Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = nanoDSF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3863 KiB  
Article
β-Galactosidase-Catalyzed Transglycosylation of Tyrosol: Substrates and Deep Eutectic Solvents Affecting Activity and Stability
by Alžbeta Koššuthová, Monika Antošová, Vladena Bauerová-Hlinková, Jacob A. Bauer and Milan Polakovič
Biomolecules 2025, 15(6), 801; https://doi.org/10.3390/biom15060801 - 31 May 2025
Viewed by 583
Abstract
β-Galactosidase, a glycoside hydrolase enzyme, also possesses glycosyl transferase activity and can glycosylate various aglycones, including tyrosol, a phenylethanoid with antioxidant and health-promoting effects. This study examines the effect of lactose, tyrosol and deep eutectic solvents (DESs) as co-solvents on the stability and [...] Read more.
β-Galactosidase, a glycoside hydrolase enzyme, also possesses glycosyl transferase activity and can glycosylate various aglycones, including tyrosol, a phenylethanoid with antioxidant and health-promoting effects. This study examines the effect of lactose, tyrosol and deep eutectic solvents (DESs) as co-solvents on the stability and activity of Aspergillus oryzae β-galactosidase during the enzymatic synthesis of tyrosol β-d-galactoside (TG). The enzyme’s thermal stability was assessed using nanoDSF and circular dichroism spectroscopy, while the enzyme’s activity and specificity toward different glycosyl acceptors were investigated using the initial rate method. The effects of tyrosol and DESs on tyrosol galactoside synthesis over a 6 h period were also studied. Lactose and glycerol were found to stabilize the enzyme. Among the DESs tested, those containing betaine showed the highest stabilizing effect. The presence of DESs not only affected the overall enzyme activity but also changed the enzyme specificity, most frequently in favor of lactose hydrolysis. Components of DESs containing alcohol groups (polyols) also acted as transglycosylation acceptors. However, both glycerol and tyrosol were found to inhibit overall enzyme activity and TG synthesis. Overall, our findings provide new and valuable insights into the influence of reaction conditions on the stability and specificity of β-galactosidase. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

20 pages, 3984 KiB  
Article
Discovery of Small Molecules Against Foot-and-Mouth Disease Virus Replication by Targeting 2C Helicase Activity
by Saisai Zhou, Suyu Mu, Shuqi Yu, Yang Tian, Sijia Lu, Zhen Li, Hao Wu, Jiaying Zhao, Huanchun Chen, Shiqi Sun and Yunfeng Song
Viruses 2025, 17(6), 785; https://doi.org/10.3390/v17060785 - 29 May 2025
Viewed by 488
Abstract
Background: The 2C protein of foot-and-mouth disease virus (FMDV), a member of helicase superfamily 3 (SF3), drives viral genome replication and serves as a critical target for antiviral drug development. Methods: A fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) platform was developed [...] Read more.
Background: The 2C protein of foot-and-mouth disease virus (FMDV), a member of helicase superfamily 3 (SF3), drives viral genome replication and serves as a critical target for antiviral drug development. Methods: A fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) platform was developed to identify 2C helicase inhibitors. Primary screening evaluated 4424 compounds for helicase inhibition. Molecular docking analyzed inhibitor interactions with the N207 residue within the catalytic core and helicase inhibition assays classified the inhibitor type (mixed, competitive, noncompetitive). Differential scanning fluorimetry (nanoDSF) quantified 2C thermal destabilization. Antiviral activity was assessed via indirect immunofluorescence, RT-qPCR, and plaque reduction assays. Results: Six compounds inhibited 2C helicase activity at >620 μM. Molecular docking revealed hydrogen bonding, hydrophobic interactions, and π-cation stabilization at the catalytic core. 2-MPO and MPPI were classified as mixed-type inhibitors, 5-TzS and 2-PyOH as competitive, and DCMQ/Spiro-BD-CHD-dione as noncompetitive. NanoDSF showed a ΔTm ≥ 1.5 °C (2.5 mM compounds), with reduced destabilization in N207A mutants. Antiviral assays identified 2-MPO and MPPI as optimal inhibitors. MPPI achieved effective FMDV suppression at 160 μM, exhibiting two orders of magnitude higher potency than 2-MPO (400 μM). Conclusions: The established FRET-based HTS platform targeting 2C helicase facilitates anti-FMDV lead discovery, while 2C inhibitors may serve as an effective therapeutic strategy against other picornaviruses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

