Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (840)

Search Parameters:
Keywords = nanometre

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2369 KB  
Article
Anatase-Dominant TiO2 Nanoparticles Prepared by Sol–Gel and High-Temperature Calcination
by Y. J. Acosta-Silva, J. Ledesma-García, S. Rivas, A. Alvarez, L. Palma-Tirado, J. F. Pérez-Robles and A. Méndez-López
Appl. Sci. 2026, 16(3), 1258; https://doi.org/10.3390/app16031258 - 26 Jan 2026
Abstract
TiO2 nanoparticles were synthesized by a simple sol–gel route followed by high-temperature calcination at 800 °C, aiming to obtain an anatase-dominant reference photocatalyst with enhanced structural stability after severe thermal treatment. Raman spectroscopy and X-ray diffraction confirmed that anatase is the major [...] Read more.
TiO2 nanoparticles were synthesized by a simple sol–gel route followed by high-temperature calcination at 800 °C, aiming to obtain an anatase-dominant reference photocatalyst with enhanced structural stability after severe thermal treatment. Raman spectroscopy and X-ray diffraction confirmed that anatase is the major crystalline phase, with only a minor rutile contribution after calcination at 800 °C. Nitrogen adsorption–desorption measurements revealed a narrow mesoporous contribution arising from interparticle voids and a relatively high specific surface area (108 m2 g−1) despite the severe thermal treatment, while electron microscopy showed nanometric primary particles assembled into compact agglomerates. Surface hydroxyl groups were identified by Fourier-transform infrared spectroscopy, consistent with sol–gel-derived TiO2 systems. Diffuse reflectance UV–Vis spectroscopy combined with Kubelka–Munk and Tauc analysis yielded an optical band gap of 3.12 eV, typical of anatase TiO2. Methylene blue (MB) was used as a probe molecule to evaluate photocatalytic activity under ultraviolet and visible light irradiation. Under UV illumination, degradation kinetics were governed by band-gap excitation and reactive oxygen species generation, whereas a slower but reproducible reference behavior under visible light was predominantly associated with surface-related effects and dye sensitization rather than intrinsic visible-light absorption. Overall, the results establish this anatase-dominant TiO2 as a reliable high-temperature reference photocatalyst, retaining measurable activity after calcination at 800 °C and exhibiting UV-driven behavior as the dominant contribution. Full article
Show Figures

Figure 1

22 pages, 3233 KB  
Article
Synthesis and Degradation Behavior of Poly(glycerol sebacate)-Isophorone Diisocyanate Scaffolds Reinforced with Hydroxyapatite for Biomedical Applications
by Aleksandra Korbut, Agnieszka Sobczak-Kupiec, Monika Biernat and Sonia Zielińska
Polymers 2026, 18(2), 304; https://doi.org/10.3390/polym18020304 - 22 Jan 2026
Viewed by 103
Abstract
Poly(glycerol sebacate) (PGS) is a biodegradable elastomer with high potential for tissue engineering. However, its limited structural stability and degradation control restrict broader biomedical applications. This study presents an integrated fabrication strategy for highly porous PGS-IPDI scaffolds reinforced with two types of hydroxyapatite [...] Read more.
Poly(glycerol sebacate) (PGS) is a biodegradable elastomer with high potential for tissue engineering. However, its limited structural stability and degradation control restrict broader biomedical applications. This study presents an integrated fabrication strategy for highly porous PGS-IPDI scaffolds reinforced with two types of hydroxyapatite of distinct origin (HAP_B and HAP_ICMB). By combining low-temperature urethane crosslinking with thermally induced phase separation and salt leaching, we obtained scaffolds with interconnected micro–macroporous architectures and exceptionally high porosity (up to 98%). The comparative incorporation of phase-pure nanometric HAP_B and biphasic HAP_ICMB enabled the identification of composition-dependent differences in water uptake, structural stability, and mineralization tendencies. Furthermore, degradation behavior was systematically evaluated in four physiologically relevant media (PBS, SBF, artificial saliva, Ringer’s solution), revealing distinct degradation pathways associated with each environment. The results provide new insight into how hydroxyapatite type and incubation medium collectively govern the long-term performance of chemically crosslinked PGS-based scaffolds. Full article
Show Figures

