Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = nano-SiO2 particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4345 KiB  
Article
Preparation of Superhydrophobic P-TiO2-SiO2/HDTMS Self-Cleaning Coatings with UV-Aging Resistance by Acid Precipitation Method
by Le Zhang, Ying Liu, Xuefeng Bai, Hao Ding, Xuan Wang, Daimei Chen and Yihe Zhang
Nanomaterials 2025, 15(14), 1127; https://doi.org/10.3390/nano15141127 - 20 Jul 2025
Viewed by 337
Abstract
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. [...] Read more.
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. Nano-silica (SiO2) was coated onto the surface of P-TiO2 by the acid precipitation method to prepare P-TiO2-SiO2 composite particles. Then, they were modified and sprayed simply to obtain a superhydrophobic P-TiO2-SiO2/HDTMS coating. The results indicated that amorphous nano-SiO2 was coated on the P-TiO2 surface, forming a micro–nano binary structure, which was the essential structure to form superhydrophobic coatings. Additionally, the UV-aging property of P-TiO2 was significantly enhanced after being coated with SiO2. After continuous UV irradiation for 30 days, the color difference (ΔE*) and yellowing index (Δb*) values of the coating prepared with P-TiO2-SiO2 increased from 0 to 0.75 and 0.23, respectively. In contrast, the ΔE* and Δb* of the coating prepared with P-TiO2 increased from 0 to 1.68 and 0.74, respectively. It was clear that the yellowing degree of the P-TiO2-SiO2 coating was lower than that of P-TiO2, and its UV-aging resistance was significantly improved. After modification with HDTMS, the P-TiO2-SiO2 coating formed a superhydrophobic P-TiO2-SiO2/HDTMS coating. The water contact angle (WCA) and water slide angle (WSA) on the surface of the coating were 154.9° and 1.3°, respectively. Furthermore, the coating demonstrated excellent UV-aging resistance. After continuous UV irradiation for 45 days, the WCA on the coating surface remained above 150°. Under the same conditions, the WCAs of the P-TiO2/HDTMS coating decreased from more than 150° to 15.3°. This indicated that the retention of surface hydrophobicity of the P-TiO2-SiO2/HDTMS coating was longer than that of P-TiO2/HDTMS, and the P-TiO2-SiO2/HDTMS coating’s UV-aging resistance was greater. The superhydrophobic P-TiO2-SiO2/HDTMS self-cleaning coating reported in this study exhibited outstanding UV-aging resistance, and it had the potential for long-term outdoor use. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

15 pages, 2293 KiB  
Article
Preparing and Characterizing Nano Relative Permeability Improver for Low-Permeability Reservoirs
by Bo Li
Processes 2025, 13(7), 2071; https://doi.org/10.3390/pr13072071 - 30 Jun 2025
Viewed by 288
Abstract
Aiming at the problems of insufficient natural productivity and large seepage resistance in low-permeability oil and gas reservoirs, a nano relative permeability improver based on nano SiO2 was developed in this study. The nano relative permeability improver was prepared by the reversed-phase [...] Read more.
Aiming at the problems of insufficient natural productivity and large seepage resistance in low-permeability oil and gas reservoirs, a nano relative permeability improver based on nano SiO2 was developed in this study. The nano relative permeability improver was prepared by the reversed-phase microemulsion method, and the formula was optimized (nano SiO2 5.1%, Span-80 33%, isobutanol 18%, NaCl 2%), so that the minimum median particle size was 4.2 nm, with good injectivity and stability. Performance studies showed that the improvement agent had low surface tension (30–35 mN/m) and interfacial tension (3–8 mN/m) as well as significantly reduced the rock wetting angle (50–84°) and enhanced wettability. In addition, it had good temperature resistance, shear resistance, and acid-alkali resistance, making it suitable for complex environments in low-permeability reservoirs. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

