Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = n-methyl-morpholine-n-oxide (NMMO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2084 KiB  
Article
Recycling of PAN Waste into Nonwoven Materials Using Electrospinning Method
by Yaroslav V. Golubev, Igor S. Makarov, Denis N. Karimov, Natalia A. Arkharova, Radmir V. Gainutdinov, Sergey A. Legkov and Sergey V. Kotomin
Fibers 2025, 13(8), 102; https://doi.org/10.3390/fib13080102 - 30 Jul 2025
Viewed by 223
Abstract
For the first time, electrospinning has been used to recycle polyacrylonitrile terpolymer (PAN) waste following the solid-phase N-methylmorpholine-N-oxide (NMMO) process from PAN solutions in DMSO into nonwoven materials. The morphology of the obtained material has been studied. The material derived from secondary raw [...] Read more.
For the first time, electrospinning has been used to recycle polyacrylonitrile terpolymer (PAN) waste following the solid-phase N-methylmorpholine-N-oxide (NMMO) process from PAN solutions in DMSO into nonwoven materials. The morphology of the obtained material has been studied. The material derived from secondary raw materials was compared to the material from the original PAN using IR spectroscopy, X-ray diffraction, scanning electron microscopy, and atomic force microscopy. It has been demonstrated that the chemical changes of PAN that occur during NMMO processing do not interfere with nonwoven material manufacture. Spun PAN nonwovens with different histories have similar morphology. It has been shown that the elastic modulus of ultrafine fibers depends on the history of PAN. Single monofilaments produced from initial PAN have a threefold greater elastic modulus than fibers spun from NMMO-recycled polymer. The revealed structure and properties of PAN fibers allow them to be considered as filter materials, as well as precursors of carbon nonwoven fabrics. Full article
Show Figures

Graphical abstract

17 pages, 11439 KiB  
Article
Low-Alpha-Cellulose-Based Membranes
by Igor Makarov, Gulbarshin Shambilova, Aigul Bukanova, Fazilat Kairliyeva, Saule Bukanova, Zhanar Kadasheva, Radmir Gainutdinov, Alexander Koksharov, Ivan Komarov, Junlong Song, Sergey Legkov and Alexandra Nebesskaya
Polymers 2025, 17(5), 598; https://doi.org/10.3390/polym17050598 - 24 Feb 2025
Viewed by 810
Abstract
Depending on the method of cellulose production, the proportion of alpha fraction in it can vary significantly. Paper pulp, unlike dissolving cellulose, has an alpha proportion of less than 90%. The presence of cellulose satellites in the system does not impede the formation [...] Read more.
Depending on the method of cellulose production, the proportion of alpha fraction in it can vary significantly. Paper pulp, unlike dissolving cellulose, has an alpha proportion of less than 90%. The presence of cellulose satellites in the system does not impede the formation of concentrated solutions of N-methylmorpholine-N-oxide (NMMO). In the current study, spinning solutions based on cellulose with a low alpha fraction (up to 90%) (pulp cellulose) are investigated. The morphological features and rheological behavior of such solutions are examined. It is suggested to roll the obtained solutions in order to obtain cellulose membranes. X-ray diffraction, IR spectroscopy, AFM and SEM were used to investigate the resulting structure and morphology of the obtained membranes. It is shown that the degree of crystallinity for the membranes varies based on the impurity content in the sample. The morphology of the films is characterized by a dense texture and the absence of vacuoles. The highest strength and elastic modulus were found for membranes made of bleached hardwood sulfate cellulose, 5.7 MPa and 6.4 GPa, respectively. The maximum values of the contact angle (48°) were found for films with a higher proportion of lignin. The presence of lignin in the membranes leads to an increase in rejection for the anionic dyes Orange II and Remazol Brilliant Blue R. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

