Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (848)

Search Parameters:
Keywords = nanoporous structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10218 KB  
Article
Distribution Characteristics and Fractal Dimension of Continental Shale Reservoir Spaces Based on Lithofacies Control: A Case Study of the Lucaogou Formation in Jimsar Sag, Junggar Basin, Northwest China
by Jiankang Lu, Lianbo Zeng, Wei Yang, Guoping Liu, Qun Luo, Yingyan Li, Mehdi Ostadhassane and Xiaoxuan Chen
Fractal Fract. 2025, 9(11), 703; https://doi.org/10.3390/fractalfract9110703 (registering DOI) - 31 Oct 2025
Abstract
The significant heterogeneity of continental shale reservoirs within the Permian Lucaogou Formation of the Jimsar Sag presents a major challenge for shale oil exploration. This study aims to quantitatively characterize the pore structure complexity of different lithofacies to identify favorable “sweet spots.” By [...] Read more.
The significant heterogeneity of continental shale reservoirs within the Permian Lucaogou Formation of the Jimsar Sag presents a major challenge for shale oil exploration. This study aims to quantitatively characterize the pore structure complexity of different lithofacies to identify favorable “sweet spots.” By integrating geochemical, petrological, and high-resolution pore characterization data with fractal theory, we introduce a comprehensive fractal dimension (Dc) for evaluation. Five distinct lithofacies are identified: massive felsic siltstone (MFS), bedded dolostone (BD), bedded felsic dolostone (BFD), laminated dolomitic felsic shale (LDFS), and laminated mud felsic shale (LMFS). Pore structures vary significantly: MFS is dominated by mesopores (100–2000 nm), BD and BFD exhibit a bimodal distribution (<30 nm and >10 μm), while LDFS and LMFS are characterized by nanopores (<50 nm). Dc analysis reveals a descending order of pore structure complexity: BFD > LMFS > LDFS > MFS > BD. Furthermore, Dc shows positive correlations with clay mineral and feldspar contents but a negative correlation with carbonate minerals. A significant negative correlation between Dc and measured permeability confirms its effectiveness in characterizing reservoir heterogeneity. We propose that MFS and LDFS, with higher pore volumes and relatively lower Dc values, represent the most favorable targets due to their superior storage and seepage capacities. This study provides a theoretical foundation for the efficient development of continental shale oil reservoirs. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

14 pages, 5797 KB  
Article
Investigation of Blade Printing Technique for Nano-Structuring Piezoelectric Polymer Ink in a Porous Anodic Aluminum Oxide
by Tsvetozar Tsanev and Mariya Aleksandrova
Polymers 2025, 17(21), 2839; https://doi.org/10.3390/polym17212839 - 24 Oct 2025
Viewed by 308
Abstract
In this work, we investigated the use of a piezoelectric flexible device for energy harvesting. The main goal of the study was to fill the nanostructured pores of anodic aluminum oxide (AAO) films with piezoelectric polymer (PVDF-TrFE) via a modified conventional screen printing [...] Read more.
In this work, we investigated the use of a piezoelectric flexible device for energy harvesting. The main goal of the study was to fill the nanostructured pores of anodic aluminum oxide (AAO) films with piezoelectric polymer (PVDF-TrFE) via a modified conventional screen printing technique using blade printing. In this way, it is possible to obtain a composite from nanostructured thin films of polymer nanorods that shows improved charge generation ability compared to other non-nanostructured composites or pure (non-composite) aluminum with similar dimensions. This behavior is due to the effect of the highly developed surface of the material used to fill in the AAO nanopore template and its ability to withstand the application of higher mechanical loads to the structured piezoelectric material during deformation. The contact blade print filling technique can produce nanostructured piezoelectric polymer films with precise geometric parameters in terms of thickness and nanorod diameters, at around 200 nm, and a length of 12 μm. At a low frequency of 17 Hz, the highest root-mean-square (RMS) voltage generated using the nanostructured AAO/PVDF-TrFE sample with aluminum electrodes was around 395 mV. At high frequencies above 1700 Hz, the highest RMS voltage generated using the nanostructured AAO/PVDF-TrFE sample with gold electrodes was around 680 mV. The RMS voltage generated using a uniform (non-nanostructured) layer of PVDF-TrFE was 15% lower across the whole frequency range. Full article
(This article belongs to the Special Issue Advanced Polymers for Harnessing Power and Energy)
Show Figures