31 pages, 62180 KiB  
Article
Evaluation of the Suitability of High-Temperature Post-Processing Annealing for Property Enhancement in LPBF 316L Steel: A Comprehensive Mechanical and Corrosion Assessment
by Bohdan Efremenko, Yuliia Chabak, Ivan Petryshynets, Tianliang Zhao, Vasily Efremenko, Kaiming Wu, Tao Xia, Miroslav Džupon and Sundas Arshad
Metals 2025, 15(6), 684; https://doi.org/10.3390/met15060684 - 19 Jun 2025
Viewed by 497
Abstract
This study aims to comprehensively assess the suitability of post-processing annealing (at 900–1200 °C) for enhancing the key properties of 316L steel fabricated via laser powder bed fusion (LPBF). It adopts a holistic approach to investigate the annealing-driven evolution of microstructure–property relationships, focusing [...] Read more.
This study aims to comprehensively assess the suitability of post-processing annealing (at 900–1200 °C) for enhancing the key properties of 316L steel fabricated via laser powder bed fusion (LPBF). It adopts a holistic approach to investigate the annealing-driven evolution of microstructure–property relationships, focusing on tensile properties, nanoindentation hardness and modulus, impact toughness at ambient and cryogenic temperatures (−196 °C), and the corrosion resistance of LPBF 316L. Annealing at 900–1050 °C reduced tensile strength and hardness, followed by a moderate increase at 1200 °C. Conversely, ductility and impact toughness peaked at 900 °C but declined with the increasing annealing temperature. Regardless of the annealing temperature and testing conditions, LPBF 316L steel fractured through a mixed transgranular/intergranular mechanism involving dimple formation. The corrosion resistance of annealed steel was significantly lower than that in the as-built state, with the least detrimental effect being observed at 1050 °C. These changes resulted from the complex interplay of annealing-induced structural transformations, including elimination of the cellular structure and Cr/Mo segregations, reduced dislocation density, the formation of recrystallized grains, and the precipitation of nano-sized (MnCrSiAl)O3 inclusions. At 1200 °C, an abundant oxide formation strengthened the steel; however, particle coarsening, combined with the transition of (MnCrSiAl)O3 into Mo-rich oxide, further degraded the passive film, leading to a sharp decrease in corrosion resistance. Overall, post-processing annealing at 900–1200 °C did not comprehensively improve the combination of LPBF 316L steel properties, suggesting that the as-built microstructure offers a favorable balance of properties. High-temperature annealing can enhance a particular property while potentially compromising other performance characteristics. Full article
Show Figures

Figure 1

15 pages, 4313 KiB  
Article
Fabrication of EP@PDMS@F-SiO2 Superhydrophobic Composite Coating on Titanium Alloy Substrate
by Chaoming Huang, Jinhe Qi, Jie Li, Xinchi Li, Jiawei Chen, Shuo Fu and Yanning Lu
Biomimetics 2025, 10(6), 404; https://doi.org/10.3390/biomimetics10060404 - 16 Jun 2025
Cited by 1 | Viewed by 499
Abstract
In this study, a preparation method of superhydrophobic composite coating based on a titanium alloy (Ti-6Al-4V) substrate is proposed. The micro-scale pit array structure was fabricated via laser etching technology. Utilizing the synergistic effects of epoxy resin (EP), polydimethylsiloxane (PDMS), and fluorinated nanosilica [...] Read more.
In this study, a preparation method of superhydrophobic composite coating based on a titanium alloy (Ti-6Al-4V) substrate is proposed. The micro-scale pit array structure was fabricated via laser etching technology. Utilizing the synergistic effects of epoxy resin (EP), polydimethylsiloxane (PDMS), and fluorinated nanosilica (F-SiO2), we successfully prepared an EP@PDMS@F-SiO2 composite coating. The effects of the contents of EP, PDMS, and F-SiO2 on the surface wettability, mechanical stability, and UV durability were studied by optimizing the coating ratio through orthogonal experiments. The results show that the micro–nano composite structure formed by laser etching can effectively fix the coating particles and provide excellent superhydrophobicity on the surface. The coating retains high hydrophobicity after paper abrasion (1000 cm under a 200 g load), demonstrating the mechanical stability of the armor-like structure, High-content F-SiO2 coatings exhibit greater UV durability. In addition, the coating surface has low droplet adhesion and self-cleaning capabilities for efficient contaminant removal. The research provides theoretical and technical support for the design and engineering application of a non-fluorinated, environmentally friendly superhydrophobic coating. Full article
Show Figures