19 pages, 2419 KiB  
Article
Promiscuity in Polyphenol–Protein Interactions—Monitoring Protein Conformational Change upon Polyphenol–Protein Binding by Nano-Differential Fluorimetry (Nano-DSF)
by Dorothea Schmidt, Amelie Wohlers and Nikolai Kuhnert
Molecules 2025, 30(4), 965; https://doi.org/10.3390/molecules30040965 - 19 Feb 2025
Viewed by 781
Abstract
In this article, we introduce nano-differential fluorimetry (nano-DSF) as an analytical technique that is suitable for investigating polyphenol–protein interactions in solution. Nano-DSF monitors conformational changes in proteins induced by external agents upon interaction at the molecular level. We demonstrate the suitability of this [...] Read more.
In this article, we introduce nano-differential fluorimetry (nano-DSF) as an analytical technique that is suitable for investigating polyphenol–protein interactions in solution. Nano-DSF monitors conformational changes in proteins induced by external agents upon interaction at the molecular level. We demonstrate the suitability of this technique to qualitatively monitor an interaction between selected dietary polyphenols and selected proteins including BSA, ovalbumin, amylase, pepsin, trypsin, mucin and ACE-1. Protein conformational changes induced by dietary polyphenols can be investigated. As a major advantage, measurements are carried out at a high dilution, avoiding the precipitation of polyphenol–protein complexes, allowing the rapid and efficient acquisition of quantitative and qualitative binding data. From this concentration, quantitative binding data could be obtained from the fluorescence response curve in line with published values for the association constants. We demonstrate that qualitative interactions can also be established for real food extracts such as cocoa, tea or coffee containing mixtures of dietary polyphenols. Most importantly, we demonstrate that polyphenols of very different structural classes interact with the same protein target. Conversely, multiple protein targets show an affinity to a series of structurally diverse polyphenols, therefore suggesting a dual level of promiscuity with respect to the protein target and polyphenol structure. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

22 pages, 10879 KiB  
Article
Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying
by Suk Kyu Ko, Gabriella Björkengren, Carolin Berner, Gerhard Winter, Pernille Harris and Günther H. J. Peters
Pharmaceutics 2023, 15(7), 1854; https://doi.org/10.3390/pharmaceutics15071854 - 30 Jun 2023
Cited by 4 | Viewed by 2944
Abstract
We performed molecular dynamics simulations of Reteplase in the presence of different excipients to study the stabilizing mechanisms and to identify the role of excipients during freeze drying. To simulate the freeze-drying process, we divided the process into five distinct steps: (i) protein–excipient [...] Read more.
We performed molecular dynamics simulations of Reteplase in the presence of different excipients to study the stabilizing mechanisms and to identify the role of excipients during freeze drying. To simulate the freeze-drying process, we divided the process into five distinct steps: (i) protein–excipient formulations at room temperature, (ii) the ice-growth process, (iii)–(iv) the partially solvated and fully dried formulations, and (v) the reconstitution. Furthermore, coarse-grained (CG) simulations were employed to explore the protein-aggregation process in the presence of arginine. By using a coarse-grained representation, we could observe the collective behavior and interactions between protein molecules during the aggregation process. The CG simulations revealed that the presence of arginine prevented intermolecular interactions of the catalytic domain of Reteplase, thus reducing the aggregation propensity. This suggests that arginine played a stabilizing role by interacting with protein-specific regions. From the freeze-drying simulations, we could identify several protein-specific events: (i) collapse of the domain structure, (ii) recovery of the drying-induced damages during reconstitution, and (iii) stabilization of the local aggregation-prone region via direct interactions with excipients. Complementary to the simulations, we employed nanoDSF, size-exclusion chromatography, and CD spectroscopy to investigate the effect of the freeze-drying process on the protein structure and stability. Full article
(This article belongs to the Special Issue Developing Peptide and Protein Drug Formulations)
Show Figures