21 pages, 3266 KiB  
Review
Recovery of N-Methylmorpholine N-Oxide (NMMO) in Lyocell Fibre Manufacturing Process
by Maria Sawiak, Bernardo A. Souto, Lelia Lawson, Joy Lo and Patricia I. Dolez
Fibers 2025, 13(1), 3; https://doi.org/10.3390/fib13010003 - 6 Jan 2025
Cited by 2 | Viewed by 3741
Abstract
The lyocell process offers an environmentally friendly strategy to produce regenerated cellulose fibre from biomass. However, it is critical to recover and reuse the N-methyl-morpholine-N-oxide (NMMO) solvent to maximize the environmental benefits and lower the cost. This article reviews NMMO [...] Read more.
The lyocell process offers an environmentally friendly strategy to produce regenerated cellulose fibre from biomass. However, it is critical to recover and reuse the N-methyl-morpholine-N-oxide (NMMO) solvent to maximize the environmental benefits and lower the cost. This article reviews NMMO recovery and characterization techniques at the lab and industrial scales, and methods to limit the NMMO degradation during the process. The article also presents the results of a pilot study investigating the recovery of NMMO from lyocell manmade cellulosic fibre (L-MMCF) manufacturing wastewater. The work described includes the development of a calibration curve for the determination of NMMO content in aqueous solutions using Fourier Transform Infrared Spectroscopy (FTIR). Successful NMMO recovery from the wastewater was achieved using a rotary evaporator: the final NMMO concentration was 50, i.e., ready for use in the lyocell process, and no NMMO degradation was observed. The knowledge in this paper will support advances in L-MMCF manufacturing and the reduction in textile environmental footprint. Full article
Show Figures

Figure 1

12 pages, 5229 KiB  
Article
Study of Mesoporous Zr-TiO2 Catalyst with Rich Oxygen Vacancies for N-Methylmorpholine Oxidation to N-Methylmorpholine-N-oxide
by Yongwei Li, Zhihao Fang, Lijuan Feng, Fangfang Liu, Yucui Shi, Jiao Li and Chao Zhao
Molecules 2024, 29(16), 3812; https://doi.org/10.3390/molecules29163812 - 11 Aug 2024
Cited by 2 | Viewed by 1345
Abstract
A series of Zr-TiO2 catalysts were prepared using a facile sol-gel method and were used for N-methylmorpholine (NMM) oxidation to N-methylmorpholine-N-oxide (NMMO). The structure features of Zr-TiO2 catalysts were studied in detail through a variety of characterization methods, such as XRD, [...] Read more.
A series of Zr-TiO2 catalysts were prepared using a facile sol-gel method and were used for N-methylmorpholine (NMM) oxidation to N-methylmorpholine-N-oxide (NMMO). The structure features of Zr-TiO2 catalysts were studied in detail through a variety of characterization methods, such as XRD, SEM, N2 adsorption-desorption isotherms, XPS, EPR, and O2-TPD. As-obtained 5%Zr-TiO2 catalysts had superior catalytic performance and stability with a 97.6% NMMO yield at 40 °C, which related to Zr doping, a higher surface area, more oxygen vacancies, and oxygen chemisorption on the catalytic surface. This work provides an efficient preparation strategy of TiO2-based catalysts for selective oxidation reactions by a facile method. Full article
Show Figures

Graphical abstract

16 pages, 7524 KiB  
Article
Development of Cellulose Microfibers from Mixed Solutions of PAN-Cellulose in N-Methylmorpholine-N-Oxide
by Igor Makarov, Markel Vinogradov, Yaroslav Golubev, Ekaterina Palchikova, Yuriy Kulanchikov and Timofey Grishin
Polymers 2024, 16(13), 1869; https://doi.org/10.3390/polym16131869 - 30 Jun 2024
Cited by 3 | Viewed by 1398
Abstract
Mixed solutions of PAN with cellulose in N-methylmorpholine-N-oxide (NMMO) were prepared. Systems with a fraction of a dispersed phase of a cellulose solution in NMMO up to 40% are characterized by the formation of fibrillar morphology. The fibrils created as the mixed solution [...] Read more.
Mixed solutions of PAN with cellulose in N-methylmorpholine-N-oxide (NMMO) were prepared. Systems with a fraction of a dispersed phase of a cellulose solution in NMMO up to 40% are characterized by the formation of fibrillar morphology. The fibrils created as the mixed solution is forced through the capillary take on a more regular order as the cellulose content in the system drops. The systems’ morphology is considered to range from a heterogeneous two-phase solution to regular fibrils. The generated morphology, in which the cellulose fibrils are encircled by the PAN, can be fixed by spinning fibers. Cellulose fibrils have a diameter of no more than a few microns. The length of the fibrils is limited by the size of the fiber being formed. The process of selectively removing PAN was used to isolate the cellulose microfibrils. Several techniques were used to evaluate the mechanical properties of isolated cellulose microfibers. Atomic force microscopy allowed for the evaluation of the fiber stiffness and the creation of topographic maps of the fibers. Cellulose microfibers have a higher Young’s modulus (more than 30 GPa) than cellulose fibers formed in a comparable method, which affects the mechanical properties of composite fibers. Full article
(This article belongs to the Special Issue Natural Polymer Materials: Cellulose, Lignin and Chitosan)
Show Figures