Figure 1

21 pages, 5488 KiB  
Article
Investigation into Improving the Water Resistance and Mechanical Properties of Calcined Gypsum from Phosphogypsum Composites
by Qing Wang, Yuanyuan Lou, Yanzhou Peng, Weiqi Wang, Xiaohui Luo and Abutu Simon John Smith
Materials 2025, 18(12), 2703; https://doi.org/10.3390/ma18122703 - 9 Jun 2025
Viewed by 440
Abstract
This study aimed to improve the mechanical properties and water resistance of calcined gypsum from phosphogypsum (CGP) by incorporating organic additives and inorganic admixtures. The effects of the dosage of these additives—including kaolin, nano-SiO2, polycarboxylic acid superplasticizer, and sodium methyl silicate—on [...] Read more.
This study aimed to improve the mechanical properties and water resistance of calcined gypsum from phosphogypsum (CGP) by incorporating organic additives and inorganic admixtures. The effects of the dosage of these additives—including kaolin, nano-SiO2, polycarboxylic acid superplasticizer, and sodium methyl silicate—on the properties (flexural strength, compressive strength, water absorption, and softening coefficient) of CGP composites (CGPCs) were investigated. A high water resistance of the CGPCs was achieved using nano-SiO2 and sodium methyl silicate modification, superplasticizer addition, and the partial replacement of gypsum with mineral admixtures. The results showed that the flexural and compressive strength of the composites hit 4.61 MPa and 19.54 MPa, respectively, while the softening coefficient was 0.70 and the water absorption rate was 19.85%. Microstructural investigation confirmed that the combination of nano-SiO2 and kaolin led to the formation of calcium silicate hydrate. Additionally, the superplasticizer played a crucial role in reducing the water-to-cement ratio, while unhydrated mineral particles had a filling effect, thereby enhancing the density of the hardened paste. The sodium methyl silicate formed a hydrophobic film on the surface of the hardened paste, increasing the contact angle to 109.01° and improving the water resistance of the CGPCs. Full article
(This article belongs to the Collection Concrete and Building Materials)
Show Figures

Figure 1

16 pages, 2039 KiB  
Article
Impact of ZrO2 and Si3N4 Ceramics Dispersion on the Ti6Al4V Matrix: Mechanical and Microstructural Characteristics Using SPS
by Anthony O. Ogunmefun, Emmanuel R. Sadiku, Linda M. Teffo and Williams K. Kupolati
Crystals 2025, 15(6), 531; https://doi.org/10.3390/cryst15060531 - 2 Jun 2025
Viewed by 480
Abstract
This study investigates the effect of duo-ceramic zirconia and silicon nitride (ZrO2-Si3N4) particles and their reinforcement proficiencies on a Ti6Al4V alloy, consolidated using the spark plasma sintering (SPS) technique. The selected sintering parameters are, viz., 900 °C [...] Read more.
This study investigates the effect of duo-ceramic zirconia and silicon nitride (ZrO2-Si3N4) particles and their reinforcement proficiencies on a Ti6Al4V alloy, consolidated using the spark plasma sintering (SPS) technique. The selected sintering parameters are, viz., 900 °C temperature, 50 MPa pressure, 10 min of holding time, and 100 °C/min of sintering rate. SEM/EDS and XRD equipment were used to disclose the microstructural evolution and phase identification of created composites. The mechanical characteristics of the resulting composites were determined using the nanoindentation technique. All consolidated sintered composites showed excellent densification, with sample relative densities reaching 96.65%. Significant improvements were also made in their nanomechanical characteristics; among the composite samples with different volume fractions, the ceramics with the lowest volume percentage had the best mechanical characteristics, whereas the sintered samples with the highest ceramic volume percentage showed a decrease in mechanical proficiencies and relative density. Composite S1, with the lowest volume fraction of the duo-ceramic particles, was seen to have a significant mechanical property improvement better than other composites, S2 and S3, in terms of measured Vickers microhardness, elastic modulus, and nano hardness values at a sintering temperature of 900 °C. Consequentially, composite specimens S2 and S3’s mechanical characteristics and relative densities dropped as the volume fractions of the duo-ceramic particles increased. Full article
Show Figures