Graphical abstract

19 pages, 7801 KiB  
Article
Natural Product-Based Screening for Lead Compounds Targeting SARS CoV-2 Mpro
by Jie Chen, Xiang Zhou, Lifeng Fu and Haiyu Xu
Pharmaceuticals 2023, 16(5), 767; https://doi.org/10.3390/ph16050767 - 19 May 2023
Cited by 9 | Viewed by 3120
Abstract
Drugs that cure COVID-19 have been marketed; however, this disease continues to ravage the world without becoming extinct, and thus, drug discoveries are still relevant. Since Mpro has known advantages as a drug target, such as the conserved nature of the active [...] Read more.
Drugs that cure COVID-19 have been marketed; however, this disease continues to ravage the world without becoming extinct, and thus, drug discoveries are still relevant. Since Mpro has known advantages as a drug target, such as the conserved nature of the active site and the absence of homologous proteins in the body, it receives the attention of many researchers. Meanwhile, the role of traditional Chinese medicine (TCM) in the control of epidemics in China has also led to a focus on natural products, with the hope of finding some promising lead molecules through screening. In this study, we selected a commercial library of 2526 natural products from plants, animals and microorganisms with known biological activity for drug discovery, which had previously been reported for compound screening of the SARS CoV-2 S protein, but had not been tested on Mpro. This library contains compounds from a variety of Chinese herbs, including Lonicerae Japonicae Flos, Forsythiae Fructus and Scutellariae Radix, which are derived from traditional Chinese medicine prescriptions that have been shown to be effective against COVID-19. We used the conventional FRET method for the initial screening. After two rounds of selection, the remaining 86 compounds were divided into flavonoids, lipids, phenylpropanoids, phenols, quinones, alkaloids, terpenoids and steroids according to the skeleton structures, with inhibition rates greater than 70%. The top compounds in each group were selected to test the effective concentration ranges; the IC50 values were as follows: (−)–gallocatechin gallate (1.522 ± 0.126 μM), ginkgolic acid C15:1 (9.352 ± 0.531 μM), hematoxylin (1.025 ± 0.042 μM), fraxetin (2.486 ± 0.178 μM), wedelolactone (1.003 ± 0.238 μM), hydroxytyrosol acetate (3.850 ± 0.576 μM), vanitiolide (2.837 ± 0.225 μM), β,β–dimethylacrylalkannin (2.731 ± 0.308 μM), melanin (7.373 ± 0.368 μM) and cholesteryl sodium sulfate (2.741 ± 0.234μM). In the next step, we employed two biophysical techniques, SPR and nanoDSF, to obtain KD/Kobs values: hematoxylin (0.7 μM), (−)–gallocatechin gallate (126 μM), ginkgolic acid C15:1 (227 μM), wedelolactone (0.9770 μM), β,β–dimethylacrylalkannin (1.9004 μM,), cholesteryl sodium sulfate (7.5950 μM) and melanin (11.5667 μM), which allowed better assessments of the binding levels. Here, seven compounds were the winners. Then, molecular docking experiments were specially performed by AutoDock Vina to analyze the mode of interactions within Mpro and ligands. We finally formulated the present in silico study to predict pharmacokinetic parameters as well as drug-like properties, which is presumably the step that tells humans whether the compounds are drug-like or not. Moreover, hematoxylin, melanin, wedelolactone, β,β–dimethylacrylalkannin and cholesteryl sodium sulfate are in full compliance with the “Lipinski” principle and possess reasonable ADME/T properties, they have a greater potential of being lead compounds. The proposed five compounds are also the first to be found to have potential inhibitory effects on SARS CoV-2 Mpro. We hope that the results in this manuscript may serve as benchmarks for the above potentials. Full article
(This article belongs to the Special Issue Protease-Based Drug Discovery)
Show Figures