Graphical abstract

9 pages, 1688 KB  
Article
Morphological Evolution of Nickel–Fullerene Thin Film Mixtures
by Giovanni Ceccio, Kazumasa Takahashi, Romana Mikšová, Yuto Kondo, Eva Štěpanovská, Josef Novák, Sebastiano Vasi and Jiří Vacik
Crystals 2026, 16(1), 73; https://doi.org/10.3390/cryst16010073 - 22 Jan 2026
Viewed by 33
Abstract
Hybrid systems consisting of metal–fullerene composites exhibit intriguing properties but often suffer from thermal instability. With proper control, such instability can be harnessed to enable the formation of sophisticated nanostructures with nanometric precision. These self-organization phenomena are not limited to thermal stimulation alone [...] Read more.
Hybrid systems consisting of metal–fullerene composites exhibit intriguing properties but often suffer from thermal instability. With proper control, such instability can be harnessed to enable the formation of sophisticated nanostructures with nanometric precision. These self-organization phenomena are not limited to thermal stimulation alone but can also be triggered by other external stimuli. In this work, we investigate the morphological evolution of thin films composed of evaporated C60 and sputtered nickel mixtures, focusing on how external stimuli influence both their structural and electrical properties. Thin films were prepared under controlled deposition conditions, and their surface morphology was analyzed using advanced characterization techniques. Progressive changes in film morphology were observed as a function of composition and external treatment, highlighting the interplay between metallic and molecular components. In particular, it was observed that, due to the annealing treatment, the sample undergoes strong phase separation, with the formation of structures tens of microns in diameter and an increase in electrical resistance, exhibiting insulating behavior. These findings provide insights into the mechanisms governing hybrid thin film formation and suggest potential applications in electronic, optoelectronic, and energy-related devices. Full article
Show Figures

Figure 1

7 pages, 191 KB  
Editorial
Advanced Nanomaterials and Energetic Application: Experiment and Simulation
by Weiqiang Pang, Djalal Trache and Kaili Zhang
Nanomaterials 2026, 16(2), 137; https://doi.org/10.3390/nano16020137 - 20 Jan 2026
Viewed by 161
Abstract
In recent years, significant advancements have been made in the exploitation, combustion, ignition, and application of innovative nano-metric energetic materials (nEMs), including solid fuels, energetic combustion catalysts, metal particles, thermites, energetic composites, and more, thanks to new technological developments in the field of [...] Read more.
In recent years, significant advancements have been made in the exploitation, combustion, ignition, and application of innovative nano-metric energetic materials (nEMs), including solid fuels, energetic combustion catalysts, metal particles, thermites, energetic composites, and more, thanks to new technological developments in the field of nano-scale science and technology [...] Full article
13 pages, 2743 KB  
Article
Cryogenic X-Ray Microtomography of Early-Stage Polyurethane Foaming: 3D Analysis of Cell Structure Development
by Paula Cimavilla-Román, Suset Barroso-Solares, Mercedes Santiago-Calvo and Miguel Angel Rodriguez-Perez
Polymers 2026, 18(2), 245; https://doi.org/10.3390/polym18020245 - 16 Jan 2026
Viewed by 215
Abstract
Laboratory-scale cryogenic X-ray microtomography was employed for the first time to investigate the early structural evolution of polyurethane (PU) foams. This method enables ex situ studying the internal morphology of the frozen reactive mixture at various times before cell impingement. In this work, [...] Read more.
Laboratory-scale cryogenic X-ray microtomography was employed for the first time to investigate the early structural evolution of polyurethane (PU) foams. This method enables ex situ studying the internal morphology of the frozen reactive mixture at various times before cell impingement. In this work, the precision of the method was evaluated by studying the early bubble formation and growth under different blowing agents and catalyst contents. It was detected that tripling the catalyst weight content doubled cell nucleation density, from 8.9 × 105 to 1.8 × 106 cells cm−3. Yet, doubling the water content has lesser impact on nucleation but leads to fast speeds of cell growth and, in turn, lower relative density at equal reaction times. Overall, it is demonstrated that laboratory cryogenic microtomography can be used to democratise the 3D investigation of the internal structure of foams which was until now only possible in synchrotron facilities. In addition, this method can help elucidate the mechanisms of nucleation and degeneration via directly measuring the density of bubbles and distance between them in the reactive mixture. Finally, this methodology could be extended to recent laboratory nanotomography systems utilizing X-ray tubes with nanometric spot sizes, thereby enabling the confident identification of nucleation events. Full article
Show Figures