Figure 1

17 pages, 4360 KiB  
Article
Effects of Nano-SiO2 and Nano-CaCO3 on Mechanical Properties and Microstructure of Cement-Based Soil Stabilizer
by Baofeng Lei, Xingchen Zhang, Henghui Fan, Jianen Gao, Yichun Du, Yafei Ji and Zhe Gao
Nanomaterials 2025, 15(11), 785; https://doi.org/10.3390/nano15110785 - 23 May 2025
Viewed by 555
Abstract
Soil stabilizers are environmentally friendly engineering materials that enable efficient utilization of local soil-water resources. The application of nano-modified stabilizers to reinforce loess can effectively enhance the microscopic interfacial structure and improve the macroscopic mechanical properties of soil. This study employed nano-SiO2 [...] Read more.
Soil stabilizers are environmentally friendly engineering materials that enable efficient utilization of local soil-water resources. The application of nano-modified stabilizers to reinforce loess can effectively enhance the microscopic interfacial structure and improve the macroscopic mechanical properties of soil. This study employed nano-SiO2 and nano-CaCO3 to modify cement-based soil stabilizers, investigating the enhancement mechanisms of nanomaterials on stabilizer performance through compressive and flexural strength tests combined with microscopic analyses, including SEM, XRD, and FT-IR. The key findings are as follows: (1) Comparative analysis of mortar specimen strength under identical conditions revealed that nano-SiO2 generally demonstrated superior mechanical enhancement compared to nano-CaCO3 across various curing ages (1–3% dosage). At 1% dosage, the compressive strength of both modified stabilizers increased with curing duration. Early-stage strength differences (3 days) remained below 3% but showed a significant divergence with prolonged curing: nano-SiO2 groups exhibited 10.3%, 11.3%, and 7.2% higher compressive strengths than nano-CaCO3 at 7, 14, and 28 days, respectively. (2) The strength enhancement effect of nano-SiO2 on MBER soil stabilizer followed a parabolic trend within 1–3% dosage range, peaking at 2.5% with over 15% strength improvement. (3) The exceptional performance of nano-SiO2 originates from its high reactivity and ultrafine particle characteristics, which induce nano-catalytic hydration effects and demonstrate strong pozzolanic activity. These properties accelerate hydration processes while promoting the formation of interlocking C-S-H gels and hexagonal prismatic AFt crystals, ultimately creating a robust three-dimensional network that optimizes interfacial structure and significantly enhances strength characteristics across curing periods. These findings provide scientific support for the performance optimization of soil stabilizers and their sustainable applications in eco-construction practices. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

20 pages, 25702 KiB  
Article
Mechanism-Oriented Analysis of Core–Shell Structured CIP@SiO2 Magnetic Abrasives for Precision-Enhanced Magnetorheological Polishing
by Chunyu Li, Shusheng Chen, Zhuoguang Zheng, Yicun Zhu, Bingsan Chen and Yongchao Xu
Micromachines 2025, 16(5), 495; https://doi.org/10.3390/mi16050495 - 24 Apr 2025
Viewed by 2900
Abstract
This study addresses the critical challenge of precise control over active abrasive particles in magnetorheological polishing (MRP) through innovative core–shell particle engineering. A sol–gel synthesized CIP@SiO2 magnetic composite abrasive with controlled SiO2 encapsulation (20 nm shell thickness) was developed using tetraethyl [...] Read more.
This study addresses the critical challenge of precise control over active abrasive particles in magnetorheological polishing (MRP) through innovative core–shell particle engineering. A sol–gel synthesized CIP@SiO2 magnetic composite abrasive with controlled SiO2 encapsulation (20 nm shell thickness) was developed using tetraethyl orthosilicate (TEOS) as the silicon precursor, demonstrating significant advantages in optical-grade fused silica finishing. Systematic polishing experiments reveal that the core–shell architecture achieves a remarkable 20.16% improvement in surface quality (Ra = 1.03 nm) compared to conventional CIP/SiO2 mixed abrasives, with notably reduced surface defects despite a modest 8–12% decrease in material removal rate. Through synergistic analysis combining elastic microcontact mechanics modeling and molecular dynamics simulations, we establish that the SiO2 shell mediates stress distribution at tool–workpiece interfaces, effectively suppressing deep subsurface damage while maintaining nano-scale material removal efficiency. The time-dependent performance analysis further demonstrates that extended polishing durations with CIP@SiO2 composites progressively eliminate mid-spatial frequency errors without introducing new surface artifacts. These findings provide fundamental insights into designed abrasive architectures for precision finishing applications requiring sub-nanometer surface integrity control. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

