Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = nano-CT evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3348 KiB  
Article
Influence of the Processing Method on the Nano-Mechanical Properties and Porosity of Dental Acrylic Resins Fabricated by Heat-Curing, 3D Printing and Milling Techniques
by Marina Imre, Veaceslav Șaramet, Lucian Toma Ciocan, Vlad-Gabriel Vasilescu, Elena Iuliana Biru, Jana Ghitman, Mihaela Pantea, Alexandra Ripszky, Adriana Lucia Celebidache and Horia Iovu
Dent. J. 2025, 13(7), 311; https://doi.org/10.3390/dj13070311 - 10 Jul 2025
Viewed by 255
Abstract
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, [...] Read more.
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, despite their extensive use, a limited number of comparative studies exist that investigate how different processing methods—such as traditional techniques, 3D printing, and CAD/CAM milling—impact the nano-mechanical behavior and internal porosity of these materials, which are critical for their long-term clinical performance. Objectives: The purpose of this study is to evaluate the nanomechanical properties (hardness, elasticity, and stiffness) and micro-porosity of acrylic resin-based materials indicated for temporary prosthodontic appliances manufactured by new technologies (milling, 3D printing) compared to traditional methods. Methods: The hardness, elasticity, and stiffness measurements were performed by the nano-metric indentation method (nanoindentation), and the quantitative morphological characterization of the porosity of the acrylic resin samples obtained by 3D printing and CAD/CAM milling was performed by micro-computed tomography. Results: According to nanomechanical investigations, CAD/CAM milling restorative specimens exhibited the greatest mechanical performances (E~5.233 GPa and H~0.315 GPa), followed by 3D printed samples, while the lowest mechanical properties were registered for the specimen fabricated by the traditional method (E~3.552 GPa, H~0.142 GPa). At the same time, the results of porosity studies (micro-CT) suggested that 3D printed specimens demonstrated a superior degree of porosity (temporary crown—22.93% and splints—8.94%) compared to CAD/CAM milling restorative samples (5.73%). Conclusions: The comparative analysis of these results allows for the optimal selection of the processing method in order to ensure the specific requirements of the various clinical applications. Full article
Show Figures

Figure 1

18 pages, 12112 KiB  
Article
MgO–C Refractories with Al2O3 and TiO2 Nano-Additives: Insights from X-Ray Micro-Computed Tomography and Conventional Techniques for Assessing Corrosion and Oxidation
by Sevastia Gkiouzel, Vasileios Ioannou, Christina Gioti, Konstantinos C. Vasilopoulos, Angelos Ntaflos, Alkiviadis S. Paipetis, Constantinos E. Salmas and Michael A. Karakassides
Nanomanufacturing 2025, 5(3), 10; https://doi.org/10.3390/nanomanufacturing5030010 - 9 Jul 2025
Viewed by 197
Abstract
MgO–C refractory materials were developed by incorporating different ratios of alumina/titania nano-additives which were synthesized chemically. Their physical and mechanical properties, oxidation resistance, slag wettability, bulk density, apparent porosity, cold crushing strength, oxidation index, and closed porosity were tested, evaluated, and compared using [...] Read more.
MgO–C refractory materials were developed by incorporating different ratios of alumina/titania nano-additives which were synthesized chemically. Their physical and mechanical properties, oxidation resistance, slag wettability, bulk density, apparent porosity, cold crushing strength, oxidation index, and closed porosity were tested, evaluated, and compared using conventional techniques as well as X-ray micro-computed tomography (µCT). This investigation indicated a slight degradation of physical properties and mechanical strengthening which was stronger for samples with increased alumina content. Oxidation and corrosion extent were tested both with X-ray tomography and conventional methods. The first method allowed for the calculation of the oxidation index, the detection of closed porosity, and an improved analysis of the internal corrosion, avoiding the sectioning of the materials. This result confirms the supremacy of the first technique. On the contrary, although conventional methods such as the Archimedes procedure cannot detect close porosity, they provide more accurate measurements of the physical properties of refractories. This study shows that conventional methods exhibit superiority in investigations of the pore structures of refractories for pore sizes in the range 1–2 μm, while the use of the μCT system is limited for pore sizes equal to or larger than 20 μm. Full article
Show Figures