Figure 1

12 pages, 3894 KiB  
Article
Three-Dimensional-Bioprinted Bioactive Glass/Cellulose Composite Scaffolds with Porous Structure towards Bone Tissue Engineering
by Lei Li, Pengfei Lu, Yuting Liu, Junhe Yang and Shengjuan Li
Polymers 2023, 15(9), 2226; https://doi.org/10.3390/polym15092226 - 8 May 2023
Cited by 14 | Viewed by 2597
Abstract
In this study, three-dimensional (3D) bioactive glass/lignocellulose (BG/cellulose) composite scaffolds were successfully fabricated by the 3D-bioprinting technique with N-methylmorpholine-N-oxide (NMMO) as the ink solvent. The physical structure, morphology, mechanical properties, hydroxyapatite growth and cell response to the prepared BG/cellulose scaffolds [...] Read more.
In this study, three-dimensional (3D) bioactive glass/lignocellulose (BG/cellulose) composite scaffolds were successfully fabricated by the 3D-bioprinting technique with N-methylmorpholine-N-oxide (NMMO) as the ink solvent. The physical structure, morphology, mechanical properties, hydroxyapatite growth and cell response to the prepared BG/cellulose scaffolds were investigated. Scanning electron microscopy (SEM) images showed that the BG/cellulose scaffolds had uniform macropores of less than 400 μm with very rough surfaces. Such BG/cellulose scaffolds have excellent mechanical performance to resist compressive force in comparison with pure cellulose scaffolds and satisfy the strength requirement of human trabecular bone (2–12 MPa). Furthermore, BG significantly increased the excellent hydroxyapatite-forming capability of the cellulose scaffolds as indicated by the mineralization of the scaffolds in simulated body fluid (SBF). The BG/cellulose scaffolds showed low cytotoxicity to human bone marrow mesenchymal stem cells (hBMSCs) in the CCK8 assay. The cell viability reached maximum (percent of the control group) when the weight ratio of cellulose to BG was 2 in the scaffold. Therefore, the 3D-printed BG/cellulose scaffolds show a potential application in the field of bone tissue engineering. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 1887 KiB  
Article
Experimental Study on the Manufacturing of Functional Paper with Modified by N-Methylmorpholine-N-oxide Surfaces
by Nikolay V. Khomutinnikov, Igor O. Govyazin, Gennady E. Ivanov, Elena M. Fedorova, Igor S. Makarov, Markel I. Vinogradov and Valery G. Kulichikhin
Polymers 2023, 15(3), 692; https://doi.org/10.3390/polym15030692 - 30 Jan 2023
Cited by 4 | Viewed by 2739
Abstract
The manufacturing of paper with new functional properties is a current problem today. A method of modifying the surface layer of paper by the partial dissolution of cellulose on its surface is proposed. N-Methylmorpholine-N-oxide (NMMO) is proposed for use as a solvent, the [...] Read more.
The manufacturing of paper with new functional properties is a current problem today. A method of modifying the surface layer of paper by the partial dissolution of cellulose on its surface is proposed. N-Methylmorpholine-N-oxide (NMMO) is proposed for use as a solvent, the regeneration of which provides an environmentally friendly process. It was shown that among the possible hydrate forms of the solvent, the monohydrate and higher-melting forms are optimal for modifying the paper surface. The temperature–time modes of processing were revealed and the weight gain and density increase in the course of modification were estimated. The structural and morphological features of the original and modified paper were studied by X-ray imaging and scanning microscopy. The NMMO surface treatment makes it possible to vary the air permeability of the paper, making it practically non-permeable. The capillary and pore system were radically transformed after the partial dissolution of cellulose and its coagulation, as the formed cellulose film isolates them, which leads to a decrease in surface absorbency. The processing conditions allowing for the optimization of the optical and strength properties of the modified paper samples are revealed. The resulting paper with a modified N-methylmorpholine-N-oxide surface layer can be used for printing valuable documents. Full article
(This article belongs to the Special Issue Improvement in Physical Properties of Paper and Natural Fibers)
Show Figures