20 pages, 9747 KiB  
Article
Advancing Thermal Energy Storage: Synthesis and Thermal Performance of Silica-Encapsulated Paraffin PCMs
by Raihana Jannat Adnin and Han-Seung Lee
Molecules 2025, 30(8), 1698; https://doi.org/10.3390/molecules30081698 - 10 Apr 2025
Cited by 1 | Viewed by 851
Abstract
This study successfully synthesizes SiO2-encapsulated nano-phase change materials (NPCMs) via a sol–gel method, using paraffin as the thermal storage medium. The encapsulation process is validated through FTIR, XRD, and XPS analyses, confirming the formation of an amorphous SiO2 shell without [...] Read more.
This study successfully synthesizes SiO2-encapsulated nano-phase change materials (NPCMs) via a sol–gel method, using paraffin as the thermal storage medium. The encapsulation process is validated through FTIR, XRD, and XPS analyses, confirming the formation of an amorphous SiO2 shell without any chemical interaction between the core and shell. SEM imaging reveals a well-defined core–shell structure with uniform spherical geometry, with the smallest particle size (190 nm) observed in the sample with a 4:1 paraffin/SiO2 ratio (PARSI-4). TGA results demonstrate enhanced thermal stability, with thicker SiO2 shells effectively protecting against thermal degradation. The DSC analysis indicates that an increased core–shell ratio improves thermal performance, with PARSI-4 exhibiting the highest melting (160.86 J/g) and solidifying (153.93 J/g) enthalpies. The encapsulation ratio (ER) and encapsulation efficiency (EE) have been accomplished at 87.83% and 87.04%, respectively, in the PARSI-4 sample. Thermal cycling tests confirm the material’s long-term stability, with 98.16% enthalpy retention even after 100 cycles. Additionally, leakage resistance tests validate the structural integrity of the encapsulated paraffin, preventing spillage at elevated temperatures. These findings demonstrate the potential of SiO2-encapsulated NPCMs for efficient thermal energy storage (TES), making them promising candidates for sustainable and energy-efficient applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 9499 KiB  
Article
In-Situ Synthesis of Multiscale Al2O3 and AlSi3Ti2 Reinforced Al Matrix Composites Based on Al12Si-TiO2 System
by Pengcheng Yao, Peng Gao, Zunyan Xu, Xianxian Deng and Caiju Li
Metals 2025, 15(4), 401; https://doi.org/10.3390/met15040401 - 3 Apr 2025
Viewed by 316
Abstract
In situ particle reinforced aluminum matrix composites have become an important development in the field of materials science due to their unique reinforced structure design and excellent mechanical properties. In this paper, in situ Al2O3 and AlSi3Ti2 [...] Read more.
In situ particle reinforced aluminum matrix composites have become an important development in the field of materials science due to their unique reinforced structure design and excellent mechanical properties. In this paper, in situ Al2O3 and AlSi3Ti2 particle reinforced Al12Si matrix composites were prepared via powder metallurgy. The microstructure and mechanical properties of the composites were analyzed systematically. With the increase in TiO2 content, the grain size of the composites was refined, resulting in the composites exhibiting higher strength. The in situ generated AlSi3Ti2 phase has a higher Young’s modulus of elasticity compared to the Si phase. The in situ formed nano-Al2O3 and micrometer AlSi3Ti2 formed a strong interfacial bonding with the matrix, which ensured a good reinforcement effect. At the same time, the introduction of reinforced particles also changed the texture characteristics of extruded Al12Si, from <001>∥ED of Al12Si to <111>∥ED of composite. As a result, the strength of the Al12Si–7TiO2 composite was 330 MPa, which is a 120% enhancement compared with that of the matrix. The hardness reached 107 HV, an increase of 80% compared to the matrix. This study can provide a reference value for the design of new multi-particle hybrid reinforced composites to enhance the material properties. Full article
Show Figures

