15 pages, 1807 KB  
Article
Gold Nanoparticles-Enhanced Gene Transfer Driven by MHz-Frequency Nanosecond Pulsed Electric Fields
by Veronika Malyško-Ptašinskė, Eivina Radzevičiūtė-Valčiukė, Anna Szewczyk, Barbora Lekešytė, Paulina Malakauskaitė, Eglė Mickevičiūtė-Zinkuvienė, Augustinas Želvys, Natalija German, Julita Kulbacka and Vitalij Novickij
Biomolecules 2025, 15(12), 1736; https://doi.org/10.3390/biom15121736 - 13 Dec 2025
Viewed by 416
Abstract
Electroporation can be used as an effective non-viral gene delivery method, while the application of conductive nanoparticles (NPs) with pulsed electric fields (PEFs) may increase treatment efficacy due to local field amplification in close proximity to the cell plasma membrane. In this work, [...] Read more.
Electroporation can be used as an effective non-viral gene delivery method, while the application of conductive nanoparticles (NPs) with pulsed electric fields (PEFs) may increase treatment efficacy due to local field amplification in close proximity to the cell plasma membrane. In this work, we have employed 100 ns and 300 ns pulses (9–17 kV/cm), which were delivered in bursts (n = 100) and predefined inter-pulse delays (100–900 ns), which enabled successful gene delivery (4.7 kbp; p-EGFP-N1) using pulses as short as 100 ns, which previously was considered impossible. As a model, a murine breast cancer cell line (4T1) was used. It was shown that sub-microsecond pulses (i.e., 300 ns) can be effective for gene delivery, whereas 100 ns pulses are several-fold inferior, yet still trigger successful gene transfer (>10% of cells being electrotransfected). In order to increase the efficacy of the treatment, we used gold nanoparticles (AuNPs; the diameter of 13 nm), which allowed us to achieve electrotransfection efficacy several-fold for both sub-microsecond and microsecond protocols (1.2 kV/cm × 100 µs × 8 pulses at 1 Hz). The results suggest high potential applicability of conductive nanoparticles in future translational or clinical research involving electroporation and gene transfer. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Figure 1

14 pages, 1899 KB  
Article
Investigation of the Damage Characteristics and Mechanisms in Silicon Carbide Crystals Induced by Nanosecond Pulsed Lasers at the Fundamental Frequency
by Penghao Xu, Erxi Wang, Teng Wang, Chong Shan, Xiaohui Zhao, Huamin Kou, Dapeng Jiang, Qinghui Wu, Zhan Sui and Yanqi Gao
Photonics 2025, 12(12), 1207; https://doi.org/10.3390/photonics12121207 - 8 Dec 2025
Viewed by 390
Abstract
Silicon carbide (SiC) single crystals are extensively utilized in various fields due to their exceptional properties, such as a wide bandgap and a high breakdown threshold. Nevertheless, the intrinsic high hardness of SiC creates significant challenges for contact machining. This study investigates the [...] Read more.
Silicon carbide (SiC) single crystals are extensively utilized in various fields due to their exceptional properties, such as a wide bandgap and a high breakdown threshold. Nevertheless, the intrinsic high hardness of SiC creates significant challenges for contact machining. This study investigates the surface damage characteristics and underlying mechanisms involved in processing both high-purity silicon carbide (HP-SiC) and nitrogen-doped silicon carbide (N-SiC) crystals using fundamental-frequency nanosecond pulsed lasers. This study establishes a laser-induced damage threshold (LIDT) testing platform and employs the internationally standardized 1-ON-1 test method to evaluate the damage characteristics of HP-SiC and N-SiC crystals under single-pulse laser irradiation. Experimental results indicate that N-SiC crystals exhibit superior absorption characteristics and a lower LIDT compared with HP-SiC crystals. Subsequently, a defect analysis model was established to conduct a theoretical examination of defect information across various types of SiC. Under fundamental-frequency nanosecond pulsed laser irradiation, N-SiC crystals demonstrate a lower average damage threshold and a broader defect damage threshold distribution than their HP-SiC counterparts. By integrating multi-dimensional analytical methods—including photothermal weak absorption mechanisms and damage morphology analysis—the underlying damage mechanisms of the distinct SiC forms were comprehensively elucidated. Moreover, although N-SiC crystals show weaker photothermal absorption properties, they exhibit more pronounced absorption and damage response processes. These factors collectively account for the different laser damage resistances observed in the two types of silicon carbide crystals, implying that distinct processing methodologies should be employed for nanosecond pulsed laser treatment of different SiC crystals. This paper elucidates the damage characteristics of various SiC materials induced by near-infrared nanosecond pulsed lasers and explores their underlying physical mechanisms. Additionally, it provides reliable data and a comprehensive mechanistic explanation for the efficient removal of these materials in practical applications. Full article
(This article belongs to the Special Issue New Perspectives in Micro-Nano Optical Design and Manufacturing)
Show Figures

