Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = nanoparticles-mediated chemotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4279 KiB  
Article
Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model
by Sarah Eliuth Ochoa-Hugo, Karla Valdivia-Aviña, Yanet Karina Gutiérrez-Mercado, Alejandro Arturo Canales-Aguirre, Verónica Chaparro-Huerta, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suárez, Mario Eduardo Cano-González, Antonio Topete, Andrea Molina-Pineda and Rodolfo Hernández-Gutiérrez
Pharmaceutics 2025, 17(8), 988; https://doi.org/10.3390/pharmaceutics17080988 (registering DOI) - 30 Jul 2025
Viewed by 319
Abstract
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can [...] Read more.
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can be effective and localized. The combination of chemotherapy and hyperthermia is promising. Our aim was to evaluate the combination therapy of photon hyperthermia with 5-fluorouracil (5-FU) both in vitro and in vivo. Methods: This study evaluated the antitumor efficacy of a combined chemo-photothermal therapy using 5-fluorouracil (5-FU) and branched gold nanoshells (BGNSs) in a colorectal cancer model. BGNSs were synthesized via a seed-mediated method and characterized by electron microscopy and UV–vis spectroscopy, revealing an average diameter of 126.3 nm and a plasmon resonance peak at 800 nm, suitable for near-infrared (NIR) photothermal applications. In vitro assays using SW620-GFP colon cancer cells demonstrated a ≥90% reduction in cell viability after 24 h of combined treatment with 5-FU and BGNS under NIR irradiation. In vivo, xenograft-bearing nude mice received weekly intratumoral administrations of the combined therapy for four weeks. The group treated with 5-FU + BGNS + NIR exhibited a final tumor volume of 0.4 mm3 on day 28, compared to 1010 mm3 in the control group, corresponding to a tumor growth inhibition (TGI) of 100.74% (p < 0.001), which indicates not only complete inhibition of tumor growth but also regression below the initial tumor volume. Thermographic imaging confirmed that localized hyperthermia reached 45 ± 0.5 °C at the tumor site. Results: These findings suggest that the combination of 5-FU and BGNS-mediated hyperthermia may offer a promising strategy for enhancing therapeutic outcomes in patients with colorectal cancer while potentially minimizing systemic toxicity. Conclusions: This study highlights the potential of integrating nanotechnology with conventional chemotherapy for more effective and targeted cancer treatment. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

30 pages, 2884 KiB  
Review
Silibinin Anticancer Effects Through the Modulation of the Tumor Immune Microenvironment in Triple-Negative Breast Cancer
by Shubham D. Mishra, Patricia Mendonca, Sukhmandeep Kaur and Karam F. A. Soliman
Int. J. Mol. Sci. 2025, 26(13), 6265; https://doi.org/10.3390/ijms26136265 - 28 Jun 2025
Viewed by 1038
Abstract
Triple-negative breast cancer (TNBC), characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), remains a therapeutic challenge due to its aggressive nature, limited treatment options, and high recurrence rates. Current therapies, including chemotherapy [...] Read more.
Triple-negative breast cancer (TNBC), characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), remains a therapeutic challenge due to its aggressive nature, limited treatment options, and high recurrence rates. Current therapies, including chemotherapy and immune checkpoint inhibitors, face resistance driven by tumor heterogeneity, immunosuppressive signaling, and dysregulated redox pathways. This review explores silibinin’s potential to modulate the tumor immune microenvironment (TIME) and overcome therapeutic resistance in TNBC. Silibinin exerts multifaceted anticancer effects by suppressing PD-L1 expression through the inhibition of JAK/STAT3 signaling and MUC1-C interaction, attenuating NF-κB-driven inflammation, and downregulating CCL2-mediated recruitment of tumor-associated macrophages (TAMs). Additionally, silibinin disrupts redox adaptation by targeting the Nrf2-EGFR-MYC-TXNIP axis, enhancing oxidative stress and chemosensitivity. Preclinical studies highlight its ability to inhibit epithelial–mesenchymal transition (EMT), reduce cancer stem cell (CSC) populations, and synergize with existing therapies like PD-1 inhibitors. Despite its low bioavailability, advanced formulations such as liposomes and nanoparticles show promise in improving delivery and efficacy. By reshaping TIME through dual antioxidant and immunomodulatory mechanisms, silibinin emerges as a viable adjunct therapy to reverse immunosuppression and chemoresistance in TNBC. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Anticancer Effects)
Show Figures