Graphical abstract

35 pages, 8128 KiB  
Review
Impact of Nanomaterials on the Mechanical Strength and Durability of Pavement Quality Concrete: A Comprehensive Review
by Ashmita Mohanty, Dipti Ranjan Biswal, Sujit Kumar Pradhan and Malaya Mohanty
Eng 2025, 6(4), 66; https://doi.org/10.3390/eng6040066 - 28 Mar 2025
Cited by 2 | Viewed by 2032
Abstract
This review paper investigates the comprehensive impact of various nanomaterials on the mechanical properties and durability of pavement-quality concrete (PQC) with a specific focus on compressive strength, flexural strength, split tensile strength, permeability, abrasion resistance, fatigue performance, and crack relief performance. Despite significant [...] Read more.
This review paper investigates the comprehensive impact of various nanomaterials on the mechanical properties and durability of pavement-quality concrete (PQC) with a specific focus on compressive strength, flexural strength, split tensile strength, permeability, abrasion resistance, fatigue performance, and crack relief performance. Despite significant advancements in the use of nanomaterials in concrete, existing research lacks a comprehensive evaluation of their comparative effectiveness, optimal dosages, and long-term durability in PQC. While conventional PQC faces challenges such as low fatigue resistance, high permeability, and susceptibility to abrasion, studies on nanomaterials have largely focused on individual properties rather than a holistic assessment of their impact. Nano SiO2 and graphene oxide (GO) emerged as the most effective, with optimal dosages of 2% and 0.03%, respectively, leading to substantial improvements in compressive strength (up to 48.88%), flexural strength (up to 60.7%), and split tensile strength (up to 78.6%) through improved particle packing, reduced permeability, and refined microstructure. Nano TiO2, particularly at a 1% dosage, significantly enhanced multiple properties, including a 36.30% increase in compressive strength, over 100% improvement in abrasion resistance, and a 475% increase in fatigue performance. However, a critical research gap exists in understanding the combined effects of multiple nanomaterials, their interaction mechanisms within cementitious systems, and their real-world performance under prolonged environmental and loading conditions. Most studies have been limited to laboratory-scale investigations, with minimal large-scale validation for pavement applications. The findings indicate that nanomaterials like nano TiO2, nano CaCO3, nano Al2O3, nano clay, and carbon nanomaterials play crucial roles in improving characteristics like permeability, abrasion resistance, and fatigue performance, with notable gains observed in many cases. This review systematically analyzes the influence of these nanomaterials on PQC, identifies key research gaps, and emphasizes the need for large-scale field validation to enhance their practical applicability. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

19 pages, 3556 KiB  
Article
Efficacy of Nano and Conventional Zinc and Silicon Fertilizers for Nutrient Use Efficiency and Yield Benefits in Maize Under Saline Field Conditions
by Abbas Shoukat, Uswah Maryam, Britta Pitann, Muhammad Mubashar Zafar, Allah Nawaz, Waseem Hassan, Mahmoud F. Seleiman, Zulfiqar Ahmad Saqib and Karl H. Mühling
Plants 2025, 14(5), 673; https://doi.org/10.3390/plants14050673 - 22 Feb 2025
Cited by 1 | Viewed by 1504
Abstract
The increasing severity of salinity stress, exacerbated by climate change, poses significant challenges to sustainable agriculture, particularly in salt-affected regions. Soil salinity, impacting approximately 20% of irrigated lands, severely reduces crop productivity by disrupting plants’ physiological and biochemical processes. This study evaluates the [...] Read more.
The increasing severity of salinity stress, exacerbated by climate change, poses significant challenges to sustainable agriculture, particularly in salt-affected regions. Soil salinity, impacting approximately 20% of irrigated lands, severely reduces crop productivity by disrupting plants’ physiological and biochemical processes. This study evaluates the effectiveness of zinc (Zn) and silicon (Si) nanofertilizers in improving maize (Zea mays L.) growth, nutrient uptake, and yield under both saline and non-saline field conditions. ZnO nanoparticles (NPs) were synthesized via the co-precipitation method due to its ability to produce highly pure and uniform particles, while the sol–gel method was chosen for SiO2 NPs to ensure precise control over the particle size and enhanced surface activity. The NPs were characterized using UV-Vis spectroscopy, XRD, SEM, and TEM-EDX, confirming their crystalline nature, morphology, and nanoscale size (ZnO~12 nm, SiO2~15 nm). A split-plot field experiment was conducted to assess the effects of the nano and conventional Zn and Si fertilizers. Zn was applied at 10 ppm (22.5 kg/ha) and Si at 90 ppm (201 kg/ha). Various agronomic, chemical, and physiological parameters were then evaluated. The results demonstrated that nano Zn/Si significantly enhanced the cob length and grain yield. Nano Si led to the highest biomass increase (110%) and improved the nutrient use efficiency by 105% under saline and 110% under non-saline conditions compared to the control. Under saline stress, nano Zn/Si improved the nutrient uptake efficiency, reduced sodium accumulation, and increased the grain yield by 66% and 106%, respectively, compared to the control. A Principal Component Analysis (PCA) highlighted a strong correlation between nano Zn/Si applications with the harvest index and Si contents in shoots, along with other physiological and yield attributes. These findings highlight that nanotechnology-based fertilizers can mitigate salinity stress and enhance crop productivity, providing a promising strategy for sustainable agriculture in salt-affected soils. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