Graphical abstract

15 pages, 3128 KB  
Article
Ammonium Paratungstate Production from Scheelite Ore: Process Study, Morphology and Thermal Stability
by Maria José Lima, Fernando E. S. Silva, Cleber da Silva Lourenço, Ariadne Silva, Jussier Vitoriano, Kivia Araujo, Matheus Silva, Marco Morales and Uílame Gomes
Powders 2026, 5(1), 3; https://doi.org/10.3390/powders5010003 - 16 Jan 2026
Viewed by 161
Abstract
Ammonium paratungstate (APT) was synthesized from scheelite ore concentrates from the Brejuí Mine in Currais Novos, Rio Grande do Norte, Northeast Brazil. The process involved acid leaching to obtain tungstic acid (H2WO4), followed by its conversion to APT. A [...] Read more.
Ammonium paratungstate (APT) was synthesized from scheelite ore concentrates from the Brejuí Mine in Currais Novos, Rio Grande do Norte, Northeast Brazil. The process involved acid leaching to obtain tungstic acid (H2WO4), followed by its conversion to APT. A 23 factorial design evaluated the influence of temperature, HCl concentration, and reaction time on the leaching efficiency, revealing temperature and acid concentration as significant variables. Tungsten extraction reached 98.6% under moderate time and temperature conditions. The resulting H2WO4 phase exhibited a lamellar and porous morphology, facilitating its rapid dissolution and crystallization into APT at 60 °C. The produced nanometric APT exhibited high purity, a mixed rod-like/cubic morphology, and thermal stability above 600 °C. This work adds value to the Brazilian tungsten deposits by supporting more efficient and sustainable extraction routes for obtaining APT. Full article
Show Figures

Graphical abstract

14 pages, 1633 KB  
Article
Preparation, Characterization, and Antibiofilm Activity of Free and Nanoencapsulated Tetradenia riparia (Hochst.) Codd Leaf Essential Oil
by Regina Yasuko Makimori, Eliana Harue Endo, Julia Watanabe Makimori, Priscila Firmino Ribas, Fernanda Vitória Leimann, Odinei Hess Gonçalves, Zilda Cristiani Gazim, Tânia Ueda-Nakamura, Celso Vataru Nakamura and Benedito Prado Dias Filho
Future Pharmacol. 2026, 6(1), 4; https://doi.org/10.3390/futurepharmacol6010004 - 6 Jan 2026
Viewed by 178
Abstract
Background: Staphylococcus aureus is a clinically relevant pathogen with a strong ability to form biofilms on a wide range of surfaces, which markedly reduces the effectiveness of antimicrobial treatments and contributes to therapeutic failure. Although essential oils (EOs) represent effective and economical [...] Read more.
Background: Staphylococcus aureus is a clinically relevant pathogen with a strong ability to form biofilms on a wide range of surfaces, which markedly reduces the effectiveness of antimicrobial treatments and contributes to therapeutic failure. Although essential oils (EOs) represent effective and economical antimicrobial alternatives, their clinical application is limited by rapid oxidation, volatility, and potential cytotoxicity. In this context, nanoencapsulation emerges as a promising strategy to improve EO stability, control release, and reduce toxicity. In this study, Tetradenia riparia essential oil was encapsulated into poly(lactide) (PLA) nanoparticles (NP) using the nanoprecipitation method. Methods: The physicochemical properties of the nanoparticles were characterized, and their antibacterial, antibiofilm, and cytotoxic activities were evaluated. Antibiofilm and antibacterial effects against S. aureus were assessed by the broth microdilution method, while cytotoxicity was determined using a VERO cell line. Results: The nanoparticles exhibited nanometric size, spherical morphology, and homogeneous structure. Both free EO and EO-loaded nanoparticles demonstrated antibacterial and antibiofilm activity against S. aureus. Importantly, EO-loaded nanoparticles were significantly less cytotoxic than free EO. Nanoencapsulation effectively prevented rapid EO evaporation and degradation, thereby enhancing stability. The nanoparticles exhibited a zeta potential of approximately −23.1 mV, indicating adequate colloidal stability. Differential scanning calorimetry revealed a reduction in melting enthalpy from 429.63 J/g (blank nanoparticles) to 115.83 J/g for EO-loaded nanoparticles, indicating decreased polymer crystallinity and a system favorable for controlled EO release. Conclusions: Overall, these findings demonstrate that nanoencapsulation of T. riparia essential oil into PLA nanoparticles preserves antimicrobial efficacy, reduces cytotoxicity, and improves physicochemical stability, supporting the potential of this nanostructured system as a promising strategy for the treatment of S. aureus biofilm-associated infections. Full article
Show Figures