Figure 1

19 pages, 1966 KiB  
Article
Nano Differential Scanning Fluorimetry as a Rapid Stability Assessment Tool in the Nanoformulation of Proteins
by Sofia Lisina, Wali Inam, Mikko Huhtala, Fadak Howaili, Hongbo Zhang and Jessica M. Rosenholm
Pharmaceutics 2023, 15(5), 1473; https://doi.org/10.3390/pharmaceutics15051473 - 11 May 2023
Cited by 11 | Viewed by 4413
Abstract
The development and production of innovative protein-based therapeutics is a complex and challenging avenue. External conditions such as buffers, solvents, pH, salts, polymers, surfactants, and nanoparticles may affect the stability and integrity of proteins during formulation. In this study, poly (ethylene imine) (PEI) [...] Read more.
The development and production of innovative protein-based therapeutics is a complex and challenging avenue. External conditions such as buffers, solvents, pH, salts, polymers, surfactants, and nanoparticles may affect the stability and integrity of proteins during formulation. In this study, poly (ethylene imine) (PEI) functionalized mesoporous silica nanoparticles (MSNs) were used as a carrier for the model protein bovine serum albumin (BSA). To protect the protein inside MSNs after loading, polymeric encapsulation with poly (sodium 4-styrenesulfonate) (NaPSS) was used to seal the pores. Nano differential scanning fluorimetry (NanoDSF) was used to assess protein thermal stability during the formulation process. The MSN-PEI carrier matrix or conditions used did not destabilize the protein during loading, but the coating polymer NaPSS was incompatible with the NanoDSF technique due to autofluorescence. Thus, another pH-responsive polymer, spermine-modified acetylated dextran (SpAcDEX), was applied as a second coating after NaPSS. It possessed low autofluorescence and was successfully evaluated with the NanoDSF method. Circular dichroism (CD) spectroscopy was used to determine protein integrity in the case of interfering polymers such as NaPSS. Despite this limitation, NanoDSF was found to be a feasible and rapid tool to monitor protein stability during all steps needed to create a viable nanocarrier system for protein delivery. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

14 pages, 1385 KiB  
Article
Tear nanoDSF Denaturation Profile Is Predictive of Glaucoma
by Viktoriia E. Baksheeva, Veronika V. Tiulina, Elena N. Iomdina, Sergey Yu. Petrov, Olga M. Filippova, Nina Yu. Kushnarevich, Elena A. Suleiman, Rémi Eyraud, François Devred, Marina V. Serebryakova, Natalia G. Shebardina, Dmitry V. Chistyakov, Ivan I. Senin, Vladimir A. Mitkevich, Philipp O. Tsvetkov and Evgeni Yu. Zernii
Int. J. Mol. Sci. 2023, 24(8), 7132; https://doi.org/10.3390/ijms24087132 - 12 Apr 2023
Cited by 6 | Viewed by 3641
Abstract
Primary open-angle glaucoma (POAG) is a frequent blindness-causing neurodegenerative disorder characterized by optic nerve and retinal ganglion cell damage most commonly due to a chronic increase in intraocular pressure. The preservation of visual function in patients critically depends on the timeliness of detection [...] Read more.
Primary open-angle glaucoma (POAG) is a frequent blindness-causing neurodegenerative disorder characterized by optic nerve and retinal ganglion cell damage most commonly due to a chronic increase in intraocular pressure. The preservation of visual function in patients critically depends on the timeliness of detection and treatment of the disease, which is challenging due to its asymptomatic course at early stages and lack of objective diagnostic approaches. Recent studies revealed that the pathophysiology of glaucoma includes complex metabolomic and proteomic alterations in the eye liquids, including tear fluid (TF). Although TF can be collected by a non-invasive procedure and may serve as a source of the appropriate biomarkers, its multi-omics analysis is technically sophisticated and unsuitable for clinical practice. In this study, we tested a novel concept of glaucoma diagnostics based on the rapid high-performance analysis of the TF proteome by differential scanning fluorimetry (nanoDSF). An examination of the thermal denaturation of TF proteins in a cohort of 311 ophthalmic patients revealed typical profiles, with two peaks exhibiting characteristic shifts in POAG. Clustering of the profiles according to peaks maxima allowed us to identify glaucoma in 70% of cases, while the employment of artificial intelligence (machine learning) algorithms reduced the amount of false-positive diagnoses to 13.5%. The POAG-associated alterations in the core TF proteins included an increase in the concentration of serum albumin, accompanied by a decrease in lysozyme C, lipocalin-1, and lactotransferrin contents. Unexpectedly, these changes were not the only factor affecting the observed denaturation profile shifts, which considerably depended on the presence of low-molecular-weight ligands of tear proteins, such as fatty acids and iron. Overall, we recognized the TF denaturation profile as a novel biomarker of glaucoma, which integrates proteomic, lipidomic, and metallomic alterations in tears, and monitoring of which could be adapted for rapid non-invasive screening of the disease in a clinical setting. Full article
(This article belongs to the Special Issue Molecular Research of Ocular Pathology)
Show Figures