Figure 1

23 pages, 1382 KiB  
Review
The Application of Dendritic Cells Vaccines in Tumor Therapy and Their Combination with Biomimetic Nanoparticles
by Tong Zhu, Yuexin Li, Yutao Wang and Danyang Li
Vaccines 2025, 13(4), 337; https://doi.org/10.3390/vaccines13040337 - 21 Mar 2025
Cited by 5 | Viewed by 1602
Abstract
Dendritic cells (DCs) act as a bridge between innate and adaptive immunity by presenting antigens to effector immune cells and have shown broad application potential in tumor immunotherapy. However, the clinical translation of DC vaccines encounters significant challenges, such as the immunosuppressive tumor [...] Read more.
Dendritic cells (DCs) act as a bridge between innate and adaptive immunity by presenting antigens to effector immune cells and have shown broad application potential in tumor immunotherapy. However, the clinical translation of DC vaccines encounters significant challenges, such as the immunosuppressive tumor microenvironment (TME) and the sub-optimal DC function and vaccine efficacy in vivo. In this review, our investigation has uncovered the latest developments in DC vaccines and their potential in cancer immunotherapy, with a special emphasis on the integration of nanotechnology. Several types of nanomaterials, including protein cage nanoparticles (NPs), biomimetic NPs, and targeted multifunctional NPs, have been developed to enhance the antigen presentation ability of DCs and their stimulatory effects on T cells. In addition, we have also summarized the synergistic anti-cancer effects of DC vaccines with immune checkpoint inhibitors, chemotherapy, and radiotherapy. In addition, recent advances in nanotechnology have made it possible to develop novel biomarkers that can enhance the antigen presentation capacity of DCs and stimulate T cells. These biomarkers not only improve the accuracy and precision of DC vaccine design but also provide new insights into understanding the mechanisms of the DC-mediated immune response. Despite challenges pertaining to technical complexities and individual adaptation in the design and production of DC vaccines, personalized immunotherapy based on DCs is expected to become an important part of cancer treatment with rapid developments in biotechnology and immunology. This review provides new perspectives and potential solutions for the optimal design and application of DC vaccines in cancer therapy. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Figure 1

25 pages, 3282 KiB  
Review
Breast Cancer Treatment: The Potential of Organic and Inorganic Nanocarriers in Targeted Drug Delivery
by Saravanan Alamelu, Kamalesh Balakumar Venkatesan, Kalist Shagirtha, Manoj Kumar Srinivasan, Chellasamy Panneerselvam, Al Thabiani Aziz, Mohammed Ali Alshehri, Mohamed Ali Seyed and Pugalendhi Pachaiappan
Drugs Drug Candidates 2024, 3(4), 813-837; https://doi.org/10.3390/ddc3040046 - 25 Nov 2024
Cited by 1 | Viewed by 1499
Abstract
Breast cancer (BC) is the most prevalent form of malignancy among women on a global scale, ranking alongside lung cancer. Presently, conventional approaches to cancer treatment include surgical procedures followed by chemotherapy or radiotherapy. Nonetheless, the efficacy of these treatments in battling BC [...] Read more.
Breast cancer (BC) is the most prevalent form of malignancy among women on a global scale, ranking alongside lung cancer. Presently, conventional approaches to cancer treatment include surgical procedures followed by chemotherapy or radiotherapy. Nonetheless, the efficacy of these treatments in battling BC is often compromised due to the adverse effects they inflict on healthy tissues and organs. In recent times, a range of nanoparticles (NPs) has emerged, exhibiting the potential to specifically target malignant cells while sparing normal cells and organs from harm. This has paved the way for the development of nanoparticle-mediated targeted drug delivery systems, holding great promise as a technique for addressing BC. To increase the efficacy of this new method, several nanocarriers including inorganic NPs (such as magnetic NPs, silica NPs, etc.) and organic NPs (e.g., dendrimers, liposomes, micelles, and polymeric NPs) have been used. Herein, we discuss the mechanism of NP-targeted drug delivery and the recent advancement of therapeutic strategies of organic and inorganic nanocarriers for anticancer drug delivery in BC. We also discuss the future prospects and challenges of nanoparticle-based therapies for BC. Full article
Show Figures