18 pages, 11905 KiB  
Article
The Structural Evolution of Bimetallic Fe/Ag Mediated by Montmorillonite and Its Effect on Triclosan in the Environment
by Liting Ju, Qunyi Liu, Hongye Feng, Pingxiao Wu, Yiwen Ju, Li Zhang and Junbo Wang
Environments 2025, 12(2), 65; https://doi.org/10.3390/environments12020065 - 14 Feb 2025
Viewed by 871
Abstract
Montmorillonite (Mont) is a natural two-dimensional material with a 2:1 layered silicate crystal structure. It possesses abundant surface groups, cation exchange capacity, and adsorption performance. In addition, it has other advantages such as abundant reserves, environmental friendliness, strong mechanical stability, and a large [...] Read more.
Montmorillonite (Mont) is a natural two-dimensional material with a 2:1 layered silicate crystal structure. It possesses abundant surface groups, cation exchange capacity, and adsorption performance. In addition, it has other advantages such as abundant reserves, environmental friendliness, strong mechanical stability, and a large specific surface area. As such, it shows excellent potential for application in environmental remediation. In the following paper, we focus on the removal of TCS (triclosan) from an aqueous environment by utilizing montmorillonite-supported bimetallic Fe/Ag particles. We use scanning electron microscopy, X-ray diffraction patterns, Fourier-transform infrared spectra, and specific surface area to analyze the structure, morphology, and composition of these nanocomposites. The effects of the pH, different materials, contact time, and different initial concentrations on the degradation efficiency of TCS were studied systematically. Based on the results of our study, montmorillonite-supported bimetallic Fe/Ag nanoparticles (Fe/Ag-Mont) should be categorized as a type of mesoporous material of high uniformity because the pore size of all its catalysts ranges from 10 to 20 nm, and they are well-distributed. The Si-O stretching vibrations of montmorillonite can be changed by adding Fe/Ag. We found that Fe or Ag combined with -O to form a new bond and interacted with Si-O, and the incorporation of Fe/Ag-Mont nanoparticles removed TCS with better reduction rates. By enhancing reduction capacity, the pH was below 4 due to H• species generation by Fe/Ag. H• was the main factor enhancing the redox reaction in reducing TCS. The pH controlled the competition between Fe corrosion and silver formation, which enabled the system to self-regulate. In addition, this study provided a suitable method of efficiently synthesizing clay-supported bimetallic nano-system materials for reduction. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Wastewater Treatment)
Show Figures

Graphical abstract

20 pages, 4837 KiB  
Article
Nano-Grafted Polymer Suspension Stabilizers for Oil Well Cement: Polymerization Innovation Dominated by Acrylamide and Breakthroughs in High-Temperature Applications
by Lifang Song, Chengwen Wang, Jingping Liu and Yang Li
Processes 2025, 13(2), 376; https://doi.org/10.3390/pr13020376 - 30 Jan 2025
Viewed by 801
Abstract
A high-temperature resistant suspension stabilizer, SIAM-1, for high-density cement slurry used in deep/ultra-deep well cementing has been successfully developed. This suspension stabilizer is based on the temperature-resistant monomers 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and N,N-dimethylacrylamide (NNDMA). Meanwhile, two functional monomers, long-hydrophobic-side-chain [...] Read more.
A high-temperature resistant suspension stabilizer, SIAM-1, for high-density cement slurry used in deep/ultra-deep well cementing has been successfully developed. This suspension stabilizer is based on the temperature-resistant monomers 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and N,N-dimethylacrylamide (NNDMA). Meanwhile, two functional monomers, long-hydrophobic-side-chain temperature-sensitive monomers and temperature-resistant monomer-modified nano-SiO2 monomers, were introduced. To enhance the participation of two functional monomers in the polymerization process, a method combining a small amount of acrylamide (AM) and emulsion polymerization was employed, leading to the successful synthesis of SIAM-1 with a high content of functional monomers. The study also explores the effects of polymerization method and AM on the conformational characteristics of the resulting polymers. The results confirm that the polymer structure aligns with the designed configuration, and SIAM-1 demonstrates excellent high-temperature resistance, with a tolerance of up to 210 °C. The optimal dosage of AM was found to be 4% of the total monomer mass. SIAM-1 exhibits excellent high-temperature rheological properties, maintaining a viscosity as high as 128 mP·s at 210 °C. Moreover, it effectively improves the suspension stability of the cement slurry at 210 °C. The density differences in the conventional-density and high-density cement slurries are 0.006 g∙cm−3 and 0.039 g∙cm−3, respectively. This research is beneficial for increasing the viscosity of the cement slurry at high temperatures, effectively preventing the settlement of solid-phase particles under high-temperature and high-pressure well conditions. Consequently, it enhances the cementing effect of deep/ultra-deep wells and reduces cementing-related risks. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