Figure 1

13 pages, 2873 KiB  
Article
Physicochemical and Photocatalytic Properties of 3D-Printed TiO2/Chitin/Cellulose Composite with Ordered Porous Structures
by Lei Li, Jingdan Li, Hao Luo, Shengjuan Li and Junhe Yang
Polymers 2022, 14(24), 5435; https://doi.org/10.3390/polym14245435 - 12 Dec 2022
Cited by 5 | Viewed by 2613
Abstract
In this study, we printed three-dimensional (3D) titanium dioxide (TiO2)/chitin/cellulose composite photocatalysts with ordered interconnected porous structures. Chitin microparticles were mixed with cellulose in the N-methylmorpholine-N-oxide (NMMO) solution to prepare the printing “ink”. TiO2 nanoparticles were embedded on the chitin/cellulose [...] Read more.
In this study, we printed three-dimensional (3D) titanium dioxide (TiO2)/chitin/cellulose composite photocatalysts with ordered interconnected porous structures. Chitin microparticles were mixed with cellulose in the N-methylmorpholine-N-oxide (NMMO) solution to prepare the printing “ink”. TiO2 nanoparticles were embedded on the chitin/cellulose composite in the NMMO removal process by water before the freeze-drying process to build the 3D cellulosic photocatalysts with well-defined porous structures. The 3D-printed TiO2/chitin/cellulose composites were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Disperse Spectroscopy (EDS). The XRD and FTIR analyses showed that chitin had an interference effect on the crystal regeneration of cellulose and resulted in a large amount of amorphous phase. The SEM images show that the printed cellulosic strands had a hollow structure, and the EDS analysis showed that TiO2 nanoparticles were embedded on the chitin/cellulose composite surfaces. In the photocatalytic degradation process of methylene blue (MB) dye in an aqueous solution, the TiO2/chitin/cellulose 3D composite photocatalysts demonstrated efficient MB degradation activities with excellent reusability and stability, in which the chitin content performed the function of adjusting the MB degradation efficiency. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 2344 KiB  
Article
Design and Fabrication of Membranes Based on PAN Copolymer Obtained from Solutions in N-methylmorpholine-N-oxide
by Igor S. Makarov, Markel I. Vinogradov, Lyudmila K. Golova, Natalia A. Arkharova, Gulbarshin K. Shambilova, Valentina E. Makhatova and Meirbek Zh. Naukenov
Polymers 2022, 14(14), 2861; https://doi.org/10.3390/polym14142861 - 14 Jul 2022
Cited by 4 | Viewed by 2658
Abstract
An original method is proposed for preparing highly concentrated solutions of PAN copolymer in N-methylmorpholine-N-oxide (NMMO) and forming membranes for nanofiltration from these solutions. The high activity of the solvent with respect to the polymer provides short preparation time of [...] Read more.
An original method is proposed for preparing highly concentrated solutions of PAN copolymer in N-methylmorpholine-N-oxide (NMMO) and forming membranes for nanofiltration from these solutions. The high activity of the solvent with respect to the polymer provides short preparation time of spinning solutions in comparison with PAN solutions obtained in other solvents. The use of the rheological approach made it possible to find the optimal concentration for obtaining membranes. The formation of PAN membranes from the obtained solutions is proposed by the rolling method. The morphology of the formed membranes depends on the method of removing the precipitant from the sample. The features of the formed morphology of PAN membranes were studied by scanning electron microscopy. It was revealed that the use of water as a rigid precipitant leads to the formation of a homogeneous and symmetric morphology in the membrane. The average pore sizes in the membrane have been obtained by porosimetry. The study of the separating properties of PAN membranes revealed noteworthy values of the permeability and rejection for the anionic dyes Orange II and Remazol Brilliant Blue (74 and 97%, respectively). The mechanical properties of PAN membranes from solutions in NMMO are not inferior to analogs formed from commercially used direct solvents. Full article
(This article belongs to the Special Issue Polymer-Based Separation Membranes)
Show Figures