Figure 1

23 pages, 2007 KiB  
Review
Targeting Tumor Hypoxia with Nanoparticle-Based Therapies: Challenges, Opportunities, and Clinical Implications
by Sujit Kumar Debnath, Monalisha Debnath, Arnab Ghosh, Rohit Srivastava and Abdelwahab Omri
Pharmaceuticals 2024, 17(10), 1389; https://doi.org/10.3390/ph17101389 - 18 Oct 2024
Cited by 10 | Viewed by 3580
Abstract
Hypoxia is a crucial factor in tumor biology, affecting various solid tumors to different extents. Its influence spans both early and advanced stages of cancer, altering cellular functions and promoting resistance to therapy. Hypoxia reduces the effectiveness of radiotherapy, chemotherapy, and immunotherapy, making [...] Read more.
Hypoxia is a crucial factor in tumor biology, affecting various solid tumors to different extents. Its influence spans both early and advanced stages of cancer, altering cellular functions and promoting resistance to therapy. Hypoxia reduces the effectiveness of radiotherapy, chemotherapy, and immunotherapy, making it a target for improving therapeutic outcomes. Despite extensive research, gaps persist, necessitating the exploration of new chemical and pharmacological interventions to modulate hypoxia-related pathways. This review discusses the complex pathways involved in hypoxia and the associated pharmacotherapies, highlighting the limitations of current treatments. It emphasizes the potential of nanoparticle-based platforms for delivering anti-hypoxic agents, particularly oxygen (O2), to the tumor microenvironment. Combining anti-hypoxic drugs with conventional cancer therapies shows promise in enhancing remission rates. The intricate relationship between hypoxia and tumor progression necessitates novel therapeutic strategies. Nanoparticle-based delivery systems can significantly improve cancer treatment efficacy by targeting hypoxia-associated pathways. The synergistic effects of combined therapies underscore the importance of multimodal approaches in overcoming hypoxia-mediated resistance. Continued research and innovation in this area hold great potential for advancing cancer therapy and improving patient outcomes. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Figure 1