Graphical abstract

19 pages, 5195 KB  
Article
Study on Experiment and Molecular Dynamics Simulation of Variation Laws of Crude Oil Distribution States in Nanopores
by Yukun Chen, Hui Zhao, Yongbin Wu, Rui Guo, Yaoli Shi and Yuhui Zhou
Appl. Sci. 2025, 15(21), 11308; https://doi.org/10.3390/app152111308 - 22 Oct 2025
Viewed by 170
Abstract
This study is based on an experiment and a molecular dynamics simulation to investigate the distribution states and property variation laws of crude oil in nanopores, aiming to provide theoretical support for efficient unconventional oil and gas development. Focus is placed on the [...] Read more.
This study is based on an experiment and a molecular dynamics simulation to investigate the distribution states and property variation laws of crude oil in nanopores, aiming to provide theoretical support for efficient unconventional oil and gas development. Focus is placed on the distribution mechanisms of multicomponent crude oil in oil-wet siltstone (SiO2) and dolomitic rock (dolomite, CaMg3(CO3)4) nanopores, with comprehensive consideration of key factors including pore size, rock type, and CO2 flooding on crude oil distribution at 353 K and 40 MPa. It is revealed that aromatic hydrocarbons (toluene) in multicomponent crude oil are preferentially adsorbed on pore walls due to π-π interactions, while n-hexane diffuses toward the pore center driven by hydrophobic effects. Pore size significantly affects the distribution states of crude oil: ordered adsorption structures form for n-hexane in 2 nm pores, whereas distributions become dispersed in 9 nm pores, with adsorption energy changing as pore size increases. Dolomite exhibits a significantly higher adsorption energy than SiO2 due to surface roughness and calcium–magnesium ion crystal fields. CO2 weakens the interaction between crude oil and pore walls through competitive adsorption and reduces viscosity via dissolution, promoting crude oil mobility. Nuclear magnetic resonance (NMR) experiments further verified the effect of CO2 on crude oil stripping in pores. This study not only clarifies the collaborative adsorption mechanisms and displacement regulation laws of multi-component crude oil in nanopores but also provides a solid theoretical basis for CO2 injection strategies in unconventional reservoir development. Full article
(This article belongs to the Special Issue Advances and Innovations in Unconventional Enhanced Oil Recovery)
Show Figures

Figure 1

18 pages, 3234 KB  
Article
Electrical Energy Storage from Low-Grade Heat Using Reduced Graphene Oxide–Carbon Nanotube Composite Materials
by Zhe Yang, Yijia Xu, Shuocheng Sun, Yujia Zhang, Xiaolu Li, Yan Zhao, Xusheng Hao, Caige Xue, Dening Guo, Jia Li and Jiale Wang
Materials 2025, 18(20), 4807; https://doi.org/10.3390/ma18204807 - 21 Oct 2025
Viewed by 329
Abstract
The conversion of low-grade heat into storable electrical energy using nanoporous carbon materials represents an efficient energy harvesting strategy. In this study, a reduced graphene oxide (RGO) and carbon nanotube (CNT) composite with a rich microporous structure was synthesized. A symmetrical thermoelectric cell [...] Read more.
The conversion of low-grade heat into storable electrical energy using nanoporous carbon materials represents an efficient energy harvesting strategy. In this study, a reduced graphene oxide (RGO) and carbon nanotube (CNT) composite with a rich microporous structure was synthesized. A symmetrical thermoelectric cell was constructed to harvest thermal energy. The application of a temperature difference (ΔT) generated a stable equilibrium voltage (Us), which scaled linearly with ΔT. The resulting thermoelectric coefficient (UsT) increased markedly with the carbon nanotube (CNT) content, underscoring the effectiveness of CNT incorporation for improving thermoelectric properties. It also shows a non-monotonic dependence on KCl concentration, first increasing and then decreasing, with a maximum value of 4.17 mV/°C achieved in 0.1 M KCl using the RGO-5%CNTs electrode. When connected to an external load, the discharge voltage and current decay rapidly before stabilizing within seconds. Circuit analysis reveals that the incorporation of CNTs reduces internal resistance and increases the equivalent capacitance. Although instantaneous discharge power declines quickly, the addition of CNTs elevates its initial value and slows the decay rate. Both the average output power and thermoelectric conversion efficiency improve with increasing ΔT and are further enhanced at higher CNT content. Overall, the RGO-CNT composite demonstrates significantly superior thermoelectric performance compared to pure RGO. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

23 pages, 3512 KB  
Review
Advances in the Application of Fractal Theory to Oil and Gas Resource Assessment
by Baolei Liu, Xueling Zhang, Cunyou Zou, Lingfeng Zhao and Hong He
Fractal Fract. 2025, 9(10), 676; https://doi.org/10.3390/fractalfract9100676 - 20 Oct 2025
Viewed by 374
Abstract
In response to the growing complexity of global exploration targets, traditional Euclidean geometric and linear statistical methods reveal inherent theoretical limitations in characterizing hydrocarbon reservoirs as complex geological bodies that exhibit simultaneous local disorder and global order. Fractal theory, with its core parameter [...] Read more.
In response to the growing complexity of global exploration targets, traditional Euclidean geometric and linear statistical methods reveal inherent theoretical limitations in characterizing hydrocarbon reservoirs as complex geological bodies that exhibit simultaneous local disorder and global order. Fractal theory, with its core parameter systems such as fractal dimension and scaling exponents, provides an innovative mathematical–physics toolkit for quantifying spatial heterogeneity and resolving the multi-scale characteristics of reservoirs. This review systematically consolidates recent advancements in the application of fractal theory to oil and gas resource assessment, with the aim of elucidating its transition from a theoretical concept to a practical tool. We conclusively demonstrate that fractal theory has driven fundamental methodological progress across four critical dimensions: (1) In reservoir classification and evaluation, fractal dimension has emerged as a robust quantitative metric for heterogeneity and facies discrimination. (2) In pore structure characterization, the theory has successfully uncovered structural self-similarity across scales, from nanopores to macroscopic vugs, enabling precise modeling of complex pore networks. (3) In seepage behavior analysis, fractal-based models have significantly enhanced the predictive capacity for non-Darcy flow and preferential migration pathways. (4) In fracture network modeling, fractal geometry is proven pivotal for accurately characterizing the spatial distribution and connectivity of natural fractures. Despite significant progress, current research faces challenges, including insufficient correlation with dynamic geological processes and a scarcity of data for model validation. Future research should focus on the following directions: developing fractal parameter inversion methods integrated with artificial intelligence, constructing dynamic fractal–seepage coupling models based on digital twins, establishing a unified fractal theoretical framework from pore to basin scale, and expanding its application in low-carbon energy fields such as carbon dioxide sequestration and natural gas hydrate development. Through interdisciplinary integration and methodological innovation, fractal theory is expected to advance hydrocarbon resource assessment toward intelligent, precise, and systematic development, providing scientific support for the efficient exploitation of complex reservoirs and the transition to green, low-carbon energy. Full article
Show Figures

Figure 1

28 pages, 10458 KB  
Article
Whole-Genome Sequencing Reveals a Novel GATA2 Mutation in Lower-Grade Glioma: Bioinformatics Analysis of Functional and Therapeutic Implications
by Handoko, Vincent Lau, Eka Susanto, Renindra Ananda Aman, Didik Setyo Heriyanto and Soehartati A. Gondhowiardjo
Cancers 2025, 17(20), 3338; https://doi.org/10.3390/cancers17203338 - 16 Oct 2025
Viewed by 328
Abstract
Background/Objectives: Lower-grade gliomas, particularly IDH-mutant astrocytomas, represent a distinct molecular subtype with unique therapeutic challenges. Whole-genome sequencing (WGS) plays a crucial role in uncovering genetic alterations that drive glioma pathogenesis and therapeutic resistance. This study identifies and evaluates a novel GATA2 p.Arg396Trp [...] Read more.
Background/Objectives: Lower-grade gliomas, particularly IDH-mutant astrocytomas, represent a distinct molecular subtype with unique therapeutic challenges. Whole-genome sequencing (WGS) plays a crucial role in uncovering genetic alterations that drive glioma pathogenesis and therapeutic resistance. This study identifies and evaluates a novel GATA2 p.Arg396Trp mutation in a clinical sample of lower-grade glioma, assessing its structural impact and implications for drug binding. Methods: A WHO Grade II astrocytoma specimen from a 33-year-old female patient was analyzed using WGS with Oxford Nanopore sequencing, followed by comprehensive bioinformatics processing to identify genomic variants. The GATA2 p.Arg396Trp mutation was evaluated using protein modeling, structural analysis, and pathogenicity prediction tools. Drug affinity analysis was conducted using molecular docking simulations to assess the computational impact of the mutation on drug binding. Results: The GATA2 p.Arg396Trp mutation was identified as a computationally predicted pathogenic variant, potentially disrupting protein interactions within critical functional domains. Structural analysis revealed altered binding dynamics with key anti-neoplastic agents, suggesting potential implications for therapeutic response. These findings represent computational predictions requiring experimental validation. Conclusions: Our preliminary findings suggest a potential role of the GATA2 p.Arg396Trp mutation in lower-grade glioma pathogenesis. The mutation predicted impact on transcriptional regulation and drug affinity suggests GATA2 as a possible biomarker candidate. Extensive experimental validation in larger patient cohorts is needed to establish clinical relevance and explore targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Novel Insights into Glioblastoma and Brain Metastases (2nd Edition))
Show Figures

Figure 1

12 pages, 1977 KB  
Article
Femtosecond Laser Crystallization of Ultrathin a-Ge Films in Multilayer Stacks with Silicon Layers
by Yuzhu Cheng, Alexander V. Bulgakov, Nadezhda M. Bulgakova, Jiří Beránek, Aleksey V. Kacyuba and Vladimir A. Volodin
Appl. Sci. 2025, 15(20), 11082; https://doi.org/10.3390/app152011082 - 16 Oct 2025
Viewed by 221
Abstract
Ultrashort pulsed laser annealing is an efficient technique for crystallizing amorphous semiconductors with the possibility to obtain polycrystalline films at low temperatures, below the melting point, through non-thermal processes. Here, a multilayer structure consisting of alternating amorphous silicon and germanium films was annealed [...] Read more.
Ultrashort pulsed laser annealing is an efficient technique for crystallizing amorphous semiconductors with the possibility to obtain polycrystalline films at low temperatures, below the melting point, through non-thermal processes. Here, a multilayer structure consisting of alternating amorphous silicon and germanium films was annealed by mid-infrared (1500 nm) ultrashort (70 fs) laser pulses under single-shot and multi-shot irradiation conditions. We investigate selective crystallization of ultrathin (3.5 nm) a-Ge non-hydrogenated films, which are promising for the generation of highly photostable nanodots. Based on Raman spectroscopy analysis, we demonstrate that, in contrast to thicker (above 10 nm) Ge films, explosive stress-induced crystallization is suppressed in such ultrathin systems and proceeds via thermal melting. This is likely due to the islet structure of ultrathin films, which results in the formation of nanopores at the Si-Ge interface and reduces stress confinement during ultrashort laser heating. Full article
Show Figures

Figure 1

14 pages, 1301 KB  
Article
Deciphering Escherichia coli ESBL/pAmpC Plasmids Through High-Throughput Third-Generation Sequencing and Hybrid Assembly
by Andrea Laconi, Enea Ovedani, Roberta Tolosi, Ilias Apostolakos and Alessandra Piccirillo
Pathogens 2025, 14(10), 1039; https://doi.org/10.3390/pathogens14101039 - 13 Oct 2025
Viewed by 331
Abstract
Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC (pAmpC) β-lactamases represent a threat for public health. Their dissemination is often mediated by mobile genetic elements (MGEs), but plasmid identification and characterization could be hindered by sequencing limitations. Hybrid assembly may overcome these barriers. Eight ESBL/pAmpC-producing [...] Read more.
Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC (pAmpC) β-lactamases represent a threat for public health. Their dissemination is often mediated by mobile genetic elements (MGEs), but plasmid identification and characterization could be hindered by sequencing limitations. Hybrid assembly may overcome these barriers. Eight ESBL/pAmpC-producing E. coli isolates from broilers were sequenced using Illumina (short-read) and Oxford Nanopore MinION (long-read). Assemblies were generated individually and using a hybrid approach. Plasmids were typed, annotated, and screened for antimicrobial resistance genes (ARGs), MGEs, and virulence factors. Short-read assemblies were highly fragmented, while long reads improved contiguity but showed typing errors. Hybrid assemblies produced the most accurate and complete plasmids, including more circularized plasmids. Long and hybrid assemblies detected IS26 associated with ESBL genes and additional virulence genes not identified by short reads. ARG profiles were consistent across methods, but structural resolution and contextualization of resistance loci were superior in hybrid assembly. Hybrid assembly integrates the strengths of short- and long-read sequencing, enabling accurate plasmid reconstruction and improved detection of resistance-associated MGEs. This approach may enhance genomic surveillance of ESBL/pAmpC plasmids and support strategies to mitigate antimicrobial resistance. Full article
Show Figures

Figure 1

13 pages, 2805 KB  
Article
Facile Synthesis of Mg-MOF-74 Thin Films for Enhanced CO2 Detection
by Yujing Zhang, Evan J. Haning, Hao Sun, Tzer-Rurng Su, Alan X. Wang, Ki-Joong Kim, Paul R. Ohodnicki and Chih-Hung Chang
Nanomaterials 2025, 15(20), 1541; https://doi.org/10.3390/nano15201541 - 10 Oct 2025
Viewed by 572
Abstract
Metal–organic frameworks (MOFs) are a class of highly ordered nanoporous crystals that possess a designable framework and unique chemical versatility. MOF thin films are ideal for nanotechnology-enabling applications, such as optoelectronics, catalytic coatings, and sensing. Mg-MOF-74 has been drawing increasing attention due to [...] Read more.
Metal–organic frameworks (MOFs) are a class of highly ordered nanoporous crystals that possess a designable framework and unique chemical versatility. MOF thin films are ideal for nanotechnology-enabling applications, such as optoelectronics, catalytic coatings, and sensing. Mg-MOF-74 has been drawing increasing attention due to its remarkable CO2 uptake capacity among MOFs and other commonly used CO2 absorbents. Mg-MOF-74 thin films are currently fabricated by immersing selected substrates in precursor solutions, followed by a traditional solvothermal synthesis process. Herein, we introduce a rapid, easy, and cost-effective synthesis protocol to fabricate MOF thin films in an additive manner. In this work, the controllable synthesis of Mg-MOF-74 thin films directly on optical supports is reported for the first time. Dense, continuous, and uniform Mg-MOF-74 thin films are successfully fabricated on bare glass slides, with an average growth rate of up to 85.3 nm min−1. The structural and optical properties of the resulting Mg-MOF-74 thin films are characterized using X-ray diffraction, atomic force microscopy, scanning electron microscopy, UV-Vis-NIR spectroscopy, and Fourier Transform Infrared Spectroscopy (FTIR). The CO2 adsorption performance of the resulting Mg-MOF-74 thin films is studied using FTIR for the first time, which demonstrates that, as per the length of the light path for gas absorption, 1 nm Mg-MOF-74 thin film could provide 400.9 ± 18.0 nm absorption length for CO2, which is achieved via the extraordinary CO2 adsorption by Mg-MOF-74. The synthesis protocol enables the rapid synthesis of MOF thin films, highlighting Mg-MOF-74 in more CO2-related applications, such as enhanced CO2 adsorption and MOF-enhanced infrared gas sensing. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

19 pages, 3793 KB  
Article
Controlled Nanopore Fabrication on Silicon via Surface Plasmon Polariton-Induced Laser Irradiation of Metal–Insulator–Metal Structured Films
by Sifan Huo, Sipeng Luo, Ruishen Wang, Jingnan Zhao, Wenfeng Miao, Zhiquan Guo and Yuanchen Cui
Coatings 2025, 15(10), 1187; https://doi.org/10.3390/coatings15101187 - 10 Oct 2025
Viewed by 735
Abstract
In this study, we present a cost-effective approach for fabricating nanopores on single-crystal silicon using a silver–alumina–silver (Ag/AAO/Ag) metal–insulator–metal (MIM) structured mask. Self-ordered porous anodic aluminum oxide (AAO) films were prepared via two-step anodization and coated with silver layers on both sides to [...] Read more.
In this study, we present a cost-effective approach for fabricating nanopores on single-crystal silicon using a silver–alumina–silver (Ag/AAO/Ag) metal–insulator–metal (MIM) structured mask. Self-ordered porous anodic aluminum oxide (AAO) films were prepared via two-step anodization and coated with silver layers on both sides to form the MIM structure. When irradiated with a 532 nm nanosecond laser, the MIM mask excites surface plasmon polaritons (SPPs), resulting in a localized field enhancement that enables the etching of nanopores into the silicon substrate. This method successfully produced nanopores with diameters as small as 50 nm and depths up to 28 nm. The laser-induced SPP-assisted machining significantly enhances the specific surface area of the processed surface, making it promising for applications in catalysis, biosensing, and microcantilever-based devices. For instance, an increased surface area can improve catalytic efficiency by providing more active sites, and enhance sensor sensitivity by amplifying response signals. Compared to conventional lithographic or focused ion beam techniques, this method offers simplicity, low cost, and scalability. The proposed technique demonstrates a practical and efficient route for the large-area subwavelength nanostructuring of silicon surfaces. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

27 pages, 6425 KB  
Review
Thermal Insulation and Fireproof Aerogel Composites for Automotive Batteries
by Xianbo Hou, Jia Chen, Xuelei Fang, Rongzhu Xia, Shaowei Zhu, Tao Liu, Keyu Zhu and Liming Chen
Gels 2025, 11(10), 791; https://doi.org/10.3390/gels11100791 - 2 Oct 2025
Viewed by 904
Abstract
New energy vehicles face a critical challenge in balancing the thermal safety management of high-specific-energy battery systems with the simultaneous improvement of energy density. With the large-scale application of high-energy-density systems such as silicon-based anodes and solid-state batteries, their inherent thermal runaway risks [...] Read more.
New energy vehicles face a critical challenge in balancing the thermal safety management of high-specific-energy battery systems with the simultaneous improvement of energy density. With the large-scale application of high-energy-density systems such as silicon-based anodes and solid-state batteries, their inherent thermal runaway risks pose severe challenges to battery thermal management systems (BTMS). Currently, the thermal insulation performance, temperature resistance, and fire protection capabilities of flame-retardant materials (e.g., foam cotton, fiber felts) used in automotive batteries are inadequate to meet the demands of intense combustion and high temperatures generated during thermal failure in high-energy-density batteries. Against this backdrop, thermal insulation and fireproof aerogel materials are emerging as a revolutionary solution for the next generation of power battery thermal protection systems. Leveraging their nanoporous structure’s exceptional thermal insulation properties (thermal conductivity of 0.013–0.018 W/(m·K) at room temperature) and extreme fire resistance (temperature resistance > 1100 °C/UL94 V-0 flame retardancy), aerogels are gaining prominence. This article provides a systematic review of thermal runaway phenomena in automotive batteries and corresponding protective measures. It highlights recent breakthroughs in the selection of material systems, optimization of preparation processes, and fiber–matrix composite technologies for automotive fireproof aerogel composites. The core engineering values of these materials, such as blocking thermal runaway propagation, reducing system weight, and improving volumetric efficiency, are quantitatively validated. Furthermore, the paper explores future research directions, including the development of low-cost aerogel composites and the design of organic–inorganic hybrid composite structures, aiming to provide a foundation and industrial pathway for the research and development of next-generation high-performance battery thermal management systems. Full article
(This article belongs to the Special Issue Aerogels: Synthesis and Applications)
Show Figures

Figure 1

22 pages, 3094 KB  
Article
Enhanced NO2 Detection in ZnO-Based FET Sensor: Charge Carrier Confinement in a Quantum Well for Superior Sensitivity and Selectivity
by Hicham Helal, Marwa Ben Arbia, Hakimeh Pakdel, Dario Zappa, Zineb Benamara and Elisabetta Comini
Chemosensors 2025, 13(10), 358; https://doi.org/10.3390/chemosensors13100358 - 1 Oct 2025
Cited by 1 | Viewed by 540
Abstract
NO2 is a toxic gas mainly generated by combustion processes, such as vehicle emissions and industrial activities. It is a key contributor to smog, acid rain, ground-level ozone, and particulate matter, all of which pose serious risks to human health and the [...] Read more.
NO2 is a toxic gas mainly generated by combustion processes, such as vehicle emissions and industrial activities. It is a key contributor to smog, acid rain, ground-level ozone, and particulate matter, all of which pose serious risks to human health and the environment. Conventional resistive gas sensors, typically based on metal oxide semiconductors, detect NO2 by resistance modulation through surface interactions with the gas. However, they often suffer from low responsiveness and poor selectivity. This study investigates NO2 detection using nanoporous zinc oxide thin films integrated into a resistor structure and floating-gate field-effect transistor (FGFET). Both Silvaco-Atlas simulations and experimental fabrication were employed to evaluate sensor behavior under NO2 exposure. The results show that FGFET provides higher sensitivity, faster response times, and improved selectivity compared to resistor-based devices. In particular, FGFET achieves a detection limit as low as 89 ppb, with optimal performance around 400 °C, and maintains stability under varying humidity levels. The enhanced performance arises from quantum well effects at the floating-gate Schottky contact, combined with NO2 adsorption on the ZnO surface. These interactions extend the depletion region and confine charge carriers, amplifying conductivity modulation in the channel. Overall, the findings demonstrate that FGFET is a promising platform for NO2 sensors, with strong potential for environmental monitoring and industrial safety applications. Full article
(This article belongs to the Special Issue Functionalized Material-Based Gas Sensing)
Show Figures

Figure 1

17 pages, 4073 KB  
Article
Pore Structure and Fractal Characteristics of Kelasu Ultra-Deep Tight Sandstone Gas Reservoirs
by Liandong Tang, Yongbin Zhang, Xingyu Tang, Qihui Zhang, Mingjun Chen, Xuehao Pei, Yili Kang, Yiguo Zhang, Yuting Liu, Bihui Zhou, Jun Li, Pandong Tian and Di Wu
Processes 2025, 13(10), 3074; https://doi.org/10.3390/pr13103074 - 25 Sep 2025
Viewed by 252
Abstract
Ultra-deep tight sandstone gas reservoirs are key targets for natural gas exploration, yet their pore structures under high temperature, pressure, and stress greatly affect gas occurrence and flow. This study investigates representative reservoirs in the Kelasu structural belt, Tarim Basin. Porosity–permeability were measured [...] Read more.
Ultra-deep tight sandstone gas reservoirs are key targets for natural gas exploration, yet their pore structures under high temperature, pressure, and stress greatly affect gas occurrence and flow. This study investigates representative reservoirs in the Kelasu structural belt, Tarim Basin. Porosity–permeability were measured under in situ conditions, and multi-scale pore structures were analyzed using thin sections, a SEM, mercury intrusion, and nitrogen adsorption. The results show that (1) the median permeability of cores at an ambient temperature and a confining stress of 3 MPa is 13.33–29.63 times that under the in situ temperature and pressure conditions. When the core permeability is lower than 0.1 mD, the stress sensitivity effect is significantly enhanced; (2) nanopores and micron-fractures are well developed yet exhibit poor connectivity. The majority of a core’s porosity is derived from the intergranular pores in clay minerals; (3) the volume of nano-sized pores within the 100 nm diameter range is mainly composed of mesopores, with an average proportion of 73.37%, while the average proportions of macropores and micropores are 22.29% and 4.34%, respectively; (4) full-scale pore sizes show bimodal peaks at 100–1000 nm and >100 μm, which are poorly connected; (5) the pore structure exhibits distinct fractal characteristics. The fractal dimension Df1 (2.65 on average) corresponds to the larger pore diameters of the primary intergranular pores, residual intergranular pores, and intragranular dissolution pores. The fractal dimension Df2 (2.10 on average) corresponds to the grain margin fractures, micron-fractures and partial throats. The pore types corresponding to the fractal dimensions Df3 (2.36 on average) and Df4 (2.58 on average) are mainly intercrystalline pores of clay minerals and a small number of intraparticle dissolution pores. These findings clarify the pore structure of ultra-deep tight sandstones and provide insights into their gas occurrence and flow mechanisms. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