Graphical abstract

17 pages, 2843 KB  
Article
Synthesis and Characterization of Water-Soluble EDTA-Crosslinked Poly-β-Cyclodextrins Serving as Ion-Complexing Drug Carriers
by Zuzanna Podgórniak, Witold Musiał, Michał J. Kulus, Dominika Łacny, Aleksandra Budnik and Tomasz Urbaniak
Materials 2026, 19(1), 207; https://doi.org/10.3390/ma19010207 - 5 Jan 2026
Viewed by 352
Abstract
Water-soluble poly-β-cyclodextrins (PCDs), crosslinked with ethylenediaminetetraacetic acid dianhydride (EDTADA), were synthesized at varying β-CD:EDTADA molar ratios (1:6, 1:9, 1:12, 1:15) to develop multifunctional nanocarriers with the ability to complex drugs, polymers, and ions. All PCDs exhibited nanometric particle sizes (14 to 28 nm), [...] Read more.
Water-soluble poly-β-cyclodextrins (PCDs), crosslinked with ethylenediaminetetraacetic acid dianhydride (EDTADA), were synthesized at varying β-CD:EDTADA molar ratios (1:6, 1:9, 1:12, 1:15) to develop multifunctional nanocarriers with the ability to complex drugs, polymers, and ions. All PCDs exhibited nanometric particle sizes (14 to 28 nm), negative zeta potential (−18 to −27 mV), and adjustable content of free carboxyl groups controlled by crosslinker ratio. Functional evaluations demonstrated effective Ca2+ chelation and a linear inclusion complexation profile with acyclovir, but not with naproxen, highlighting pH-dependent solubility effects. Additionally, PCDs successfully formed polyelectrolyte complexes with poly-L-lysine, indicating their potential as components of advanced drug delivery systems. Among the analyzed variants, PCD 1:6 showed reduced yields, fewer reactive groups, and diminished ion-binding capacity compared to formulations with higher crosslinker content. These findings underscore the importance of crosslinking density in modulating physicochemical and functional properties and support the potential of EDTA-crosslinked PCDs as versatile platforms for advanced, ion-sensitive biomedical applications. Full article
Show Figures

Graphical abstract

16 pages, 2859 KB  
Article
Graphene-Based Nanostructures Produced by Laser Ablation Assisted by Electric Field
by Mariapompea Cutroneo, Vaclav Holy, Petr Malinsky, Petr Slepicka, Alena Michalcova and Lorenzo Torrisi
Nanomaterials 2026, 16(1), 72; https://doi.org/10.3390/nano16010072 - 4 Jan 2026
Viewed by 367
Abstract
The properties of carbon-based materials with nanometric size support their use in numerous applications, such as optoelectronics and energy devices, bioimaging, photodetectors, and sensors. Among the various nanostructure fabrication methods, pulsed laser ablation in liquids (PLA) is widely recognized for its simplicity and [...] Read more.
The properties of carbon-based materials with nanometric size support their use in numerous applications, such as optoelectronics and energy devices, bioimaging, photodetectors, and sensors. Among the various nanostructure fabrication methods, pulsed laser ablation in liquids (PLA) is widely recognized for its simplicity and rapid processing. It is considered an environmentally friendly synthesis, as it enables nanostructure fabrication in pure liquids without chemical reagents, activators, or vacuum systems, in line with the increasing interest in sustainable and green nanotechnologies. A great challenge of PLA is the reproducibility of the size and shape of the produced structure. This can be accomplished by selection of the proper laser parameters and characteristics of the used liquid. This study is focused on the comparison of the synthesis of graphene-based nanostructures by electric-field-assisted pulsed laser ablation of a graphite target immersed in distilled water and deionized water, used as separate liquid media, without the use of chemical reagents. This is an innovative and environmentally friendly approach for the production of graphene nanoparticles. The laser parameters were kept constant throughout the experiments, while different voltage values were applied between the electrodes immersed in the liquid medium. The applied electric field significantly influences plasma dynamics, cavitation bubble evolution, and post-ablation nanoparticle growth processes, enabling controlled tuning of nanoparticle size and morphology. The optical properties of the obtained suspensions were evaluated by UV–Vis and FTIR spectroscopies. Atomic force microscopy revealed the composition, morphology, and quality of the formed structures. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

14 pages, 1991 KB  
Article
Enhanced Dispersibility of Iron Oxide Nanoparticles Synthesized by Laser Pyrolysis with Isopropanol Vapors as Sensitizer
by Iulia Ioana Lungu, Florian Dumitrache, Anca Criveanu, Lavinia Gavrila-Florescu, Ana-Maria Banici, Iuliana Morjan, Razvan-Mihai Dumitrache and Bogdan Vasile
Molecules 2026, 31(1), 163; https://doi.org/10.3390/molecules31010163 - 1 Jan 2026
Viewed by 268
Abstract
The present study investigates the synthesis and dispersibility process of iron oxide nanoparticles using laser pyrolysis with isopropanol vapors as a sensitizer agent. Similar to previous experiments (iron oxide nanoparticles synthesized by laser pyrolysis using ethylene as sensitizer gas), iron pentacarbonyl (Fe(CO)5 [...] Read more.
The present study investigates the synthesis and dispersibility process of iron oxide nanoparticles using laser pyrolysis with isopropanol vapors as a sensitizer agent. Similar to previous experiments (iron oxide nanoparticles synthesized by laser pyrolysis using ethylene as sensitizer gas), iron pentacarbonyl (Fe(CO)5) was employed as an iron precursor; however, instead of the classic ethylene, isopropanol was chosen as a sensitizer, which indicated beneficial features (especially enhanced dispersibility in water) in the as-synthesized nanoparticles. Structural and elemental analysis confirmed the size range of the nanoparticles (nanometric), with crystallite sizes under 10 nm. Both raw nanoparticles, as well as the oleic acid stabilized ones, exhibited excellent colloidal stability in both water and organic fluids (Toluene, Chloroform, and DMSO): around 100 nm hydrodynamic diameter and more than 40 mV for zeta potential. The study highlights the advantages of using isopropanol as a sensitizer in the production of high-purity iron oxide nanoparticles from laser pyrolysis, particles that showcase superior dispersibility and functionalization potential. Full article
Show Figures

Figure 1

26 pages, 3111 KB  
Article
Preclinical Investigation of PLGA Nanocapsules and Nanostructured Lipid Carriers for Organoselenium Delivery: Comparative In Vitro Toxicological Profile and Anticancer Insights
by Bianca Costa Maia-do-Amaral, Taís Baldissera Pieta, Luisa Fantoni Zanon, Gabriele Cogo Carneosso, Laísa Pes Nascimento, Nayra Salazar Rocha, Bruna Fracari do Nascimento, Letícia Bueno Macedo, Tielle Moraes de Almeida, Oscar Endrigo Dorneles Rodrigues, Scheila Rezende Schaffazick, Clarice Madalena Bueno Rolim and Daniele Rubert Nogueira-Librelotto
Pharmaceutics 2026, 18(1), 57; https://doi.org/10.3390/pharmaceutics18010057 - 31 Dec 2025
Viewed by 475
Abstract
Background/Objectives: Cancer is a major health concern involving abnormal cell growth. Combining anticancer agents can enhance efficacy and overcome resistance by targeting multiple pathways and creating synergistic effects. Methods: This study used in silico approaches to evaluate the physicochemical and pharmacokinetic profiles of [...] Read more.
Background/Objectives: Cancer is a major health concern involving abnormal cell growth. Combining anticancer agents can enhance efficacy and overcome resistance by targeting multiple pathways and creating synergistic effects. Methods: This study used in silico approaches to evaluate the physicochemical and pharmacokinetic profiles of the innovative organoselenium nucleoside analog Di3a, followed by the design of two nanocarriers. Di3a-loaded PLGA nanocapsules and nanostructured lipid carriers based on compritol were prepared and evaluated alone and combined with doxorubicin (DOX) and docetaxel (DTX) for a synergistic effect. Results: Di3a subtly violated some of Lipinski’s rules, but still showed suitable pharmacokinetic properties. Both nanoparticles presented nanometric size, negative zeta potential and polydispersity index values < 0.20. Hemolysis assay suggested a pH-dependent pattern conferred by the surfactant 77KL, and evidenced the biocompatibility of the formulations, aligning with the results observed in the nontumor L929 cell line. The lack of drug release studies under varying pH conditions constitutes a limitation and warrants further investigation to validate the pH-responsive properties of the nanocarriers. MTT assay revealed that both formulations exhibited significant cytotoxic effects in the A549 cell line. However, neither formulation exhibited marked toxicity toward NCI/ADR-RES, a resistant tumor cell line. Conversely, when combined with DOX or DTX, the treatments were able to sensitize these resistant cells, achieving expressive synergistic antitumor activity. Conclusions: Despite the limitations in the in silico studies, the study highlights the potential of combining the proposed nanocarriers with conventional antitumor drugs to sensitize multidrug-resistant cancer cells and emphasizes the safety of the developed nanoformulations. Full article
(This article belongs to the Special Issue Application of PLGA Nanoparticles in Cancer Therapy)
Show Figures

Figure 1

124 pages, 28094 KB  
Article
Contact Roughness Characterization Parameters for Abrasion-Resistant Epoxy-Coated Surfaces Enhanced with Micro and Nanoparticles
by Maria A. Sáenz-Nuño and Cristina Puente
Lubricants 2026, 14(1), 15; https://doi.org/10.3390/lubricants14010015 - 29 Dec 2025
Viewed by 316
Abstract
In recent years, numerous studies have been conducted to characterize the physical parameters that define the behavior of surfaces coated with epoxy resins, particularly in terms of hardness and resistance. Many of these surfaces have been doped with micro- and nanoparticles. In this [...] Read more.
In recent years, numerous studies have been conducted to characterize the physical parameters that define the behavior of surfaces coated with epoxy resins, particularly in terms of hardness and resistance. Many of these surfaces have been doped with micro- and nanoparticles. In this work, we present the internationally defined roughness parameters that are typically of interest for the use of these materials in industrial parts. We analyze the information these parameters provide about the coatings when measured by contact methods, not just optically before and after physical abrasion. The contact profile roughness parameters (R) are highlighted, as they can offer more reliable information regarding the physical wear of these surfaces due to abrasion (typically Ra, Rq, Rz, Rsk, Rku and Rmr). The main advantage is that this approach allows for discerning parameters that, when linked with other functionalities of the parts, provide more comprehensive information without being limited to purely optical or non-contact SEM analysis. The characterization of nanometric particle-doped surfaces with Ra, Rq, and Rz, and of micrometric particle-doped surfaces with Rmr (10–20%) is proposed, in order to clearly characterize the final behavior of the surface before and after wear. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