Graphical abstract

15 pages, 4650 KiB  
Article
Flax Noils as a Source of Cellulose for the Production of Lyocell Fibers
by Igor S. Makarov, Lyudmila K. Golova, Alexander G. Smyslov, Markel I. Vinogradov, Ekaterina E. Palchikova and Sergei A. Legkov
Fibers 2022, 10(5), 45; https://doi.org/10.3390/fib10050045 - 23 May 2022
Cited by 16 | Viewed by 5094
Abstract
The production of long flax fiber for the subsequent production of textile yarn is accompanied by the formation of a significant amount of waste—noils, which is a mechanical mixture of long and short flax fibers and shives. Comparative studies of the structure and [...] Read more.
The production of long flax fiber for the subsequent production of textile yarn is accompanied by the formation of a significant amount of waste—noils, which is a mechanical mixture of long and short flax fibers and shives. Comparative studies of the structure and chemical composition of the fibrous fraction of noils and shives were carried out using IR spectroscopy. The solubility of shives and flax noils in N-methylmorpholine-N-oxide (NMMO) was studied, a comparative analysis of the rheological behavior of solutions of flax and wood cellulose was carried out and the optimal temperature–concentration conditions for obtaining flax fibers from noils were determined. It was shown for the first time that using the method of solid-phase activation of the cellulose-solvent system makes it possible to obtain fibers in a short period of time (no more than 10 min). The structure of both the raw material and the resulting fibers was studied by X-ray diffraction analysis. The thermal properties of a new type of cellulose fibers was evaluated. The complex of the conducted studies allows us to consider flax fibers from noils along with flax fibers from long-staple flax, as a real alternative to fibers from wood pulp. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

13 pages, 19966 KiB  
Article
Structure, Morphology, and Permeability of Cellulose Films
by Igor S. Makarov, Lyudmila K. Golova, Galina N. Bondarenko, Tatyana S. Anokhina, Evgenia S. Dmitrieva, Ivan S. Levin, Valentina E. Makhatova, Nazym Zh. Galimova and Gulbarshin K. Shambilova
Membranes 2022, 12(3), 297; https://doi.org/10.3390/membranes12030297 - 4 Mar 2022
Cited by 25 | Viewed by 5498
Abstract
The work is focused on the study of the influence of the cellulose type and processing parameters on the structure, morphology, and permeability of cellulose films. The free volume of the cellulose films was evaluated by the sorption of n-decane, which is a [...] Read more.
The work is focused on the study of the influence of the cellulose type and processing parameters on the structure, morphology, and permeability of cellulose films. The free volume of the cellulose films was evaluated by the sorption of n-decane, which is a non-solvent for cellulose. The structural features of the membranes and their morphology were studied using X-ray diffraction, IR spectroscopy, SEM, and AFM methods. The characteristic features of the porous structure and properties of cellulose films regenerated from cellulose solutions in the N-methylmorpholine-N-oxide (NMMO) and cellophane films were compared. Generally, cellulose films obtained from solutions in NMMO have a higher permeability and a lower rejection (as measured using Orange II dye) as compared to cellophane films. It was also found that the cellulose films have a higher ultimate strength and modulus, whereas the cellophane films are characterized by higher elongation at break. Full article
Show Figures

Figure 1

38 pages, 13623 KiB  
Review
Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications
by Sanjit Acharya, Sumedha Liyanage, Prakash Parajuli, Shaida Sultana Rumi, Julia L. Shamshina and Noureddine Abidi
Polymers 2021, 13(24), 4344; https://doi.org/10.3390/polym13244344 - 12 Dec 2021
Cited by 135 | Viewed by 15530
Abstract
As the most abundant natural polymer, cellulose is a prime candidate for the preparation of both sustainable and economically viable polymeric products hitherto predominantly produced from oil-based synthetic polymers. However, the utilization of cellulose to its full potential is constrained by its recalcitrance [...] Read more.
As the most abundant natural polymer, cellulose is a prime candidate for the preparation of both sustainable and economically viable polymeric products hitherto predominantly produced from oil-based synthetic polymers. However, the utilization of cellulose to its full potential is constrained by its recalcitrance to chemical processing. Both fundamental and applied aspects of cellulose dissolution remain active areas of research and include mechanistic studies on solvent–cellulose interactions, the development of novel solvents and/or solvent systems, the optimization of dissolution conditions, and the preparation of various cellulose-based materials. In this review, we build on existing knowledge on cellulose dissolution, including the structural characteristics of the polymer that are important for dissolution (molecular weight, crystallinity, and effect of hydrophobic interactions), and evaluate widely used non-derivatizing solvents (sodium hydroxide (NaOH)-based systems, N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl), N-methylmorpholine-N-oxide (NMMO), and ionic liquids). We also cover the subsequent regeneration of cellulose solutions from these solvents into various architectures (fibers, films, membranes, beads, aerogels, and hydrogels) and review uses of these materials in specific applications, such as biomedical, sorption, and energy uses. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