Figure 1

12 pages, 5803 KB  
Article
Tunable Near-Infrared Laser Emission at 1.7 μm Generated by Stimulated Raman Scattering of Sulfur Hexafluoride Molecules in Anti-Resonant Hollow-Core Fibers
by Peicong Liu, Tianyu Li, Wenxi Pei, Luohao Lei, Jing Shi, Guorui Lv, Qi Chen, Guangrong Sun, Yamei Xu, Shuyi Wang, Zhiyue Zhou and Zefeng Wang
Photonics 2025, 12(12), 1196; https://doi.org/10.3390/photonics12121196 - 4 Dec 2025
Viewed by 378
Abstract
Fiber lasers operating at 1.7 μm have significant application value in fields such as gas detection and material processing due to their characteristics, including compact structure and ease of thermal management. Based on the stimulated Raman scattering (SRS) of gas molecules in hollow-core [...] Read more.
Fiber lasers operating at 1.7 μm have significant application value in fields such as gas detection and material processing due to their characteristics, including compact structure and ease of thermal management. Based on the stimulated Raman scattering (SRS) of gas molecules in hollow-core fibers (HCFs), fiber gas Raman lasers (FGRLs) are a novel and effective method for generating 1.7 μm fiber lasers. We report here, to the best of our knowledge, the first FGRL based on the anti-resonant hollow-core fiber (AR-HCF) filled with sulfur hexafluoride (SF6) molecules. A nanosecond pulsed fiber amplifier tunable from 1540 to 1560 nm was used to pump a 17.8-m-long AR-HCF filled with SF6 molecules. By virtue of the vibrational SRS of SF6 molecules, laser output in the range of 1748–1774 nm was achieved. At a gas pressure of 15 bar, a maximum average power output of ~3 W was obtained, corresponding to an optical-to-optical conversion efficiency of ~22%. The output linewidth of the Raman laser was measured to be approximately 2.1 GHz using a Fabry–Pérot (F-P) scanning interferometer. The research results enriched the methods for 1.7 μm fiber laser output. Full article
Show Figures

Figure 1

13 pages, 4242 KB  
Article
Phase Transition Behavior and Threshold Characteristics of GeTe Thin Films Under Single-Pulse Nanosecond Laser Irradiation
by Yajing Li, Xinyu Ma, Qiang Chen, Sixian Qian, Yixuan Jiang, Yuejun Zheng and Yunqi Fu
Materials 2025, 18(23), 5466; https://doi.org/10.3390/ma18235466 - 4 Dec 2025
Viewed by 363
Abstract
Realizing the full potential of optical actuation for high-speed phase-change radio-frequency (RF) switches requires a shift to single-pulse operation. This work presents a systematic investigation of reversible phase transitions in GeTe thin films induced by single 10 ns laser pulses, utilizing spatially resolved [...] Read more.
Realizing the full potential of optical actuation for high-speed phase-change radio-frequency (RF) switches requires a shift to single-pulse operation. This work presents a systematic investigation of reversible phase transitions in GeTe thin films induced by single 10 ns laser pulses, utilizing spatially resolved characterization techniques, including atomic force microscopy (AFM) and micro-spectroscopy. Precise laser fluence windows for crystallization (12.7–16 mJ/cm2) and amorphization (25.44–41.28 mJ/cm2) are established. A critical finding is that the amorphization process is governed by rapid thermal accumulation, which creates a direct trade-off between achieving the phase transition and avoiding detrimental surface morphology. Specifically, we observe that excessive energy leads to the formation of laser-induced ridges and ablation craters, which are identified as primary causes of device performance degradation. This study elucidates the underlying mechanism of single-pulse-induced phase transitions and provides a practical processing window and design guidelines for developing high-performance, optically actuated GeTe-based RF switches. Full article
Show Figures

Figure 1

15 pages, 3479 KB  
Article
Effect of Nd:YAG Nanosecond Laser Ablation on the Microstructure and Surface Properties of Coated Hardmetals
by G. A. Leal, C. M. Moreno, R. C. Hernández, E. Mejía-Ospino and L. C. Ardila
Coatings 2025, 15(12), 1413; https://doi.org/10.3390/coatings15121413 - 2 Dec 2025
Viewed by 462
Abstract
Nanosecond-pulsed Nd:YAG laser ablation was investigated as a method for removing Al Ti-based hard coatings deposited on WC–Co hardmetal inserts. Systematic variation in laser parameters identified conditions for complete coating removal while preserving substrate integrity. The laser was operated at 532 nm, under [...] Read more.
Nanosecond-pulsed Nd:YAG laser ablation was investigated as a method for removing Al Ti-based hard coatings deposited on WC–Co hardmetal inserts. Systematic variation in laser parameters identified conditions for complete coating removal while preserving substrate integrity. The laser was operated at 532 nm, under a range of fluences (0.1–11.7 J/cm2), pulse delays (20–180 µs), and pulse numbers (1–300). LIBS qualitative monitoring enabled precise ablation progress by identifying Ti, Al, and O layers, and later the detection of Co and W signals. Scanning electron microscopy (SEM/EDS) and optical profilometry confirmed that 5–10 pulses at intermediate delays (60–80 µs, 4.8–7.1 J/cm2) provided complete removal of ~18 µm-thick coatings while maintaining substrate integrity. In contrast, higher energies and excessive pulses caused localized melting and surface irregularities. These results demonstrate that Nd:YAG laser ablation, especially when coupled with LIBS, offers a precise, fast, and environmentally alternative to conventional chemical stripping methods for the refurbishment and recycling of cutting tools. Full article
Show Figures

Figure 1

Back to TopTop