Figure 1

18 pages, 3759 KiB  
Article
Interkingdom Signaling of the Insect Pathogen Photorhabdus luminescens with Plants Via the LuxR solo SdiA
by Nazzareno Dominelli, Alice Regaiolo, Leon Willy and Ralf Heermann
Microorganisms 2023, 11(4), 890; https://doi.org/10.3390/microorganisms11040890 - 30 Mar 2023
Viewed by 2668
Abstract
In bacteria, group-coordinated behavior such as biofilm formation or virulence are often mediated via cell–cell communication, a process referred to as quorum sensing (QS). The canonical QS system of Gram-negative bacteria uses N-acyl homoserine lactones (AHLs) as communication molecules, which are produced [...] Read more.
In bacteria, group-coordinated behavior such as biofilm formation or virulence are often mediated via cell–cell communication, a process referred to as quorum sensing (QS). The canonical QS system of Gram-negative bacteria uses N-acyl homoserine lactones (AHLs) as communication molecules, which are produced by LuxI-type synthases and sensed by cognate LuxR-type receptors. These receptors act as transcriptional regulators controlling the expression of specific genes. Some bacteria harbor LuxR-type receptors lacking a cognate LuxI-type synthases, designated as LuxR solos. Among many other LuxR solos, the entomopathogenic enteric bacterium Photorhabdus luminescens harbors a SdiA-like LuxR solo containing an AHL signal-binding domain, for which a respective signal molecule and target genes have not been identified yet. Here we performed SPR analysis to demonstrate that SdiA acts as a bidirectional regulator of transcription, tightly controlling its own expression and the adjacent PluDJC_01670 (aidA) gene in P. luminescens, a gene supposed to be involved in the colonization of eukaryotes. Via qPCR we could further determine that in sdiA deletion mutant strains, aidA is upregulated, indicating that SdiA negatively affects expression of aidA. Furthermore, the ΔsdiA deletion mutant exhibited differences in biofilm formation and motility compared with the wild-type. Finally, using nanoDSF analysis we could identify putative binding ability of SdiA towards diverse AHLs, but also to plant-derived signals, modulating the DNA-binding capacity of SdiA, suggesting that this LuxR solo acts as an important player in interkingdom signaling between P. luminescens and plants. Full article
Show Figures

Figure 1

9 pages, 930 KiB  
Article
Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status
by Rémi Eyraud, Stéphane Ayache, Philipp O. Tsvetkov, Shanmugha Sri Kalidindi, Viktoriia E. Baksheeva, Sébastien Boissonneau, Carine Jiguet-Jiglaire, Romain Appay, Isabelle Nanni-Metellus, Olivier Chinot, François Devred and Emeline Tabouret
Cancers 2023, 15(3), 760; https://doi.org/10.3390/cancers15030760 - 26 Jan 2023
Cited by 4 | Viewed by 3303
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, [...] Read more.
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate EGFR alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery. Full article
Show Figures