20 pages, 2009 KiB  
Article
Optimisation of AgNP Synthesis in the Production and Modification of Antibacterial Cellulose Fibres
by Emilia Smiechowicz, Barbara Niekraszewicz and Piotr Kulpinski
Materials 2021, 14(15), 4126; https://doi.org/10.3390/ma14154126 - 24 Jul 2021
Cited by 13 | Viewed by 3419
Abstract
The main aim of the presented research is to determine the optimal conditions for the production of silver nanoparticles (AgNPs) in N-methylmorpholine-N-oxide (NMMO), which will potentially allow to obtain small nanoparticles with uniform diameter distribution. In this paper, NMMO is used in the [...] Read more.
The main aim of the presented research is to determine the optimal conditions for the production of silver nanoparticles (AgNPs) in N-methylmorpholine-N-oxide (NMMO), which will potentially allow to obtain small nanoparticles with uniform diameter distribution. In this paper, NMMO is used in the fibre production process, both as a direct cellulose solvent and as an Ag+ reducing system. From an industrial point of view, this method is very promising because it allows to reduce the amount of used chemicals. The UV/Vis, DLS and TEM analysis proved that the synthesis temperature and time could play a key role in nanoparticle growth control in NMMO. It was found that the optimal conditions for AgNPs synthesis are 100 °C and 0.33 h. The estimations of the antibacterial activity of the fibres were completed. The applied AgNPs synthesis conditions allow to obtain antibacterial fibres with a wide range of applications, mainly in medicine. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Figure 1

11 pages, 3151 KiB  
Article
Luminescent Cellulose Fibers Modified with Poly((9-Carbazolyl)Methylthiirane)
by Aleksandra Erdman, Piotr Kulpinski, Jadwiga Gabor, Arkadiusz Stanula and Andrzej S. Swinarew
Polymers 2020, 12(10), 2296; https://doi.org/10.3390/polym12102296 - 7 Oct 2020
Cited by 5 | Viewed by 3163
Abstract
This article presents the results of research related to the development of cellulose man-made fibers with luminescent properties. The fibers were obtained from regenerated cellulose with the use of the N-Methylmorpholine-N-Oxide (NMMO) method for lyocell (Tencel) fiber formation. The method is named after [...] Read more.
This article presents the results of research related to the development of cellulose man-made fibers with luminescent properties. The fibers were obtained from regenerated cellulose with the use of the N-Methylmorpholine-N-Oxide (NMMO) method for lyocell (Tencel) fiber formation. The method is named after the cellulose solvent (NMMO) used to obtain the spinning solution. Fibers are formed by the dry–wet spinning method. Due to the characteristic of the lyocell process, the fibers were easily modified to achieve luminescent properties with star-shaped organic compound poly((9-carbazolyl)methylthiirane) (KMT). Fibers were examined on their mechanical parameters with the use of Zwick Z2.5/TN1S tensile testing machine, and the results show the influence of the KMT concentration in the fiber matrix on mechanical parameters of the fibers. The study also attempted to determine the concentration of the modifier in the fibers with the use of UV-VIS Spectrofluorometer JASCO. The luminescent properties of fibers were estimated as well, using Jobin–Yvon spectrofluorometer FLUOROMAX–4, and the results are very promising as the fibers emit blue light in the range of visible light spectrum even for small concentrations of KMT (about 0.1 wt.%). Full article
(This article belongs to the Special Issue Smart Textile)
Show Figures

Graphical abstract

Back to TopTop