Figure 1

13 pages, 1243 KiB  
Article
Three-Dimensional Assessment of the Biological Periacetabular Defect Reconstruction in an Ovine Animal Model: A µ-CT Analysis
by Frank Sebastian Fröschen, Thomas Martin Randau, El-Mustapha Haddouti, Jacques Dominik Müller-Broich, Frank Alexander Schildberg, Werner Götz, Dominik John, Susanne Reimann, Dieter Christian Wirtz and Sascha Gravius
Bioengineering 2025, 12(7), 729; https://doi.org/10.3390/bioengineering12070729 - 3 Jul 2025
Viewed by 353
Abstract
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing [...] Read more.
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing area of the acetabulum were augmented with various materials in an ovine periacetabular defect model (Group 1: NanoBone® (artificial hydroxyapatite-silicate composite; Artoss GmbH, Germany); Group 2: autologous sheep cancellous bone; Group 3: Tutoplast® (processed allogeneic sheep cancellous bone; Tutogen Medical GmbH, Germany)) and bridged with an acetabular reinforcement ring of the Ganz type. Eight months after implantation, a μ-CT examination (n = 8 animals per group) was performed. A μ-CT analysis of the contralateral acetabula (n = 8, randomly selected from all three groups) served as the control group. In a defined volume of interest (VOI), bone volume (BV), mineral volume (MV), and bone substitute volume (BSV), as well as the bone surface (BS) relative to the total volume (TV) and the surface-to-volume ratio (BS/BV), were determined. To assess the bony microarchitecture, trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N), as well as connectivity density (Conn.D), the degree of anisotropy (DA), and the structure model index (SMI), were evaluated. The highest BV was observed for NanoBone® (Group 1), which also showed the highest proportion of residual bone substitute material in the defect. This resulted in a significant increase in BV/TV with a significant decrease in BS/BV. The assessment of the microstructure for Groups 2 and 3 compared to Group 1 showed a clear approximation of Tb.Th, Tb.Sp, Tb.N, and Conn.D to the microstructure of the control group. The SMI showed a significant decrease in Group 1. All materials demonstrated their suitability by supporting biological defect reconstruction. NanoBone® showed the highest rate of new bone formation; however, the microarchitecture indicated more advanced bone remodeling and an approximate restoration of the trabecular structure for both autologous and allogeneic Tutoplast® cancellous bone when using the impaction bone grafting technique. Full article
Show Figures

Figure 1

19 pages, 3495 KiB  
Article
Experimental Investigation on Thermal Performance Optimization of Na2HPO4·12H2O-Based Gel Phase Change Materials for Solar Greenhouse
by Wenhe Liu, Gui Liu, Wenlu Shi, Xinyang Tang, Xuhui Wu, Jiayang Wu, Zhanyang Xu, Feng Zhang and Mengmeng Yang
Gels 2025, 11(6), 434; https://doi.org/10.3390/gels11060434 - 5 Jun 2025
Viewed by 1097
Abstract
The content of modified materials in multicomponent gel phase change materials directly affects their performance characteristics. To investigate the influence of different contents of modified materials on the performance features of Na2HPO4·12H2O-based multicomponent Gel Phase Change Materials, [...] Read more.
The content of modified materials in multicomponent gel phase change materials directly affects their performance characteristics. To investigate the influence of different contents of modified materials on the performance features of Na2HPO4·12H2O-based multicomponent Gel Phase Change Materials, four single factors (Na2SiO3·9H2O, C35H49O29, KCl, and nano-α-Fe2O3) and their interactions were selected as influencing factors. Using the Taguchi method with an L27(313) orthogonal array, multi-step melt–blending experiments were conducted to prepare a novel multi-component phase change material. The characteristics of the new multi-component phase change material, including supercooling degree (ΔT), phase change temperature (Tm), latent heat of phase change (ΔHm), and cooling time (CT), were obtained. In addition, characterization techniques such as DSC, SEM, FT-IR, and XRD were employed to analyze its thermal properties, microscopic morphology, chemical stability, and crystal structure. Based on the experimental results, the signal-to-noise ratio (S/N) was used to rank the influence of each factor on the quality characteristics, and the p-value from analysis of variance (ANOVA) was employed to evaluate the significance of each factor on the performance characteristics. Then, the effects of each significant factor on the characteristics of the multiple gel phase change materials were analyzed in detail, and the optimal mixing ratio of the new multiple gel phase change materials was selected. The results showed that Na2SiO3·9H2O, KCl, and α-Fe2O3 were the most critical process parameters. This research work enriches the selection of composite gel phase change materials for solar greenhouses and provides guidance for the selection of different modified material contents using Na2HPO4·12H2O as the starting material. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Figure 1

18 pages, 11860 KiB  
Article
Composite Treatment of Mortar Through Nano-Ion-Based Capillary Crystalline and Silane Hydrophobic Processing to Enhance Its Corrosion Resistance in the Cl-Contained Environment
by Quan Hua, Changyun Wu, Yangshun Zhu, Haoyu Wang, Guowei Wang, Shuguang Zhang and Dan Song
Coatings 2025, 15(3), 278; https://doi.org/10.3390/coatings15030278 - 26 Feb 2025
Viewed by 843
Abstract
The inherent porous structure of concrete enables the penetration of water and Cl ions through its pores, which eventually leads to rebar corrosion within the concrete. Consequently, the densification and impermeability of concrete protective layers play a critical role in the durability [...] Read more.
The inherent porous structure of concrete enables the penetration of water and Cl ions through its pores, which eventually leads to rebar corrosion within the concrete. Consequently, the densification and impermeability of concrete protective layers play a critical role in the durability of reinforced concrete structures. This study proposes a composite anti-corrosion treatment for mortar protective layers by integrating nano-ion capillary crystalline with silane hydrophobic processing. Targeting existing mortar samples, a series of experiments were conducted, utilizing scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential scanning calorimetry-thermogravimetry (DSC-TG), X-ray computed tomography (X-CT), contact angle measurements, permeability tests, and electrochemical tests. These experiments systematically evaluated the effects of composite anti-corrosion treatment on the microstructure of hydration products, pore characteristics, surface hydrophobicity, impermeability, and the overall corrosion resistance of mortar-rebar samples in a Cl-contained environment. The results reveal that nano-ion capillary crystalline materials react with free calcium ions in the mortar to produce secondary hydration products, effectively filling micro-pores, densifying the pore structure and inhibiting the invasion of Cl ions. The combination of capillary crystalline and silane hydrophobic processing synergistically enhances surface hydrophobicity and impermeability, preventing the ingress of corrosive agents, such as Cl ions, and significantly improving the anti-corrosion performance of mortar in a Cl-contained environment. Full article
(This article belongs to the Special Issue Superhydrophobic Coatings, 2nd Edition)
Show Figures

Figure 1

18 pages, 9717 KiB  
Article
Lithofacies Characteristics of the Lower Cretaceous Qing 1 Member in the Heiyupao Depression, Northern Binbei Area of the Songliao Basin
by Yali Liu, Wangpeng Li, Jiapeng Yuan, Pei Li, Xun Ge, Xiaotong Ge, Pengfei Liu, Haiguang Wu, Xuntao Yu and Botao Huang
Minerals 2025, 15(2), 125; https://doi.org/10.3390/min15020125 - 27 Jan 2025
Viewed by 787
Abstract
Strategic breakthroughs have been made in the exploration and evaluation of Gulong shale oil in the Songliao Basin. However, the Heiyupao Depression, located near the Gulong Depression, hosts a thick section of the Qingshankou Formation shale that has not been extensively studied. This [...] Read more.
Strategic breakthroughs have been made in the exploration and evaluation of Gulong shale oil in the Songliao Basin. However, the Heiyupao Depression, located near the Gulong Depression, hosts a thick section of the Qingshankou Formation shale that has not been extensively studied. This paper presents novel insights into the lithofacies characteristics, depositional environment, and reservoir features of the Qingshankou Formation shale in the Heiyupao Depression, with a specific focus on the origin and maturation of organic-rich shale. Four core wells were drilled, and 152 core samples were analyzed through a variety of techniques, including rock type classification, mineral composition, TOC content, rare earth elements, rock pyrolysis, organic matter type determination, and CT scanning. Results indicate that the Qingshankou shale is dominated by felsic compositions and Type I kerogen, with organic maturity varying across the section. Based on lithology, sedimentary structures, mineralogy, and organic matter abundance, five distinct lithofacies are identified: high-organic mud-rich felsic shale, high-organic sand-rich felsic shale, medium-organic sand-rich felsic shale, medium-organic massive shale, and low-organic sand-rich felsic shale. Notably, the Type A lithofacies (high-organic mud-rich felsic shale) is identified as a primary source rock due to its intergranular and organic matter pores, albeit with low porosity and poor connectivity. In contrast, the Type E lithofacies (low-organic sand-rich felsic shale) have high porosity, well-developed micro- and nano-scale pores, and strong connectivity, marking them as the primary reservoirs. The characteristics of this region differ significantly from those of Gulong shale oil, requiring different extraction strategies. The mineral composition of such shale is predominantly felsic rather than mixed. The findings not only provide theoretical support for the exploration of complex lacustrine shale in the Songliao Basin but also offer valuable insights for the resource development of similar non-marine shale systems worldwide. Full article
Show Figures

Figure 1

24 pages, 11270 KiB  
Article
Edible Coatings Enhance Storability and Preserve Quality of Kiwiberry (Actinidia arguta L.) cv. Ken’s Red
by Adriana C. Guerreiro, Custódia Gago, Dário Passos, Jaime Martins, Sandra Cruz, Fernão Veloso, Rui Guerra and Maria D. Antunes
Horticulturae 2025, 11(1), 105; https://doi.org/10.3390/horticulturae11010105 - 19 Jan 2025
Viewed by 1672
Abstract
Kiwiberries, an emerging fruit variety with increasing consumer demand, face significant commercialization challenges due to their short shelf life. This study evaluates the effectiveness of edible alginate-based coatings in extending the shelf life of kiwiberries. Two emulsion types—coarse (Coarse) and nanoemulsions (Nano)—and two [...] Read more.
Kiwiberries, an emerging fruit variety with increasing consumer demand, face significant commercialization challenges due to their short shelf life. This study evaluates the effectiveness of edible alginate-based coatings in extending the shelf life of kiwiberries. Two emulsion types—coarse (Coarse) and nanoemulsions (Nano)—and two application methods—spraying (Spray) and dipping (Dip)—were tested. Additionally, the use of visible/near-infrared (Vis-NIR) spectroscopy for non-destructive quality monitoring was explored. Coatings were prepared with 2% (w/v) alginate (SAlg) enriched with eugenol (Eg) and citral (Ct) at their minimum inhibitory concentrations (MICs) of 0.10% and 0.15%, respectively, as well as at double these concentrations. This resulted in a total of ten different treatments. The fruits were stored at approximately 5 °C, with evaluations conducted after 5 days, 2 weeks, and 4 weeks. Quality parameters, including color, firmness, soluble solid content (SSC), dry matter, weight loss, decay, total phenolic content (TPC), flavonoids, DPPH, FRAP, and malondialdehyde (MDA) levels, were analyzed. Over the storage period, color and SSC increased, while firmness decreased. Weight loss and MDA levels showed the most significant changes, particularly in treatments with higher essential oil concentrations. Notably, treatments such as SAlg Spray, SAlg Dip, SAlg Ct 0.15 + Eg 0.1 Nano Spray, SAlg Ct 0.15 + Eg 0.1 Nano Dip, and SAlg Ct 0.15 + Eg 0.1 Coarse Dip demonstrated superior preservation of kiwiberry quality. Moreover, Vis-NIR spectroscopy proved valuable for distinguishing between coating treatments, highlighting its potential for non-destructive quality assessment. Full article
Show Figures

Figure 1

20 pages, 6129 KiB  
Article
Optimized YOLOv5 Architecture for Superior Kidney Stone Detection in CT Scans
by Khasanov Asliddin Abdimurotovich and Young-Im Cho
Electronics 2024, 13(22), 4418; https://doi.org/10.3390/electronics13224418 - 11 Nov 2024
Cited by 1 | Viewed by 2453
Abstract
The early and accurate detection of kidney stones is crucial for effective treatment and improved patient outcomes. This paper proposes a novel modification of the YOLOv5 model, specifically tailored for detecting kidney stones in CT images. Our approach integrates the squeeze-and-excitation (SE) block [...] Read more.
The early and accurate detection of kidney stones is crucial for effective treatment and improved patient outcomes. This paper proposes a novel modification of the YOLOv5 model, specifically tailored for detecting kidney stones in CT images. Our approach integrates the squeeze-and-excitation (SE) block within the C3 block of the YOLOv5m architecture, thereby enhancing the ability of the model to recalibrate channel-wise dependencies and capture intricate feature relationships. This modification leads to significant improvements in the detection accuracy and reliability. Extensive experiments were conducted to evaluate the performance of the proposed model against standard YOLOv5 variants (nano-sized, small, and medium-sized). The results demonstrate that our model achieves superior performance metrics, including higher precision, recall, and mean average precision (mAP), while maintaining a balanced inference speed and model size suitable for real-time applications. The proposed methodology incorporates advanced noise reduction and data augmentation techniques to ensure the preservation of critical features and enhance the robustness of the training dataset. Additionally, a novel color-coding scheme for bounding boxes improves the clarity and differentiation of the detected stones, facilitating better analysis and understanding of the detection results. Our comprehensive evaluation using essential metrics, such as precision, recall, mAP, and intersection over union (IoU), underscores the efficacy of the proposed model for detecting kidney stones. The modified YOLOv5 model offers a robust, accurate, and efficient solution for medical imaging applications and represents a significant advancement in computer-aided diagnosis and kidney stone detection. Full article
Show Figures

Figure 1

19 pages, 977 KiB  
Review
In Vitro Research Methods Used to Evaluate Shaping Ability of Rotary Endodontic Files—A Literature Review
by Ranya F. Elemam, Ana Mano Azul, João Dias, Khaled El Sahli and Renato de Toledo Leonardo
Dent. J. 2024, 12(10), 334; https://doi.org/10.3390/dj12100334 - 21 Oct 2024
Cited by 2 | Viewed by 1864
Abstract
Background/Objectives: In this article, we present a literature review of methods used to measure the shaping ability of endodontic rotary files, including the selection of endodontic sample type (extracted teeth versus simulated blocks) and an imaging evaluation method. This review was conducted as [...] Read more.
Background/Objectives: In this article, we present a literature review of methods used to measure the shaping ability of endodontic rotary files, including the selection of endodontic sample type (extracted teeth versus simulated blocks) and an imaging evaluation method. This review was conducted as background research to identify concerns that arise when designing research studies in this domain and propose how the field can plan more systematic studies going forward. Methods: A literature search was conducted using PubMed, MEDLINE, Embase, ScienceDirect, Scopus, and e B-on databases, including studies published in English from January 2010 to June 2024. Only studies that specified in vitro or ex vivo methods for evaluating the endodontic performance of NiTi rotary files on canal transportation and centering ability were considered. Results: A total of 86 studies met the inclusion criteria from an initial pool of 651. Of these, 67 studies used extracted teeth, while 20 utilized simulated root canals in resin blocks. For evaluation methods, 55 studies employed Micro-Computed Tomography and Cone-Beam Computed Tomography (MCT + CBCT), 30 used Double Digital Images/Radiographs/Photographs (DDIR + DDIP) with software analysis, 1 used both DDIR and MCT, 1 used high-precision nano-CT, and 1 used a digital single-lens reflex (DSLR) camera. Conclusions: The findings indicate that the MCT method and its advanced variations appear superior in many cases for evaluating the quality of root canal instrumentation due to their ability to provide detailed three-dimensional images. We also discuss the pros and cons of other evaluation methods, including CBCT and DDIR. Finally, we identify important factors to consider for optimizing future cross-study comparisons. This work highlights the importance of being familiar with shaping ability assessment methods as new instruments are introduced to the market. Full article
(This article belongs to the Section Restorative Dentistry and Traumatology)
Show Figures

Figure 1

23 pages, 6663 KiB  
Article
Micro–Nano 3D CT Scanning to Assess the Impact of Microparameters of Volcanic Reservoirs on Gas Migration
by Xiangwei Gao, Yunliang Yu, Zhongjie Xu and Yingchun Liu
Processes 2024, 12(9), 2000; https://doi.org/10.3390/pr12092000 - 17 Sep 2024
Viewed by 1171
Abstract
Volcanic rock reservoirs for oil and gas are known worldwide for their considerable heterogeneity. Micropores and fractures play vital roles in the storage and transportation of natural gas. Samples from volcanic reservoirs in Songliao Basin, CS1 and W21, belonging to the Changling fault [...] Read more.
Volcanic rock reservoirs for oil and gas are known worldwide for their considerable heterogeneity. Micropores and fractures play vital roles in the storage and transportation of natural gas. Samples from volcanic reservoirs in Songliao Basin, CS1 and W21, belonging to the Changling fault depression and the Wangfu fault depression, respectively, have similar lithology. This study employs micro–nano CT scanning technology to systematically identify the key parameters and transport capacities of natural gas within volcanic reservoirs. Using Avizo 2020.1software, a 3D digital representation of rock core was reconstructed to model pore distribution, connectivity, pore–throat networks, and fractures. These models are then analyzed to evaluate pore/throat structures and fractures alongside microscopic parameters. The relationship between micropore–throat structure parameters and permeability was investigated by microscale gas flow simulations and Pearson correlation analyses. The results showed that the CS1 sample significantly exceeded the W21 sample in terms of pore connectivity and permeability, with connected pore volume, throat count, and specific surface area being more than double that of the W21 sample. Pore–throat parameters are decisive for natural gas storage and transport. Additionally, based on seepage simulation and the pore–throat model, the specific influence of pore–throat structure parameters on permeability in volcanic reservoirs was quantified. In areas with well–developed fractures, gas seepage pathways mainly follow fractures, significantly improving gas flow efficiency. In areas with fewer fractures, throat radius has the most significant impact on permeability, followed by pore radius and throat length. Full article
Show Figures

Figure 1

17 pages, 6415 KiB  
Article
Impact of Pore Structure on Seepage Capacity in Tight Reservoir Intervals in Shahejie Formation, Bohai Bay Basin
by Shaogong Zhu, Yudong Cao, Qiangtai Huang, Haotong Yu, Weiyan Chen, Yujie Zhong and Wenchao Chen
J. Mar. Sci. Eng. 2024, 12(9), 1496; https://doi.org/10.3390/jmse12091496 - 29 Aug 2024
Cited by 2 | Viewed by 1100
Abstract
The exploration and development of conventional oil and gas resources are becoming more difficult, and the proportion of low-permeability reservoirs in newly discovered reservoir resources has expanded to 45%. As the main focus of the oil industry, the global average recovery rate of [...] Read more.
The exploration and development of conventional oil and gas resources are becoming more difficult, and the proportion of low-permeability reservoirs in newly discovered reservoir resources has expanded to 45%. As the main focus of the oil industry, the global average recovery rate of low-permeability reservoir resources is only 20%, and most crude oil is still unavailable, so our understanding of such reservoirs needs to be deepened. The microscopic pore structure of low-permeability reservoir rocks exhibits significant complexity and variability; reservoir evaluation is more difficult. For elucidating the internal distribution of storage space and the mechanisms influencing seepage, we focus on the low-permeability sandstone reservoir of the Shahejie Formation, located on the northern slope of the Chenjiazhuang uplift, Bohai Bay. Employing a suite of advanced analytical techniques, including helium expansion, pressure pulse, high-pressure mercury intrusion (HPMI), and micro-computed tomography (micro-CT) scanning, we examined the main pore–throat size affecting reservoir storage and seepage in the reservoir at both the micrometer and nanometer scales. The results reveal that pores with diameters exceeding 40 μm are sparsely developed within the low-permeability reservoir rocks of the study area. However, pores ranging from 0 to 20 μm predominate, exhibiting an uneven distribution and a clustered structure in the three-dimensional pore structure model. The pore volume showed a unimodal and bimodal distribution, thus significantly contributing to the storage space. The main sizes of the reservoir in this study area are 40–80 μm and 200–400 μm. Micron-sized pores, while present, are not the primary determinants of the reservoir’s seepage capacity. Instead, coarser submicron and nano-pores exert a more substantial influence on the permeability of the rock. Additionally, the presence of micro-fractures is found to enhance the reservoir’s seepage capacity markedly. The critical pore–throat size range impacting the permeability of the reservoir in the study area is identified to be between 0.025 and 0.4 μm. Full article
Show Figures

Figure 1

13 pages, 8233 KiB  
Article
Surgery Combined with Local Implantation of Doxorubicin-Functionalized Hydroxyapatite Halts Tumor Growth and Prevents Bone Destruction in an Aggressive Osteosarcoma
by Yang Liu, Tova Corbascio, Jintian Huang, Jacob Engellau, Lars Lidgren, Magnus Tägil and Deepak Bushan Raina
J. Funct. Biomater. 2024, 15(8), 232; https://doi.org/10.3390/jfb15080232 - 19 Aug 2024
Viewed by 1392
Abstract
Osteosarcoma treatment comprises pre-surgical chemotherapy followed by radical surgery and further chemotherapy cycles, but the prognosis has been far from satisfactory. No new drugs or treatment modalities have been developed for clinical use in the last four decades. We describe a nano-hydroxyapatite (HA)-based [...] Read more.
Osteosarcoma treatment comprises pre-surgical chemotherapy followed by radical surgery and further chemotherapy cycles, but the prognosis has been far from satisfactory. No new drugs or treatment modalities have been developed for clinical use in the last four decades. We describe a nano-hydroxyapatite (HA)-based local drug delivery platform for the delivery of doxorubicin (DOX), a cornerstone drug in osteosarcoma treatment. The efficacy of the developed drug delivery system was evaluated in an orthotopic human osteosarcoma xenograft in the proximal tibia of mice. After tumor development, the tumor was surgically resected and the void filled with the following: (1) No treatment (G1); (2) nHA only (G2); (3) DOX-loaded nHA (G3). In-vivo tumor response was assessed by evaluating the tumor-induced osteolysis at 2 weeks using micro-CT followed by in-vivo PET-CT at 3 weeks and ex-vivo micro-CT and histology. Micro-CT imaging revealed complete destruction of the tibial metaphysis in groups G1 and G2, while the metaphysis was protected from osteolysis in G3. PET-CT imaging using 18F-FDG revealed high metabolic activity in the tumors in G1 and G2, which was significantly reduced in G3. Using histology, we were able to verify that local DOX delivery reduced the bone destruction and the tumor burden compared with G1 and G2. No off-target toxicity in the vital organs could be observed in any of the treatment groups histologically. This study describes a novel local drug adjuvant delivery approach that could potentially improve the prognosis for patients responding poorly to the current osteosarcoma treatment. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Figure 1

16 pages, 5165 KiB  
Article
Experimental Study and Mechanism Analysis of Paraffin/Sisal Composite Phase Change Energy Storage Fiber Prepared by Vacuum Adsorption Method
by Chun Chen, Qi Fu, Ruilin Cao, Zhenzhong Chen, Zedi Zhang, Kailun Xia, Nanqiao You, Yifan Jiang and Yamei Zhang
Materials 2024, 17(2), 467; https://doi.org/10.3390/ma17020467 - 18 Jan 2024
Cited by 2 | Viewed by 1650
Abstract
Sisal fiber exhibits a fibrous and porous structure with significant surface roughness, making it highly suitable for storing phase change materials (PCMs). Its intricate morphology further aids in mitigating the risk of PCM leakage. This research successfully employs vacuum adsorption to encapsulate paraffin [...] Read more.
Sisal fiber exhibits a fibrous and porous structure with significant surface roughness, making it highly suitable for storing phase change materials (PCMs). Its intricate morphology further aids in mitigating the risk of PCM leakage. This research successfully employs vacuum adsorption to encapsulate paraffin within sisal fiber, yielding a potentially cost-effective, durable, and environmentally friendly phase change energy storage medium. A systematic investigation was carried out to evaluate the effects of sisal-to-paraffin mass ratio, fiber length, vacuum level, and negative pressure duration on the loading rate of paraffin. The experimental results demonstrate that a paraffin loading rate of 8 wt% can be achieved by subjecting a 3 mm sisal fiber to vacuum adsorption with 16 wt% paraffin for 1 h at −0.1 MPa. Through the utilization of nano-CT imaging enhancement technology, along with petrographic microscopy, this study elucidates the mechanism underlying paraffin storage within sisal fiber during vacuum adsorption. The observations reveal that a substantial portion of paraffin is primarily stored within the pores of the fiber, while a smaller quantity is firmly adsorbed onto its surface, thus yielding a durable phase change energy storage medium. The research findings contribute to both the theoretical foundations and the available practical guidance for the fabrication and implementation of paraffin/sisal fiber composite phase change energy storage mediums. Full article
Show Figures

Figure 1

13 pages, 6510 KiB  
Article
Using Functionalized Micron-Sized Glass Fibres for the Synergistic Effect of Glass Ionomer on Luting Material
by Hanan Alsunbul, Aftab Ahmed Khan, Yasser M. Alqahtani, Saeed Awod bin Hassan, Waleed Asiri, Selma Saadaldin, Rasha Alharthi and Alhanoof Aldegheishem
J. Funct. Biomater. 2023, 14(11), 550; https://doi.org/10.3390/jfb14110550 - 16 Nov 2023
Cited by 6 | Viewed by 1846
Abstract
This laboratory experiment was conducted with the objective of augmenting the mechanical properties of glass ionomer cement (GIC) via altering the composition of GIC luting powder through the introduction of micron-sized silanized glass fibres (GFs). Experimental GICs were prepared through the addition of [...] Read more.
This laboratory experiment was conducted with the objective of augmenting the mechanical properties of glass ionomer cement (GIC) via altering the composition of GIC luting powder through the introduction of micron-sized silanized glass fibres (GFs). Experimental GICs were prepared through the addition of two concentrations of GFs (0.5% and 1.0% by weight) to the powder of commercially available GIC luting materials. The effect of GF in set GIC was internally evaluated using micro-CT while the mechanical attributes such as nano hardness (nH), elastic modulus (EM), compressive strength (CS), and diametral tensile strength (DTS) were gauged. Additionally, the physical properties such as water solubility and sorption, contact angle (CA), and film thickness were evaluated. Reinforced Ketac Cem Radiopaque (KCR) GIC with 0.5 wt.% GF achieved improved nH, EM, CS, and DTS without affecting the film thickness, CA or internal porosity of the set GIC cement. In contrast, both GF-GIC formulations of Medicem (MC) GIC showed the detrimental effect of the GF incorporation. Reinforcing KCR GIC with 0.5 wt.% silanized GFs could improve the physical and mechanical attributes of luting material. Silanized GF, with optimal concentration within the GIC powder, can be used as a functional additive in KCR GIC with promising results. Full article
Show Figures

Figure 1

16 pages, 7323 KiB  
Article
A New Multi-Scale Method to Evaluate the Porosity and MICP Curve for Digital Rock of Complex Reservoir
by Ting Xiong, Ming Chen, Yuan Jin, Wei Zhang, Haipeng Shao, Guanqun Wang, Ethan Long and Wei Long
Energies 2023, 16(22), 7613; https://doi.org/10.3390/en16227613 - 16 Nov 2023
Cited by 5 | Viewed by 1865
Abstract
The evaluation of rock porosity and the mercury injection capillary pressure (MICP) curve is fundamental for oil and gas exploration and production. Digital rock (DR) technology, incorporating 3D micro-CT imaging and numerical methods, has been widely employed to predict these properties. However, analyzing [...] Read more.
The evaluation of rock porosity and the mercury injection capillary pressure (MICP) curve is fundamental for oil and gas exploration and production. Digital rock (DR) technology, incorporating 3D micro-CT imaging and numerical methods, has been widely employed to predict these properties. However, analyzing the pore structure of heterogeneous rocks, such as fractured rocks or glutenite, solely through single-scale DR analysis poses challenges. Existing upscaling methods have limitations in fully representing the complete range of pore structures at different scales, with limited comparison to experimental data. To address this, we propose a novel method that upscales porosity and simulates the MICP curve from nano-scale to core scale by merging results from micro-CT (at resolutions of 35 μm and 2 μm) and SEM (at resolutions of 6.5 nm and 65 nm). We validate the developed DR model by applying it to sandstones, glutenite, and igneous rocks, and achieve excellent agreement between the experimental data and the multi-scale DR model across 67 samples. The results demonstrate that the multi-scale model effectively captures the porosity and pore structures across the entire range. In contrast, the single digital rock (DR) model underestimates the porosity measurements for both homogeneous sandstones and heterogeneous cores. While the MICP model based on a single DR proves suitable for homogeneous rock samples, it introduces noticeable discrepancies when applied to heterogeneous rock samples. The developed multi-scale method significantly enhances the confidence in using DR to assess the pore structure of complex rocks. Full article
Show Figures

Figure 1

Back to TopTop