Figure 1

15 pages, 2644 KiB  
Article
Nano Differential Scanning Fluorimetry-Based Thermal Stability Screening and Optimal Buffer Selection for Immunoglobulin G
by Soo Hyun Kim, Han Ju Yoo, Eun Ji Park and Dong Hee Na
Pharmaceuticals 2022, 15(1), 29; https://doi.org/10.3390/ph15010029 - 25 Dec 2021
Cited by 36 | Viewed by 9257
Abstract
Nano differential scanning fluorimetry (nanoDSF) is a high-throughput protein stability screening technique that simultaneously monitors protein unfolding and aggregation properties. The thermal stability of immunoglobulin G (IgG) was investigated in three different buffers (sodium acetate, sodium citrate, and sodium phosphate) ranging from pH [...] Read more.
Nano differential scanning fluorimetry (nanoDSF) is a high-throughput protein stability screening technique that simultaneously monitors protein unfolding and aggregation properties. The thermal stability of immunoglobulin G (IgG) was investigated in three different buffers (sodium acetate, sodium citrate, and sodium phosphate) ranging from pH 4 to 8. In all three buffers, the midpoint temperature of thermal unfolding (Tm) showed a tendency to increase as the pH increased, but the aggregation propensity was different depending on the buffer species. The best stability against aggregation was obtained in the sodium acetate buffers below pH 4.6. On the other hand, IgG in the sodium citrate buffer had higher aggregation and viscosity than in the sodium acetate buffer at the same pH. Difference of aggregation between acetate and citrate buffers at the same pH could be explained by a protein–protein interaction study, performed with dynamic light scattering, which suggested that intermolecular interaction is attractive in citrate buffer but repulsive in acetate buffer. In conclusion, this study indicates that the sodium acetate buffer at pH 4.6 is suitable for IgG formulation, and the nanoDSF method is a powerful tool for thermal stability screening and optimal buffer selection in antibody formulations. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

17 pages, 2442 KiB  
Article
Mechanism of Zn2+ and Ca2+ Binding to Human S100A1
by Viktoriia E. Baksheeva, Andrei Yu. Roman, Claude Villard, François Devred, Deborah Byrne, Dahbia Yatoui, Arthur O. Zalevsky, Alisa A. Vologzhannikova, Andrey S. Sokolov, Sergei E. Permyakov, Andrey V. Golovin, Gary S. Shaw, Philipp O. Tsvetkov and Evgeni Yu. Zernii
Biomolecules 2021, 11(12), 1823; https://doi.org/10.3390/biom11121823 - 3 Dec 2021
Cited by 5 | Viewed by 3926
Abstract
S100A1 is a member of the S100 family of small ubiquitous Ca2+-binding proteins, which participates in the regulation of cell differentiation, motility, and survival. It exists as homo- or heterodimers. S100A1 has also been shown to bind Zn2+, but [...] Read more.
S100A1 is a member of the S100 family of small ubiquitous Ca2+-binding proteins, which participates in the regulation of cell differentiation, motility, and survival. It exists as homo- or heterodimers. S100A1 has also been shown to bind Zn2+, but the molecular mechanisms of this binding are not yet known. In this work, using ESI-MS and ITC, we demonstrate that S100A1 can coordinate 4 zinc ions per monomer, with two high affinity (KD~4 and 770 nm) and two low affinity sites. Using competitive binding experiments between Ca2+ and Zn2+ and QM/MM molecular modeling we conclude that Zn2+ high affinity sites are located in the EF-hand motifs of S100A1. In addition, two lower affinity sites can bind Zn2+ even when the EF-hands are saturated by Ca2+, resulting in a 2Ca2+:S100A1:2Zn2+ conformer. Finally, we show that, in contrast to calcium, an excess of Zn2+ produces a destabilizing effect on S100A1 structure and leads to its aggregation. We also determined a higher affinity to Ca2+ (KD~0.16 and 24 μm) than was previously reported for S100A1, which would allow this protein to function as a Ca2+/Zn2+-sensor both inside and outside cells, participating in diverse signaling pathways under normal and pathological conditions. Full article
(This article belongs to the Collection Advances in Metal Binding Proteins)
Show Figures