17 pages, 8451 KB  
Article
Atomic Layer Deposition of Oxide-Based Nanocoatings for Regulation of AZ31 Alloy Biocorrosion in Ringer’s Solution
by Denis Nazarov, Lada Kozlova, Vladislava Vartiajnen, Sergey Kirichenko, Maria Rytova, Anton P. Godun, Maxim Maximov, Arina Ilina, Stephanie E. Combs, Mark Pitkin and Maxim Shevtsov
Corros. Mater. Degrad. 2026, 7(1), 3; https://doi.org/10.3390/cmd7010003 - 26 Dec 2025
Viewed by 271
Abstract
Research into methods for regulating the biocorrosion rate of biodegradable magnesium implants is one of the most urgent tasks in the field of biomedical materials science. Atomic layer deposition (ALD) is a highly effective method for the preparation of nanocoatings, which can be [...] Read more.
Research into methods for regulating the biocorrosion rate of biodegradable magnesium implants is one of the most urgent tasks in the field of biomedical materials science. Atomic layer deposition (ALD) is a highly effective method for the preparation of nanocoatings, which can be used to regulate the biodegradation rate. The present paper presents the findings of a research study in which the most commonly used simple oxide ALD coatings (Al2O3, TiO2, and ZnO) were examined, in addition to mixed coatings obtained by alternating ALD cycles of the application of ZnO-TiO2 (ZTO) and Al2O3-TiO2 (ATO). The coating thicknesses exhibited a variation within the most typical range for ALD coatings, measuring between 20 and 80 nanometres. The biocorrosion testing was conducted in Ringer’s physiological solution through the measurement of potentiodynamic polarisation curves and impedance spectroscopy. The findings demonstrated that, for Al2O3 coatings, the protective properties exhibited an increase with increasing thickness, while for TiO2, the trend was found to be dependent on the type of precursor utilised. The protective properties of titanium tetraisopropoxide (TTIP) have been observed to increase with increasing thickness. Conversely, the protective properties of titanium tetrachloride (TiCl4) have been observed to decrease. The application of mixed ZTO oxides with a thickness of 40 nm has been demonstrated to reduce the corrosion current by 1.7 and 3.4 times, depending on the use of TiCl4 or TTIP. Furthermore, the effectiveness of ATO coatings of similar thicknesses has been shown to be higher, with a reduction in corrosion currents of 54 and 24 times for samples obtained using TiCl4 and TTIP, respectively. A thorough analysis of the collected data unequivocally demonstrates the superior efficacy of mixed oxides in comparison to their pure oxide counterparts. Full article
(This article belongs to the Special Issue Advances in Material Surface Corrosion and Protection)
Show Figures