138 pages, 31774 KiB  
Review
Green Ammonia, Nitric Acid, Advanced Fertilizer and Electricity Production with In Situ CO2 Capture and Utilization by Integrated Intensified Nonthermal Plasma Catalytic Processes: A Technology Transfer Review for Distributed Biorefineries
by Galip Akay
Catalysts 2025, 15(2), 105; https://doi.org/10.3390/catal15020105 - 22 Jan 2025
Cited by 2 | Viewed by 3596
Abstract
An Integrated Process Intensification (IPI) technology-based roadmap is proposed for the utilization of renewables (water, air and biomass/unavoidable waste) in the small-scale distributed production of the following primary products: electricity, H2, NH3, HNO3 and symbiotic advanced (SX) fertilizers [...] Read more.
An Integrated Process Intensification (IPI) technology-based roadmap is proposed for the utilization of renewables (water, air and biomass/unavoidable waste) in the small-scale distributed production of the following primary products: electricity, H2, NH3, HNO3 and symbiotic advanced (SX) fertilizers with CO2 mineralization capacity to achieve negative CO2 emission. Such a production platform is an integrated intensified biorefinery (IIBR), used as an alternative to large-scale centralized production which relies on green electricity and CCUS. Hence, the capacity and availability of the renewable biomass and unavoidable waste were examined. The critical elements of the IIBR include gasification/syngas production; syngas cleaning; electricity generation; and the conversion of clean syngas (which contains H2, CO, CH4, CO2 and N2) to the primary products using nonthermal plasma catalytic reactors with in situ NH3 sequestration for SA fertilizers. The status of these critical elements is critically reviewed with regard to their techno-economics and suitability for industrial applications. Using novel gasifiers powered by a combination of CO2, H2O and O2-enhanced air as the oxidant, it is possible to obtain syngas with high H2 concentration suitable for NH3 synthesis. Gasifier performances for syngas generation and cleaning, electricity production and emissions are evaluated and compared with gasifiers at 50 kWe and 1–2 MWe scales. The catalyst and plasma catalytic reactor systems for NH3 production with or without in situ reactive sequestration are considered in detail. The performance of the catalysts in different plasma reactions is widely different. The high intensity power (HIP) processing of perovskite (barium titanate) and unary/binary spinel oxide catalysts (or their combination) performs best in several syntheses, including NH3 production, NOx from air and fertigation fertilizers from plasma-activated water. These catalysts can be represented as BaTi1−vO3−x{#}yNz (black, piezoelectric barium titanate, bp-{BTO}) and M(1)3−jM(2)kO4−m{#}nNr/SiO2 (unary (k = 0) or a binary (k > 0) silane-coated SiO2-supported spinel oxide catalyst, denoted as M/Si = X) where {#} infers oxygen vacancy. HIP processing in air causes oxygen vacancies, nitrogen substitution, the acquisition of piezoelectric state and porosity and chemical/morphological heterogeneity, all of which make the catalysts highly active. Their morphological evaluation indicates the generation of dust particles (leading to porogenesis), 2D-nano/micro plates and structured ribbons, leading to quantum effects under plasma catalytic synthesis, including the acquisition of high-energy particles from the plasma space to prevent product dissociation as a result of electron impact. M/Si = X (X > 1/2) and bp-{BTO} catalysts generate plasma under microwave irradiation (including pulsed microwave) and hence can be used in a packed bed mode in microwave plasma reactors with plasma on and within the pores of the catalyst. Such reactors are suitable for electric-powered small-scale industrial operations. When combined with the in situ reactive separation of NH3 in the so-called Multi-Reaction Zone Reactor using NH3 sequestration agents to create SA fertilizers, the techno-economics of the plasma catalytic synthesis of fertilizers become favorable due to the elimination of product separation costs and the quality of the SA fertilizers which act as an artificial root system. The SA fertilizers provide soil fertility, biodiversity, high yield, efficient water and nutrient use and carbon sequestration through mineralization. They can prevent environmental damage and help plants and crops to adapt to the emerging harsh environmental and climate conditions through the formation of artificial rhizosphere and rhizosheath. The functions of the SA fertilizers should be taken into account when comparing the techno-economics of SA fertilizers with current fertilizers. Full article
(This article belongs to the Special Issue Catalysis for CO2 Conversion, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop