Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = myeloid zinc finger 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2641 KiB  
Article
Germline Single-Nucleotide Polymorphism GFI1-36N Causes Alterations in Mitochondrial Metabolism and Leads to Increased ROS-Mediated DNA Damage in a Murine Model of Human Acute Myeloid Leukemia
by Jan Vorwerk, Longlong Liu, Theresa Helene Stadler, Daria Frank, Helal Mohammed Mohammed Ahmed, Pradeep Kumar Patnana, Maxim Kebenko, Eva Dazert, Bertram Opalka, Nikolas von Bubnoff and Cyrus Khandanpour
Biomedicines 2025, 13(1), 107; https://doi.org/10.3390/biomedicines13010107 - 5 Jan 2025
Cited by 1 | Viewed by 1598
Abstract
Background/Objectives: GFI1-36N represents a single-nucleotide polymorphism (SNP) of the zinc finger protein Growth Factor Independence 1 (GFI1), in which the amino acid serine (S) is replaced by asparagine (N). The presence of the GFI1-36N gene variant is associated with a reduced DNA [...] Read more.
Background/Objectives: GFI1-36N represents a single-nucleotide polymorphism (SNP) of the zinc finger protein Growth Factor Independence 1 (GFI1), in which the amino acid serine (S) is replaced by asparagine (N). The presence of the GFI1-36N gene variant is associated with a reduced DNA repair capacity favoring myeloid leukemogenesis and leads to an inferior prognosis of acute myeloid leukemia (AML) patients. However, the underlying reasons for the reduced DNA repair capacity in GFI1-36N leukemic cells are largely unknown. Since we have demonstrated that GFI1 plays an active role in metabolism, in this study, we investigated whether increased levels of reactive oxygen species (ROS) could contribute to the accumulation of genetic damage in GFI1-36N leukemic cells. Methods: We pursued this question in a murine model of human AML by knocking in human GFI1-36S or GFI1-36N variant constructs into the murine Gfi1 gene locus and retrovirally expressing MLL-AF9 to induce AML. Results: Following the isolation of leukemic bone marrow cells, we were able to show that the GFI1-36N SNP in our model is associated with enhanced oxidative phosphorylation (OXPHOS), increased ROS levels, and results in elevated γ-H2AX levels as a marker of DNA double-strand breaks (DSBs). The use of free radical scavengers such as N-acetylcysteine (NAC) and α-tocopherol (αT) reduced ROS-induced DNA damage, particularly in GFI1-36N leukemic cells. Conclusions: We demonstrated that the GFI1-36N variant is associated with extensive metabolic changes that contribute to the accumulation of genetic damage. Full article
(This article belongs to the Special Issue Molecular Research on Acute Myeloid Leukemia (AML) Volume II)
Show Figures

Figure 1

28 pages, 2386 KiB  
Review
Zinc Finger Proteins in the War on Gastric Cancer: Molecular Mechanism and Clinical Potential
by Shujie Liu, Xingzhu Liu, Xin Lin and Hongping Chen
Cells 2023, 12(9), 1314; https://doi.org/10.3390/cells12091314 - 4 May 2023
Cited by 18 | Viewed by 4887
Abstract
According to the 2020 global cancer data released by the World Cancer Research Fund (WCRF) International, gastric cancer (GC) is the fifth most common cancer worldwide, with yearly increasing incidence and the second-highest fatality rate in malignancies. Despite the contemporary ambiguous molecular mechanisms [...] Read more.
According to the 2020 global cancer data released by the World Cancer Research Fund (WCRF) International, gastric cancer (GC) is the fifth most common cancer worldwide, with yearly increasing incidence and the second-highest fatality rate in malignancies. Despite the contemporary ambiguous molecular mechanisms in GC pathogenesis, numerous in-depth studies have demonstrated that zinc finger proteins (ZFPs) are essential for the development and progression of GC. ZFPs are a class of transcription factors with finger-like domains that bind to Zn2+ extensively and participate in gene replication, cell differentiation and tumor development. In this review, we briefly outline the roles, molecular mechanisms and the latest advances in ZFPs in GC, including eight principal aspects, such as cell proliferation, epithelial–mesenchymal transition (EMT), invasion and metastasis, inflammation and immune infiltration, apoptosis, cell cycle, DNA methylation, cancer stem cells (CSCs) and drug resistance. Intriguingly, the myeloid zinc finger 1 (MZF1) possesses reversely dual roles in GC by promoting tumor proliferation or impeding cancer progression via apoptosis. Therefore, a thorough understanding of the molecular mechanism of ZFPs on GC progression will pave the solid way for screening the potentially effective diagnostic indicators, prognostic biomarkers and therapeutic targets of GC. Full article
Show Figures

Graphical abstract

21 pages, 8084 KiB  
Article
Design and In Silico Validation of a Novel MZF-1-Based Multi-Epitope Vaccine to Combat Metastatic Triple Negative Breast Cancer
by HemaNandini Rajendran Krishnamoorthy and Ramanathan Karuppasamy
Vaccines 2023, 11(3), 577; https://doi.org/10.3390/vaccines11030577 - 2 Mar 2023
Cited by 12 | Viewed by 3818
Abstract
Immunotherapy is emerging as a potential therapeutic strategy for triple negative breast cancer (TNBC) owing to the immunogenic landscape of its tumor microenvironment. Interestingly, peptide-based cancer vaccines have garnered a lot of attention as one of the most promising cancer immunotherapy regimens. Thus, [...] Read more.
Immunotherapy is emerging as a potential therapeutic strategy for triple negative breast cancer (TNBC) owing to the immunogenic landscape of its tumor microenvironment. Interestingly, peptide-based cancer vaccines have garnered a lot of attention as one of the most promising cancer immunotherapy regimens. Thus, the present study intended to design a novel, efficacious peptide-based vaccine against TNBC targeting myeloid zinc finger 1 (MZF1), a transcription factor that has been described as an oncogenic inducer of TNBC metastasis. Initially, the antigenic peptides from MZF1 were identified and evaluated based on their likelihood to induce immunological responses. The promiscuous epitopes were then combined using a suitable adjuvant (50S ribosomal L7/L12 protein) and linkers (AAY, GPGPG, KK, and EAAAK) to reduce junctional immunogenicity. Furthermore, docking and dynamics analyses against TLR-4 and TLR-9 were carried out to understand more about their structural stability and integrity. Finally, the constructed vaccine was subjected to in silico cloning and immune simulation studies. Overall, the findings imply that the designed chimeric vaccine could induce strong humoral and cellular immune responses in the desired organism. In light of these findings, the final multi-epitope vaccine could be used as an effective prophylactic treatment for TNBC and may pave the way for future research. Full article
(This article belongs to the Special Issue Advances in Cancer Immunotherapy and Vaccines Research)
Show Figures

Figure 1

12 pages, 2472 KiB  
Article
Inhibition of MZF1/c-MYC Axis by Cantharidin Impairs Cell Proliferation in Glioblastoma
by Chie-Hong Wang, Hsuan-Cheng Wu, Chen-Wei Hsu, Yun-Wei Chang, Chiung-Yuan Ko, Tsung-I Hsu, Jian-Ying Chuang, Tsui-Hwa Tseng and Shao-Ming Wang
Int. J. Mol. Sci. 2022, 23(23), 14727; https://doi.org/10.3390/ijms232314727 - 25 Nov 2022
Cited by 6 | Viewed by 2311
Abstract
Myeloid zinc finger 1 (MZF1), also known as zinc finger protein 42, is a zinc finger transcription factor, belonging to the Krüppel-like family that has been implicated in several types of malignancies, including glioblastoma multiforme (GBM). MZF1 is reportedly an oncogenic gene that [...] Read more.
Myeloid zinc finger 1 (MZF1), also known as zinc finger protein 42, is a zinc finger transcription factor, belonging to the Krüppel-like family that has been implicated in several types of malignancies, including glioblastoma multiforme (GBM). MZF1 is reportedly an oncogenic gene that promotes tumor progression. Moreover, higher expression of MZF1 has been associated with a worse overall survival rate among patients with GBM. Thus, MZF1 may be a promising target for therapeutic interventions. Cantharidin (CTD) has been traditionally used in Chinese medicine to induce apoptosis and inhibit cancer cell proliferation; however, the mechanism by which CTD inhibits cell proliferation remains unclear. In this study, we found that the expression of MZF1 was higher in GBM tissues than in adjacent normal tissues and low-grade gliomas. Additionally, the patient-derived GBM cells and GBM cell lines presented higher levels of MZF1 than normal human astrocytes. We demonstrated that CTD had greater anti-proliferative effects on GBM than a derivative of CTD, norcantharidin (NCTD). MZF1 expression was strongly suppressed by CTD treatment. Furthermore, MZF1 enhanced the proliferation of GBM cells and upregulated the expression of c-MYC, whereas these effects were reversed by CTD treatment. The results of our study suggest that CTD may be a promising therapeutic agent for patients with GBM and suggest a promising direction for further investigation. Full article
(This article belongs to the Special Issue Gliomas: From Molecular Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

17 pages, 1228 KiB  
Review
Zinc Finger Proteins: Functions and Mechanisms in Colon Cancer
by Shujie Liu, Xiaonan Sima, Xingzhu Liu and Hongping Chen
Cancers 2022, 14(21), 5242; https://doi.org/10.3390/cancers14215242 - 26 Oct 2022
Cited by 18 | Viewed by 5227
Abstract
According to the global cancer burden data for 2020 issued by the World Health Organization (WHO), colorectal cancer has risen to be the third-most frequent cancer globally after breast and lung cancer. Despite advances in surgical treatment and chemoradiotherapy for colon cancer, individuals [...] Read more.
According to the global cancer burden data for 2020 issued by the World Health Organization (WHO), colorectal cancer has risen to be the third-most frequent cancer globally after breast and lung cancer. Despite advances in surgical treatment and chemoradiotherapy for colon cancer, individuals with extensive liver metastases still have depressing prognoses. Numerous studies suggest ZFPs are crucial to the development of colon cancer. The ZFP family is encoded by more than 2% of the human genome sequence and is the largest transcriptional family, all with finger-like structural domains that could combine with Zn2+. In this review, we summarize the functions, molecular mechanisms and recent advances of ZFPs in colon cancer. We also discuss how these proteins control the development and progression of colon cancer by regulating cell proliferation, EMT, invasion and metastasis, inflammation, apoptosis, the cell cycle, drug resistance, cancer stem cells and DNA methylation. Additionally, several investigations have demonstrated that Myeloid zinc finger 1 (MZF1) has dual functions in colon cancer, which may both promote cancer proliferation and inhibit cancer progression through apoptosis. Generally, a comprehensive understanding of the action mechanisms of ZFPs in colon cancer will not only shed light on the discovery of new diagnostic and prognosis indicators but will also facilitate the design of novel targeted therapies. Full article
Show Figures

Figure 1

16 pages, 30398 KiB  
Article
Irradiation Activates MZF1 to Inhibit miR-541-5p Expression and Promote Epithelial-Mesenchymal Transition (EMT) in Radiation-Induced Pulmonary Fibrosis (RIPF) by Upregulating Slug
by Xinxin Liang, Ziyan Yan, Ping Wang, Yuhao Liu, Xingkun Ao, Zheng Liu, Duo Wang, Xiaochang Liu, Maoxiang Zhu, Shanshan Gao, Dafei Xie, Pingkun Zhou and Yongqing Gu
Int. J. Mol. Sci. 2021, 22(21), 11309; https://doi.org/10.3390/ijms222111309 - 20 Oct 2021
Cited by 24 | Viewed by 2867
Abstract
Understanding miRNAs regulatory roles in epithelial-mesenchymal transition (EMT) would help establish new avenues for further uncovering the mechanisms underlying radiation-induced pulmonary fibrosis (RIPF) and identifying preventative and therapeutic targets. Here, we demonstrated that miR-541-5p repression by Myeloid Zinc Finger 1 (MZF1) [...] Read more.
Understanding miRNAs regulatory roles in epithelial-mesenchymal transition (EMT) would help establish new avenues for further uncovering the mechanisms underlying radiation-induced pulmonary fibrosis (RIPF) and identifying preventative and therapeutic targets. Here, we demonstrated that miR-541-5p repression by Myeloid Zinc Finger 1 (MZF1) promotes radiation-induced EMT and RIPF. Irradiation could decrease miR-541-5p expression in vitro and in vivo and inversely correlated to RIPF development. Ectopic miR-541-5p expression suppressed radiation-induced-EMT in vitro and in vivo. Knockdown of Slug, the functional target of miR-541-5p, inhibited EMT induction by irradiation. The upregulation of transcription factor MZF1 upon irradiation inhibited the expression of endogenous miR-541-5p and its primary precursor (pri-miR-541-5p), which regulated the effect of the Slug on the EMT process. Our finding showed that ectopic miR-541-5p expression mitigated RIPF in mice by targeting Slug. Thus, irradiation activates MZF1 to downregulate miR-541-5p in alveolar epithelial cells, promoting EMT and contributing to RIPF by targeting Slug. Our observation provides further understanding of the development of RIPF and determines potential preventative and therapeutic targets. Full article
Show Figures

Figure 1

23 pages, 10438 KiB  
Review
Novel Molecular Mechanism of Lenalidomide in Myeloid Malignancies Independent of Deletion of Chromosome 5q
by Isaac Park, Tra Mi Phan and Jing Fang
Cancers 2021, 13(20), 5084; https://doi.org/10.3390/cancers13205084 - 11 Oct 2021
Cited by 7 | Viewed by 4344
Abstract
Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in [...] Read more.
Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in hematologic malignancies, relapse and resistance remains a problem in IMiD-based therapy. The last ten years have witnessed the discovery of novel molecular mechanism of IMiD-based anti-tumor therapy. IMiDs bind human cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase complex. Binding of CRBN with IMiDs leads to degradation of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) and casein kinase 1 alpha. We have found that lenalidomide-mediated degradation of IKZF1 leads to activation of the G protein-coupled receptor 68 (GPR68)/calcium/calpain pro-apoptotic pathway and inhibition of the regulator of calcineurin 1 (RCAN1)/calcineurin pro-survival pathway in MDS and acute myeloid leukemia (AML). Calcineurin inhibitor Cyclosporin-A potentiates the anti-leukemia activity of lenalidomide in MDS/AML with or without del(5q). These findings broaden the therapeutic potential of IMiDs. This review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets. Full article
(This article belongs to the Special Issue Immune Therapies for Hematologic Malignancies)
Show Figures

Figure 1

14 pages, 1421 KiB  
Article
WT1 Expression Levels Combined with Flow Cytometry Blast Counts for Risk Stratification of Acute Myeloid Leukemia and Myelodysplastic Syndromes
by Valentina Giudice, Marisa Gorrese, Rosa Vitolo, Angela Bertolini, Rossella Marcucci, Bianca Serio, Roberto Guariglia, Idalucia Ferrara, Rita Pepe, Francesca D’Alto, Barbara Izzo, Antonio Pedicini, Nunzia Montuori, Maddalena Langella and Carmine Selleri
Biomedicines 2021, 9(4), 387; https://doi.org/10.3390/biomedicines9040387 - 6 Apr 2021
Cited by 12 | Viewed by 3846
Abstract
Wilm’s tumor 1 (WT1), a zinc-finger transcription factor and an epigenetic modifier, is frequently overexpressed in several hematologic disorders and solid tumors, and it has been proposed as diagnostic and prognostic marker of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). [...] Read more.
Wilm’s tumor 1 (WT1), a zinc-finger transcription factor and an epigenetic modifier, is frequently overexpressed in several hematologic disorders and solid tumors, and it has been proposed as diagnostic and prognostic marker of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, the exact role of WT1 in leukemogenesis and disease progression remains unclear. In this real-world evidence retrospective study, we investigated prognostic role of WT1-mRNA expression levels in AML and MDS patients and correlations with complete blood counts, flow cytometry counts, and molecular features. A total of 71 patients (AML, n = 46; and MDS, n = 25) were included in this study, and WT1 levels were assessed at diagnosis, during treatment and follow-up. We showed that WT1 expression levels were inversely correlated with normal hemopoiesis in both AML and MDS, and positively associated with blast counts. Flow cytometry was more sensitive and specific in distinguishing normal myeloid cells from neoplastic counterpart even just using linear parameters and CD45 expression. Moreover, we showed that a simple integrated approach combining blast counts by flow cytometry, FLT3 mutational status, and WT1 expression levels might be a useful tool for a better prognostic definition in both AML and MDS patients. Full article
Show Figures

Figure 1

13 pages, 4266 KiB  
Article
The Association of an SNP in the EXOC4 Gene and Reproductive Traits Suggests Its Use as a Breeding Marker in Pigs
by Yingting He, Xiaofeng Zhou, Rongrong Zheng, Yao Jiang, Zhixiang Yao, Xilong Wang, Zhe Zhang, Hao Zhang, Jiaqi Li and Xiaolong Yuan
Animals 2021, 11(2), 521; https://doi.org/10.3390/ani11020521 - 17 Feb 2021
Cited by 10 | Viewed by 3293
Abstract
In mammals, the exocyst complex component 4 (EXOC4) gene has often been reported to be involved in vesicle transport. The SNP rs81471943 (C/T) is located in the intron of porcine EXOC4, while six quantitative trait loci (QTL) within 5–10 Mb [...] Read more.
In mammals, the exocyst complex component 4 (EXOC4) gene has often been reported to be involved in vesicle transport. The SNP rs81471943 (C/T) is located in the intron of porcine EXOC4, while six quantitative trait loci (QTL) within 5–10 Mb around EXOC4 are associated with ovary weight, teat number, total offspring born alive, and corpus luteum number. However, the molecular mechanisms between EXOC4 and the reproductive performance of pigs remains to be elucidated. In this study, rs81471943 was genotyped from a total of 994 Duroc sows, and the genotype and allele frequency of SNP rs81471943 (C/T) were statistically analyzed. Then, the associations between SNP rs81471943 and four reproductive traits, including number of piglets born alive (NBA), litter weight at birth (LWB), number of piglets weaned (NW), and litter weight at weaning (LWW), were determined. Sanger sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) were utilized to identify the rs81471943 genotype. We found that the genotype frequency of CC was significantly higher than that of CT and TT, and CC was the most frequent genotype for NBA, LWB, NW, and LWW. Moreover, 5′-deletion and luciferase assays identified a positive transcription regulatory element in the EXOC4 promoter. After exploring the EXOC4 promoter, SNP −1781G/A linked with SNP rs81471943 (C/T) were identified by analysis of the transcription activity of the haplotypes, and SNP −1781 G/A may influence the potential binding of P53, E26 transformation specific sequence -like 1 transcription factor (ELK1), and myeloid zinc finger 1 (MZF1). These findings provide useful information for identifying a molecular marker of EXOC4-assisted selection in pig breeding. Full article
(This article belongs to the Special Issue Advances in Pig Reproduction)
Show Figures

Figure 1

18 pages, 2252 KiB  
Review
Zinc Finger Transcription Factor MZF1—A Specific Regulator of Cancer Invasion
by Ditte Marie Brix, Knut Kristoffer Bundgaard Clemmensen and Tuula Kallunki
Cells 2020, 9(1), 223; https://doi.org/10.3390/cells9010223 - 16 Jan 2020
Cited by 35 | Viewed by 6198
Abstract
Over 90% of cancer deaths are due to cancer cells metastasizing into other organs. Invasion is a prerequisite for metastasis formation. Thus, inhibition of invasion can be an efficient way to prevent disease progression in these patients. This could be achieved by targeting [...] Read more.
Over 90% of cancer deaths are due to cancer cells metastasizing into other organs. Invasion is a prerequisite for metastasis formation. Thus, inhibition of invasion can be an efficient way to prevent disease progression in these patients. This could be achieved by targeting the molecules regulating invasion. One of these is an oncogenic transcription factor, Myeloid Zinc Finger 1 (MZF1). Dysregulated transcription factors represent a unique, increasing group of drug targets that are responsible for aberrant gene expression in cancer and are important nodes driving cancer malignancy. Recent studies report of a central involvement of MZF1 in the invasion and metastasis of various solid cancers. In this review, we summarize the research on MZF1 in cancer including its function and role in lysosome-mediated invasion and in the expression of genes involved in epithelial to mesenchymal transition. We also discuss possible means to target it on the basis of the current knowledge of its function in cancer. Full article
(This article belongs to the Special Issue Killing Cancer: Discovery and Selection of New Target Molecules)
Show Figures

Figure 1

15 pages, 1056 KiB  
Article
MZF1 and SCAND1 Reciprocally Regulate CDC37 Gene Expression in Prostate Cancer
by Takanori Eguchi, Thomas L. Prince, Manh Tien Tran, Chiharu Sogawa, Benjamin J. Lang and Stuart K. Calderwood
Cancers 2019, 11(6), 792; https://doi.org/10.3390/cancers11060792 - 8 Jun 2019
Cited by 28 | Viewed by 5529
Abstract
Cell division control 37 (CDC37) increases the stability of heat shock protein 90 (HSP90) client proteins and is thus essential for numerous intracellular oncogenic signaling pathways, playing a key role in prostate oncogenesis. Notably, elevated expression of CDC37 was found in prostate cancer [...] Read more.
Cell division control 37 (CDC37) increases the stability of heat shock protein 90 (HSP90) client proteins and is thus essential for numerous intracellular oncogenic signaling pathways, playing a key role in prostate oncogenesis. Notably, elevated expression of CDC37 was found in prostate cancer cells, although the regulatory mechanisms through which CDC37 expression becomes increased are unknown. Here we show both positive and negative regulation of CDC37 gene transcription by two members of the SREZBP-CTfin51-AW1-Number 18 cDNA (SCAN) transcription factor family—MZF1 and SCAND1, respectively. Consensus DNA-binding motifs for myeloid zinc finger 1 (MZF1/ZSCAN6) were abundant in the CDC37 promoter region. MZF1 became bound to these regulatory sites and trans-activated the CDC37 gene whereas MZF1 depletion decreased CDC37 transcription and reduced the tumorigenesis of prostate cancer cells. On the other hand, SCAND1, a zinc fingerless SCAN box protein that potentially inhibits MZF1, accumulated at MZF1-binding sites in the CDC37 gene, negatively regulated the CDC37 gene and inhibited tumorigenesis. SCAND1 was abundantly expressed in normal prostate cells but was reduced in prostate cancer cells, suggesting a potential tumor suppressor role of SCAND1 in prostate cancer. These findings indicate that CDC37, a crucial protein in prostate cancer progression, is regulated reciprocally by MZF1 and SCAND1. Full article
Show Figures

Graphical abstract

Back to TopTop