18 pages, 5253 KiB  
Article
Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy
by Shuo Wang, Chao Zhang, Huandi Liu, Xueyu Fan, Shuangqing Fu, Wei Li and Honglei Zhang
Nanomaterials 2024, 14(20), 1657; https://doi.org/10.3390/nano14201657 - 16 Oct 2024
Viewed by 1780
Abstract
The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.g., siRNA) has been shown to enhance therapeutic efficacy against tumors, reduce individual drug dosages, and prevent drug resistance associated with single-drug treatments. However, the varying solubility of [...] Read more.
The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.g., siRNA) has been shown to enhance therapeutic efficacy against tumors, reduce individual drug dosages, and prevent drug resistance associated with single-drug treatments. However, the varying solubility of chemotherapy drugs and genetic drugs presents a challenge in co-delivering these agents. In this study, nanoparticles loaded with PTX were prepared using the biodegradable polymer material poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). These nanoparticles were surface-modified with target proteins (Affibody molecules) and RALA cationic peptides to create core-shell structured microspheres with targeted and cationic functionalization. A three-drug co-delivery system (PTX@PHBHHx-ARP/siRNAGEM) were developed by electrostatically adsorbing siRNA chains containing GEM onto the microsphere surface. The encapsulation efficiency of PTX in the nanodrug was found to be 81.02%, with a drug loading of 5.09%. The chemogene adsorption capacity of siRNAGEM was determined to be 97.3%. Morphological and size characterization of the nanodrug revealed that PTX@PHBHHx-ARP/siRNAGEM is a rough-surfaced microsphere with a particle size of approximately 150 nm. This nanodrug exhibited targeting capabilities toward BT474 cells with HER2 overexpression while showing limited targeting ability toward MCF-7 cells with low HER2 expression. Results from the MTT assay demonstrated that PTX@PHBHHx-ARP/siRNAGEM exhibits high cytotoxicity and excellent combination therapy efficacy compared to physically mixed PTX/GEM/siRNA. Additionally, Western blot analysis confirmed that siRNA-mediated reduction of Bcl-2 expression significantly enhanced cell apoptosis mediated by PTX or GEM in tumor cells, thereby increasing cell sensitivity to PTX and GEM. This study presents a novel targeted nanosystem for the co-delivery of chemotherapy drugs and genetic drugs. Full article
Show Figures

Figure 1

17 pages, 3570 KiB  
Review
Review of Prodrug and Nanodelivery Strategies to Improve the Treatment of Colorectal Cancer with Fluoropyrimidine Drugs
by Santu Sarkar, Sezgin Kiren and William H. Gmeiner
Pharmaceutics 2024, 16(6), 734; https://doi.org/10.3390/pharmaceutics16060734 - 29 May 2024
Cited by 4 | Viewed by 2494
Abstract
Fluoropyrimidine (FP) drugs are central components of combination chemotherapy regimens for the treatment of colorectal cancer (CRC). FP-based chemotherapy has improved survival outcomes over the last several decades with much of the therapeutic benefit derived from the optimization of dose and delivery. To [...] Read more.
Fluoropyrimidine (FP) drugs are central components of combination chemotherapy regimens for the treatment of colorectal cancer (CRC). FP-based chemotherapy has improved survival outcomes over the last several decades with much of the therapeutic benefit derived from the optimization of dose and delivery. To provide further advances in therapeutic efficacy, next-generation prodrugs and nanodelivery systems for FPs are being developed. This review focuses on recent innovative nanodelivery approaches for FP drugs that display therapeutic promise. We summarize established, clinically useful FP prodrug strategies, including capecitabine, which exploit tumor-specific enzyme expression for optimal anticancer activity. We then describe the use of FP DNA-based polymers (e.g., CF10) for the delivery of activated FP nucleotides as a nanodelivery approach with proven activity in pre-clinical models and with clinical potential. Multiple nanodelivery systems for FP delivery show promise in CRC pre-clinical models and we review advances in albumin-mediated FP delivery, the development of mesoporous silica nanoparticles, emulsion-based nanoparticles, metal nanoparticles, hydrogel-based delivery, and liposomes and lipid nanoparticles that display particular promise for therapeutic development. Nanodelivery of FPs is anticipated to impact CRC treatment in the coming years and to improve survival for cancer patients. Full article
Show Figures

Figure 1

17 pages, 4667 KiB  
Article
Cannabidiol Combination Enhances Photodynamic Therapy Effects on MCF-7 Breast Cancer Cells
by Dimakatso Mokoena, Blassan P. George and Heidi Abrahamse
Cells 2024, 13(2), 187; https://doi.org/10.3390/cells13020187 - 18 Jan 2024
Cited by 13 | Viewed by 4350
Abstract
Cannabis sativa is a well-known plant for its psychoactive effects; however, its many derivatives, such as Cannabidiol (CBD), contain several therapeutic applications. Tetrahydrocannabinol (THC) is the main cannabis derivative responsible for psychoactive properties, while CBD is non-psychotropic. For this reason, CBD has been [...] Read more.
Cannabis sativa is a well-known plant for its psychoactive effects; however, its many derivatives, such as Cannabidiol (CBD), contain several therapeutic applications. Tetrahydrocannabinol (THC) is the main cannabis derivative responsible for psychoactive properties, while CBD is non-psychotropic. For this reason, CBD has been more exploited in the last decade. CBD has been connected to multiple anticancer properties, and when combined with photodynamic therapy (PDT), it is possible to eradicate tumors more effectively. In this study, CBD was utilized to treat MCF-7 breast cancer cells, followed by in vitro PDT combination therapy. Conventional breast cancer treatment modalities such as chemotherapy, radiotherapy, etc. have been reported for inducing a number of undesirable side effects, recurrence of the disease, and low quality of life. In this study, cells were exposed to varying concentrations of CBD (i.e., 1.25, 2.5, 5, 10, and 20 μg/mL) and incubated 12 and 24 h after treatment. The optimal doses were then used in combination therapy. Morphology and biochemical assays, including lactate dehydrogenase (LDH) for membrane integrity, adenosine triphosphate (ATP) for viability, and trypan blue exclusion assay for viability, were used to examine cellular responses after treatments. The optimal concentration was then utilized in Hypericin-Gold nanoparticles mediated PDT combination. The results revealed that, in a dose-dependent manner, conventional morphological characteristics of cell death, such as vacuolization, blebbing, and floating were observed in treated cells. The biochemical responses demonstrated an increase in LDH, a decrease in ATP, and a reduction in viability. This study demonstrated that CBD induces cell death in MCF-7 breast cancer cells cultured in vitro. The immunofluorescence results of combination therapy indicated that cell death occurred via apoptosis. In conclusion, this study proposes that the CBD and PDT combination therapy is effective in killing MCF-7 breast cancer cells in vitro by induction of apoptosis. Full article
(This article belongs to the Special Issue Advances in Plants-Derived Bioactives for Cancer Treatment 2.0)
Show Figures

Figure 1

18 pages, 3436 KiB  
Article
Local Magnetic Hyperthermia and Systemic Gemcitabine/Paclitaxel Chemotherapy Triggers Neo-Angiogenesis in Orthotopic Pancreatic Tumors without Involvement of Auto/Paracrine Tumor Cell VEGF Signaling and Hypoxia
by Wisdom O. Maduabuchi, Felista L. Tansi, Bernd Faenger, Paul Southern, Quentin A. Pankhurst, Frank Steiniger, Martin Westermann and Ingrid Hilger
Cancers 2024, 16(1), 33; https://doi.org/10.3390/cancers16010033 - 20 Dec 2023
Cited by 2 | Viewed by 1874
Abstract
There is a growing interest in exploring the therapeutically mediated modulation of tumor vascularization of pancreatic cancer, which is known for its poorly perfused tumor microenvironment limiting the delivery of therapeutic agents to the tumor site. Here, we assessed how magnetic hyperthermia in [...] Read more.
There is a growing interest in exploring the therapeutically mediated modulation of tumor vascularization of pancreatic cancer, which is known for its poorly perfused tumor microenvironment limiting the delivery of therapeutic agents to the tumor site. Here, we assessed how magnetic hyperthermia in combination with chemotherapy selectively affects growth, the vascular compartment of tumors, and the presence of tumor cells expressing key regulators of angiogenesis. To that purpose, a orthotopic PANC-1 (fluorescent human pancreatic adenocarcinoma) mouse tumor model (Rj:Athym-Foxn1nu/nu) was used. Magnetic hyperthermia was applied alone or in combination with systemic chemotherapy (gemcitabine 50 mg per kg body weight, nab-pacitaxel 30 mg/kg body weight) on days 1 and 7 following magnetic nanoparticle application (dose: 1 mg per 100 mm3 of tumor). We used ultrasound imaging, immunohistochemistry, multi-spectral optoacoustic tomography (MSOT), and hematology to assess the biological parameters mentioned above. We found that magnetic hyperthermia in combination with gemcitabine/paclitaxel chemotherapy was able to impact tumor growth (decreased volumes and Ki67 expression) and to trigger neo-angiogenesis (increased small vessel diameter) as a result of the therapeutically mediated cell damages/stress in tumors. The applied stressors activated specific pro-angiogenic mechanisms, which differed from those seen in hypoxic conditions involving HIF-1α, since (a) treated tumors showed a significant decrease of cells expressing VEGF, CD31, HIF-1α, and neuropilin-1; and (b) the relative tumor blood volume and oxygen level remained unchanged. Neo-angiogenesis seems to be the result of the activation of cell stress pathways, like MAPK pathways (high number of pERK-expressing tumor cells). In the long term, the combination of magnetic hyperthermia and chemotherapy could potentially be applied to transiently modulate tumor angiogenesis and to improve drug accessibility during oncologic therapies of pancreatic cancer. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

35 pages, 3869 KiB  
Review
Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review
by HafizMuhammad Imran, Yixin Tang, Siyuan Wang, Xiuzhang Yan, Chang Liu, Lei Guo, Erlei Wang and Caina Xu
Molecules 2024, 29(1), 31; https://doi.org/10.3390/molecules29010031 - 20 Dec 2023
Cited by 14 | Viewed by 4205
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used [...] Read more.
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan–DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy. Full article
(This article belongs to the Special Issue Recent Advances in Nanomaterial Synthesis)
Show Figures

Graphical abstract

27 pages, 1210 KiB  
Systematic Review
Plant-Derived Bioactive Compounds for Rhabdomyosarcoma Therapy In Vitro: A Systematic Review
by Cristina Mesas, Beatriz Segura, Gloria Perazzoli, Maria Angeles Chico, Javier Moreno, Kevin Doello, Jose Prados and Consolación Melguizo
Appl. Sci. 2023, 13(23), 12964; https://doi.org/10.3390/app132312964 - 4 Dec 2023
Cited by 1 | Viewed by 2311
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, constitutes approximately 40% of all recorded soft tissue tumors and is associated with a poor prognosis, with survival rates of less than 20% at 3 years. The development of resistance to cytotoxic drugs [...] Read more.
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, constitutes approximately 40% of all recorded soft tissue tumors and is associated with a poor prognosis, with survival rates of less than 20% at 3 years. The development of resistance to cytotoxic drugs is a primary contributor to therapeutic failure. Consequently, the exploration of new therapeutic strategies is of vital importance. The potential use of plant extracts and their bioactive compounds emerges as a complementary treatment for this type of cancer. This systematic review focuses on research related to plant extracts or isolated bioactive compounds exhibiting antitumor activity against RMS cells. Literature searches were conducted in PubMed, Scopus, Cochrane, and WOS. A total of 173 articles published to date were identified, although only 40 were finally included to meet the inclusion criteria. Furthermore, many of these compounds are readily available and have reduced cytotoxicity, showing an apoptosis-mediated mechanism of action to induce tumor cell death. Interestingly, their use combined with chemotherapy or loaded with nanoparticles achieves better results by reducing toxicity and/or facilitating entry into tumor cells. Future in vivo studies will be necessary to verify the utility of these natural compounds as a therapeutic tool for RMS. Full article
Show Figures

Figure 1

13 pages, 7837 KiB  
Article
Hollow MIL-125 Nanoparticles Loading Doxorubicin Prodrug and 3-Methyladenine for Reversal of Tumor Multidrug Resistance
by Qingfeng Guo, Jie Li, Jing Mao, Weijun Chen, Meiyang Yang, Yang Yang, Yuming Hua and Lipeng Qiu
J. Funct. Biomater. 2023, 14(11), 546; https://doi.org/10.3390/jfb14110546 - 13 Nov 2023
Cited by 5 | Viewed by 2549
Abstract
Multidrug resistance (MDR) is a key factor in chemotherapy failure and tumor recurrence. The inhibition of drug efflux and autophagy play important roles in MDR therapy. Herein, a multifunctional delivery system (HA-MIL-125@DVMA) was prepared for synergistically reverse tumor MDR. Tumor-targeted hollow MIL-125-Ti nanoparticles [...] Read more.
Multidrug resistance (MDR) is a key factor in chemotherapy failure and tumor recurrence. The inhibition of drug efflux and autophagy play important roles in MDR therapy. Herein, a multifunctional delivery system (HA-MIL-125@DVMA) was prepared for synergistically reverse tumor MDR. Tumor-targeted hollow MIL-125-Ti nanoparticles were used to load the doxorubicin–vitamin E succinate (DV) prodrug and 3-methyladenine (3-MA) to enhance reverse MDR effects. The pH-sensitive DV can kill tumor cells and inhibit P-gp-mediated drug efflux, and 3-MA can inhibit autophagy. HA-MIL-125@DVMA had uniformly distributed particle size and high drug-load content. The nanoparticles could effectively release the drugs into tumor microenvironment due to the rapid hydrazone bond-breaking under low pH conditions, resulting in a high cumulative release rate. In in vitro cellular experiments, the accumulation of HA-MIL-125@DVMA and HA-MIL-125@DV in MCF-7/ADR cells was significantly higher than that in the control groups. Moreover, the nanoparticles significantly inhibited drug efflux in the cells, ensuring the accumulation of the drugs in cell cytoplasm and causing drug-resistant cells’ death. Importantly, HA-MIL-125@DVMA effectively inhibited tumor growth without changes in body weight in tumor-bearing mice. In summary, the combination of the acid-sensitive prodrug DV and autophagy inhibitor 3-MA in a HA-MIL-125 nanocarrier can enhance the antitumor effect and reverse tumor MDR. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery)
Show Figures

Figure 1

30 pages, 5604 KiB  
Review
Liposomes for Cancer Theranostics
by Donald A. Fernandes
Pharmaceutics 2023, 15(10), 2448; https://doi.org/10.3390/pharmaceutics15102448 - 11 Oct 2023
Cited by 14 | Viewed by 4364
Abstract
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for [...] Read more.
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 μm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers. Full article
(This article belongs to the Special Issue Multifunctional Nanoparticles for Cancer Therapy and Imaging)
Show Figures

Figure 1

18 pages, 2867 KiB  
Article
mAb-Functionalized Biomimetic MamC-Mediated-Magnetoliposomes as Drug Delivery Systems for Cancer Therapy
by Francesca Oltolina, Maria del Carmen Santaella Escolano, Ylenia Jabalera, Maria Prat and Concepcion Jimenez Lopez
Int. J. Mol. Sci. 2023, 24(18), 13958; https://doi.org/10.3390/ijms241813958 - 11 Sep 2023
Cited by 1 | Viewed by 2024
Abstract
In cancer therapy, new therapeutic nanoformulations able to mediate targeted chemotherapy are required. Recently, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC, a magnetosome protein from Magnetococcus marinus MC-1, have proven, in vitro and in vivo, to be effective drug nanocarriers (following the application [...] Read more.
In cancer therapy, new therapeutic nanoformulations able to mediate targeted chemotherapy are required. Recently, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC, a magnetosome protein from Magnetococcus marinus MC-1, have proven, in vitro and in vivo, to be effective drug nanocarriers (following the application of an external gradient magnetic field) and to allow combination with hyperthermia. However, these nanoassemblies require further optimization to improve cytocompatibility, stability and active targeting ability. Herein, we describe the production of the magnetoliposomes (LP) embedding BMNPs functionalized (or not) with doxorubicin (DOXO), [LP(+/−DOXO-BMNPs)], and their surface modification with the DO-24 mAb, which targets the human Met/HGF receptor’s ectodomain (overexpressed in many cancers). Nanoformulations were extensively characterized using TEM, DLS, FTIR and when tested in vitro, the lipid coating increased the colloidal stability and their biocompatibility, favoring the cellular uptake in cells overexpressing the cognate receptor. Indeed, the magnetoliposomes mAb-LP(+/−DOXO-BMNPs) exerted a specific active targeting ability by the presence of the mAb that preserved its immunocompetence. Both LP(BMNPs) and mAb-LP(BMNPs) were not toxic to cells, while +/−mAb-LP(DOXO-BMNPs) nanoformulations were indeed cytotoxic. Therefore, this study represents a proof of concept for the development of promising drug carriers for cancer therapy based on local chemotherapy directed by mAbs. Full article
(This article belongs to the Special Issue The Interplay among Biomolecules and Nanomaterials)
Show Figures

Figure 1

17 pages, 4845 KiB  
Article
Dual Targeted Nanoparticles for the Codelivery of Doxorubicin and siRNA Cocktails to Overcome Ovarian Cancer Stem Cells
by Li Chen, Jinlan Luo, Jingyuan Zhang, Siyuan Wang, Yang Sun, Qinying Liu and Cui Cheng
Int. J. Mol. Sci. 2023, 24(14), 11575; https://doi.org/10.3390/ijms241411575 - 18 Jul 2023
Cited by 19 | Viewed by 2596
Abstract
Most anticancer treatments only induce the death of ordinary cancer cells, while cancer stem cells (CSCs) in the quiescent phase of cell division are difficult to kill, which eventually leads to cancer drug resistance, metastasis, and relapse. Therefore, CSCs are also important in [...] Read more.
Most anticancer treatments only induce the death of ordinary cancer cells, while cancer stem cells (CSCs) in the quiescent phase of cell division are difficult to kill, which eventually leads to cancer drug resistance, metastasis, and relapse. Therefore, CSCs are also important in targeted cancer therapy. Herein, we developed dual-targeted and glutathione (GSH)-responsive novel nanoparticles (SSBPEI–DOX@siRNAs/iRGD–PEG–HA) to efficiently and specifically deliver both doxorubicin and small interfering RNA cocktails (siRNAs) (survivin siRNA, Bcl-2 siRNA and ABCG2 siRNA) to ovarian CSCs. They are fabricated via electrostatic assembly of anionic siRNAs and cationic disulfide bond crosslinking-branched polyethyleneimine-doxorubicin (SSBPEI–DOX) as a core. Interestingly, the SSBPEI–DOX could be degraded into low-cytotoxic polyethyleneimine (PEI). Because of the enrichment of glutathione reductase in the tumor microenvironment, the disulfide bond (–SS–) in SSBPEI–DOX can be specifically reduced to promote the controlled release of siRNA and doxorubicin (DOX) in the CSCs. siRNA cocktails could specifically silence three key genes in CSCs, which, in combination with the traditional chemotherapy drug DOX, induces apoptosis or necrosis of CSCs. iRGD peptides and “sheddable” hyaluronic acid (HA) wrapped around the core could mediate CSC targeting by binding with neuropilin-1 (NRP1) and CD44 to enhance delivery. In summary, the multifunctional delivery system SSBPEI–DOX@siRNAs/iRGD–PEG–HA nanoparticles displays excellent biocompatibility, accurate CSC-targeting ability, and powerful anti-CSC ability, which demonstrates its potential value in future treatments to overcome ovarian cancer metastasis and relapse. To support this work, as exhaustive search was conducted for the literature on nanoparticle drug delivery research conducted in the last 17 years (2007–2023) using PubMed, Web of Science, and Google Scholar. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

Back to TopTop