Figure 1

16 pages, 5188 KiB  
Article
Synthesis of Novel Halogenated Heterocycles Based on o-Phenylenediamine and Their Interactions with the Catalytic Subunit of Protein Kinase CK2
by Maria Winiewska-Szajewska, Agnieszka Monika Maciejewska, Elżbieta Speina, Jarosław Poznański and Daniel Paprocki
Molecules 2021, 26(11), 3163; https://doi.org/10.3390/molecules26113163 - 25 May 2021
Cited by 10 | Viewed by 4947
Abstract
Protein kinase CK2 is a highly pleiotropic protein kinase capable of phosphorylating hundreds of protein substrates. It is involved in numerous cellular functions, including cell viability, apoptosis, cell proliferation and survival, angiogenesis, or ER-stress response. As CK2 activity is found perturbed in many [...] Read more.
Protein kinase CK2 is a highly pleiotropic protein kinase capable of phosphorylating hundreds of protein substrates. It is involved in numerous cellular functions, including cell viability, apoptosis, cell proliferation and survival, angiogenesis, or ER-stress response. As CK2 activity is found perturbed in many pathological states, including cancers, it becomes an attractive target for the pharma. A large number of low-mass ATP-competitive inhibitors have already been developed, the majority of them halogenated. We tested the binding of six series of halogenated heterocyclic ligands derived from the commercially available 4,5-dihalo-benzene-1,2-diamines. These ligand series were selected to enable the separation of the scaffold effect from the hydrophobic interactions attributed directly to the presence of halogen atoms. In silico molecular docking was initially applied to test the capability of each ligand for binding at the ATP-binding site of CK2. HPLC-derived ligand hydrophobicity data are compared with the binding affinity assessed by low-volume differential scanning fluorimetry (nanoDSF). We identified three promising ligand scaffolds, two of which have not yet been described as CK2 inhibitors but may lead to potent CK2 kinase inhibitors. The inhibitory activity against CK2α and toxicity against four reference cell lines have been determined for eight compounds identified as the most promising in nanoDSF assay. Full article
(This article belongs to the Special Issue Kinase Inhibitors 2021)
Show Figures

Figure 1

16 pages, 1745 KiB  
Article
Cardiolipin Stabilizes and Increases Catalytic Efficiency of Carnitine Palmitoyltransferase II and Its Variants S113L, P50H, and Y479F
by Beate Meinhardt, Leila Motlagh Scholle, Franziska Seifert, Martina Anwand, Markus Pietzsch and Stephan Zierz
Int. J. Mol. Sci. 2021, 22(9), 4831; https://doi.org/10.3390/ijms22094831 - 2 May 2021
Cited by 4 | Viewed by 4073
Abstract
Muscle carnitine palmitoyltransferase II (CPT II) deficiency is associated with various mutations in CPT2 gene. In the present study, the impact of the two CPT II variants P50H and Y479F were characterized in terms of stability and activity in vitro in comparison to [...] Read more.
Muscle carnitine palmitoyltransferase II (CPT II) deficiency is associated with various mutations in CPT2 gene. In the present study, the impact of the two CPT II variants P50H and Y479F were characterized in terms of stability and activity in vitro in comparison to wildtype (WT) and the well investigated variant S113L. While the initial enzyme activity of all variants showed wild-type-like behavior, the activity half-lives of the variants at different temperatures were severely reduced. This finding was validated by the investigation of thermostability of the enzymes using nano differential scanning fluorimetry (nanoDSF). Further, it was studied whether the protein stabilizing diphosphatidylglycerol cardiolipin (CL) has an effect on the variants. CL indeed had a positive effect on the stability. This effect was strongest for WT and least pronounced for variant P50H. Additionally, CL improved the catalytic efficiency for CPT II WT and the investigated variants by twofold when carnitine was the varied substrate due to a decrease in KM. However, there was no influence detected for the variation of substrate palmitoyl-CoA. The functional consequences of the stabilization by CL in vivo remain open. Full article
(This article belongs to the Special Issue Enzymes and Mammalian Fatty Acid Metabolism)
Show Figures