29 pages, 23285 KB  
Article
Methodological Comparison of Short-Read and Long-Read Sequencing Methods on Colorectal Cancer Samples
by Nikolett Szakállas, Alexandra Kalmár, Kristóf Róbert Rada, Marianna Kucarov, Tamás Richárd Linkner, Barbara Kinga Barták, István Takács and Béla Molnár
Int. J. Mol. Sci. 2025, 26(18), 9254; https://doi.org/10.3390/ijms26189254 - 22 Sep 2025
Viewed by 692
Abstract
Colorectal cancer (CRC) is driven by a complex spectrum of somatic mutations and structural variants that contribute to tumor heterogeneity and therapy resistance. In this study, we performed a comparative analysis of short-read Illumina and long-read Nanopore sequencing technologies across multiple CRC sample [...] Read more.
Colorectal cancer (CRC) is driven by a complex spectrum of somatic mutations and structural variants that contribute to tumor heterogeneity and therapy resistance. In this study, we performed a comparative analysis of short-read Illumina and long-read Nanopore sequencing technologies across multiple CRC sample groups, encompassing diverse tissue morphologies. Our evaluation included general base-level metrics—such as nucleotide ratios, sequence match rates, and coverage—as well as variant calling performance, including variant allele frequency (VAF) distributions and pathogenic mutation detection rates. Focusing on clinically relevant genes (KRAS, BRAF, TP53, APC, PIK3CA, and others), we characterized platform-specific detection profiles and completed the ground truth validation of somatic KRAS and BRAF mutations. Structural variant (SV) analysis revealed Nanopore’s enhanced ability to resolve large and complex rearrangements, with consistently high precision across SV types, though recall varied by variant class and size. To enable direct comparison with the Illumina exome panel, we applied an exonic position reference file. To assess the impact of depth and PCR amplification, we completed an additional high-coverage Nanopore sequencing run. This analysis confirmed that PCR-free protocols preserve methylation signals more accurately, reinforcing Nanopore’s utility for integrated genomic and epigenomic profiling. Together, these findings underscore the complementary strengths of short- and long-read sequencing platforms in high-resolution cancer genomics, and we highlight the importance of coverage normalization, epigenetic fidelity, and rigorous benchmarking in variant discovery. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 3614 KB  
Article
Molecular Simulation Study on the Competitive Adsorption and Diffusion of CH4 and CO2 in Coal Nanopores with Different Pore Sizes
by Guangli Huang, Qinghua Zhang and Fujin Lin
Processes 2025, 13(9), 2990; https://doi.org/10.3390/pr13092990 - 19 Sep 2025
Viewed by 461
Abstract
Coalbed methane (CBM), mainly composed of methane (CH4) and carbon dioxide (CO2), has attracted increasing attention due to its dual significance as a clean energy resource and its role in greenhouse gas management. This research systematically examines the adsorption, [...] Read more.
Coalbed methane (CBM), mainly composed of methane (CH4) and carbon dioxide (CO2), has attracted increasing attention due to its dual significance as a clean energy resource and its role in greenhouse gas management. This research systematically examines the adsorption, desorption, diffusion, and bubble evolution dynamics of methane (CH4) and carbon dioxide (CO2) in graphene nanopores with diameters of 4 nm, 6 nm, and 8 nm by molecular dynamics simulations. Radial distribution function (RDF) analyses reveal strong solvation of both gases by water, with CO2 exhibiting slightly stronger interactions. Adsorption and desorption dynamics indicate that CO2 molecules display shorter residence times on the graphene surface (0.044–0.057 ns) compared with CH4 (0.055–0.062 ns), reflecting faster surface exchange. Gas-phase molecular number analysis demonstrates that CH4 accumulates more significantly in the vapor phase, while CO2 is more prone to adsorption and re-dissolution. Mean square displacement (MSD) results confirm enhanced molecular mobility in larger pores, with CH4 showing greater overall diffusivity. Structural evolution of the 8 nm system highlights asymmetric bubble dynamics, where large bubbles merge with the upper adsorption layer to form a thicker layer, while smaller bubbles contribute to a thinner layer near the lower surface. CH4 and CO2 follow similar pathways, though CO2 diffuses farther post-desorption due to its weaker surface retention. These results provide fundamental insights into confinement-dependent gas behavior in graphene systems, offering guidance for gas separation and storage applications. Full article
Show Figures

Figure 1

Back to TopTop