Figure 1

27 pages, 4782 KB  
Review
Recent Advances in Hybrid Non-Conventional Assisted Ultra-High-Precision Single-Point Diamond Turning
by Shahrokh Hatefi, Yimesker Yihun and Farouk Smith
Processes 2026, 14(1), 84; https://doi.org/10.3390/pr14010084 - 26 Dec 2025
Viewed by 713
Abstract
Ultra-precision single-point diamond turning (SPDT) remains the core process for fabricating optical-grade surfaces with nanometric roughness and sub-micrometer form accuracy. However, machining hard-to-cut or brittle materials such as high-entropy alloys, metals, ceramics, and semiconductors is limited by severe tool wear, high cutting forces, [...] Read more.
Ultra-precision single-point diamond turning (SPDT) remains the core process for fabricating optical-grade surfaces with nanometric roughness and sub-micrometer form accuracy. However, machining hard-to-cut or brittle materials such as high-entropy alloys, metals, ceramics, and semiconductors is limited by severe tool wear, high cutting forces, and brittle fracture. To overcome these challenges, a new generation of non-conventional assisted and hybrid SPDT platforms has emerged, integrating multiple physical fields, including mechanical, thermal, magnetic, chemical, or cryogenic methods, into the cutting zone. This review comprehensively summarizes recent advances in hybrid non-conventional assisted SPDT platforms that combine two or more assistive techniques such as ultrasonic vibration, laser heating, magnetic fields, plasma or gas shielding, ion implantation, and cryogenic cooling. The synergistic effects of these dual-field platforms markedly enhance machinability, suppress tool wear, and extend ductile-mode cutting windows, enabling direct ultra-precision machining of previously intractable materials. Recent key case studies are analyzed in terms of material response, surface integrity, tool life, and implementation complexity. Comparative analysis shows that hybrid SPDT can significantly reduce surface roughness, extend diamond tool life, and yield optical-quality finishes on hard-to-cut materials, including ferrous alloys, composites, and crystals. This review concludes by identifying major technical challenges and outlining future directions toward optimal hybrid SPDT platforms for next-generation ultra-precision manufacturing. Full article
Show Figures

Figure 1

33 pages, 1558 KB  
Review
Volume Electron Microscopy: Imaging Principles, Computational Advances and Applications in Multi-Scale Biological System
by Bowen Shi and Yanan Zhu
Crystals 2026, 16(1), 14; https://doi.org/10.3390/cryst16010014 - 24 Dec 2025
Viewed by 476
Abstract
Volume electron microscopy (Volume-EM) has transformed structural cell biology by enabling nanometre-resolution imaging across cellular and tissue scales. Serial-section TEM, Serial Block-Face Scanning Electron Microscopy (SBF-SEM), Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and multi-beam SEM now routinely generate terabyte-scale volumes that capture [...] Read more.
Volume electron microscopy (Volume-EM) has transformed structural cell biology by enabling nanometre-resolution imaging across cellular and tissue scales. Serial-section TEM, Serial Block-Face Scanning Electron Microscopy (SBF-SEM), Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and multi-beam SEM now routinely generate terabyte-scale volumes that capture organelles, synapses and neural circuits in three dimensions, while cryogenic Volume-EM extends this landscape by preserving vitrified, fully hydrated specimens in a near-native state. Together, these room-temperature and cryogenic modalities define a continuum of approaches that trade off volume, resolution, throughput and structural fidelity, and increasingly interface with correlative light microscopy and cryo-electron tomography. In parallel, advances in computation have turned Volume-EM into a data-intensive discipline. Multistage preprocessing pipelines for alignment, denoising, stitching and intensity normalisation feed into automated segmentation frameworks that combine convolutional neural networks, affinity-based supervoxel agglomeration, flood-filling networks and, more recently, diffusion-based generative restoration. Weakly supervised and self-supervised learning, multi-task objectives and human-AI co-training mitigate the scarcity of dense ground truth, while distributed storage and streaming inference architectures support segmentation and proofreading at the terascale and beyond. Open resources such as COSEM, MICRONS, OpenOrganelle and EMPIAR provide benchmark datasets, interoperable file formats and reference workflows that anchor method development and cross-laboratory comparison. In this review, we first outline the physical principles and imaging modes of conventional and cryogenic Volume-EM, then describe current best practices in data acquisition and preprocessing, and finally survey the emerging ecosystem of AI-driven segmentation and analysis. We highlight how cryo-Volume-EM expands the field towards native-state structural biology, and how multimodal integration with light microscopy, cryo-electron tomography (cryo-ET) and spatial omics is pushing Volume-EM from descriptive imaging towards predictive, mechanistic, cross-scale models of cell physiology, disease ultrastructure and neural circuit function. Full article
(This article belongs to the Special Issue Electron Microscopy Characterization of Soft Matter Materials)
Show Figures

Figure 1

Back to TopTop