Figure 1

23 pages, 5261 KiB  
Article
Effect of Posttranslational Modifications on the Structure and Activity of FTO Demethylase
by Michał Marcinkowski, Tomaš Pilžys, Damian Garbicz, Jan Piwowarski, Damian Mielecki, Grzegorz Nowaczyk, Michał Taube, Maciej Gielnik, Maciej Kozak, Maria Winiewska-Szajewska, Ewa Szołajska, Janusz Dębski, Agnieszka M. Maciejewska, Kaja Przygońska, Karolina Ferenc, Elżbieta Grzesiuk and Jarosław Poznański
Int. J. Mol. Sci. 2021, 22(9), 4512; https://doi.org/10.3390/ijms22094512 - 26 Apr 2021
Cited by 8 | Viewed by 3825
Abstract
The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of [...] Read more.
The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of the study was to characterize the relationships between the structure and activity of FTO. The effect of cofactors (Fe2+/Mn2+ and 2-OG), Ca2+ that do not bind at the catalytic site, and protein concentration on FTO properties expressed in either E. coli (ECFTO) or baculovirus (BESFTO) system were determined using biophysical methods (DSF, MST, SAXS) and biochemical techniques (size-exclusion chromatography, enzymatic assay). We found that BESFTO carries three phosphoserines (S184, S256, S260), while there were no such modifications in ECFTO. The S256D mutation mimicking the S256 phosphorylation moderately decreased FTO catalytic activity. In the presence of Ca2+, a slight stabilization of the FTO structure was observed, accompanied by a decrease in catalytic activity. Size exclusion chromatography and MST data confirmed the ability of FTO from both expression systems to form homodimers. The MST-determined dissociation constant of the FTO homodimer was consistent with their in vivo formation in human cells. Finally, a low-resolution structure of the FTO homodimer was built based on SAXS data. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

18 pages, 2798 KiB  
Article
Investigation of the Differences in Antithrombin to Heparin Binding among Antithrombin Budapest 3, Basel, and Padua Mutations by Biochemical and In Silico Methods
by Réka Gindele, Krisztina Pénzes-Daku, Gábor Balogh, Judit Kállai, Réka Bogáti, Bálint Bécsi, Ferenc Erdődi, Éva Katona and Zsuzsanna Bereczky
Biomolecules 2021, 11(4), 544; https://doi.org/10.3390/biom11040544 - 8 Apr 2021
Cited by 14 | Viewed by 3680
Abstract
Antithrombin (AT) is a serine protease inhibitor, its activity is highly accelerated by heparin. Mutations at the heparin-binding region lead to functional defect, type II heparin-binding site (IIHBS) AT deficiency. The aim of this study was to investigate and compare the molecular background [...] Read more.
Antithrombin (AT) is a serine protease inhibitor, its activity is highly accelerated by heparin. Mutations at the heparin-binding region lead to functional defect, type II heparin-binding site (IIHBS) AT deficiency. The aim of this study was to investigate and compare the molecular background of AT Budapest 3 (p.Leu131Phe, ATBp3), AT Basel (p.Pro73Leu), and AT Padua (p.Arg79His) mutations. Advanced in silico methods and heparin-binding studies of recombinant AT proteins using surface plasmon resonance method were used. Crossed immunoelectrophoresis and Differential Scanning Fluorimetry (NanoDSF) were performed in plasma samples. Heparin affinity of AT Padua was the lowest (KD = 1.08 × 10−6 M) and had the most severe consequences affecting the allosteric pathways of activation, moreover significant destabilizing effects on AT were also observed. KD values for AT Basel, ATBp3 and wild-type AT were 7.64 × 10−7 M, 2.15 × 10−8 M and 6.4 × 10−10 M, respectively. Heparin-binding of AT Basel was slower, however once the complex was formed the mutation had only minor effect on the secondary and tertiary structures. Allosteric activation of ATBp3 was altered, moreover decreased thermostability in ATBp3 homozygous plasma and increased fluctuations in multiple regions of ATBp3 were observed by in silico methods suggesting the presence of a quantitative component in the pathogenicity of this mutation due to molecular instability. Full article
Show Figures

Figure 1

Back to TopTop