WT1 Expression Levels Combined with Flow Cytometry Blast Counts for Risk Stratification of Acute Myeloid Leukemia and Myelodysplastic Syndromes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Therapeutic Regimens
2.2. WT1 Quantitative Assessment
2.3. Flow Cytometry
2.4. Statistical Analysis
3. Results
3.1. Correlation of WT1 Expression with Clinical, Phenotypic, and Molecular Features in AML
3.2. Prognostic Impact of WT1 Expression and Combined Score in AML
3.3. Correlation of WT1 Expression with Clinical, Phenotypic, and Molecular Features in MDS Patients
3.4. Associations with Chromosomal Abnormalities
3.5. Prognostic Impact of WT1 Expression in MDS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heuser, M.; Ofran, Y.; Boissel, N.; Brunet Mauri, S.; Craddock, C.; Janssen, J.; Wierzbowska, A.; Buske, C. ESMO Guidelines Committee. Acute myeloid leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 697–712. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Estey, E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol. 2018, 93, 1267–1291. [Google Scholar] [CrossRef] [Green Version]
- Estey, E.; Thall, P.; Beran, M.; Kantarjian, H.; Pierce, S.; Keating, M. Effect of diagnosis (refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, or acute myeloid leukemia [AML]) on outcome of AML-type chemotherapy. Blood 1997, 90, 2969–2977. [Google Scholar] [CrossRef] [Green Version]
- Gangat, N.; Patnaik, M.M.; Begna, K.; Al Kali, A.; Litzow, M.R.; Ketterling, R.P.; Hanson, C.A.; Pardanani, A.D.; Tefferi, A. Survival trends in primary myelodysplastic syndromes: A comparative analysis of 1000 patients by year of diagnosis and treatment. Blood Cancer J. 2016, 6, e414. [Google Scholar] [CrossRef] [Green Version]
- Groarke, E.M.; Young, N.S. Aging and Hematopoiesis. Clin. Geriatr. Med. 2019, 35, 285–293. [Google Scholar] [CrossRef]
- Walter, M.J. What came first: MDS or AML? Blood 2015, 125, 1357–1358. [Google Scholar] [CrossRef] [Green Version]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef]
- Montalban-Bravo, G.; Garcia-Manero, G. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2018, 93, 129–147. [Google Scholar] [CrossRef] [Green Version]
- Rampal, R.; Figueroa, M.E. Wilms tumor 1 mutations in the pathogenesis of acute myeloid leukemia. Haematologica 2016, 101, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oji, Y.; Miyoshi, S.; Maeda, H.; Hayashi, S.; Tamaki, H.; Nakatsuka, S.; Yao, M.; Takahashi, E.; Nakano, Y.; Hirabayashi, H.; et al. Overexpression of the Wilms’ tumor gene WT1 in de novo lung cancers. Int. J. Cancer. 2002, 100, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Oji, Y.; Nakamori, S.; Fujikawa, M.; Nakatsuka, S.; Yokota, A.; Tatsumi, N.; Abeno, S.; Ikeba, A.; Takashima, S.; Tsujie, M.; et al. Overexpression of the Wilms’ tumor gene WT1 in pancreatic ductal adenocarcinoma. Cancer Sci. 2004, 95, 583–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, L.; Miething, C.; Maurer, U.; Brieger, J.; Karakas, T.; Weidmann, E.; Hoelzer, D. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 1997, 90, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Cilloni, D.; Renneville, A.; Hermitte, F.; Hills, R.K.; Daly, S.; Jovanovic, J.V.; Gottardi, E.; Fava, M.; Schnittger, S.; Weiss, T.; et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: A European LeukemiaNet study. J. Clin. Oncol. 2009, 27, 5195–5201. [Google Scholar] [CrossRef]
- Rautenberg, C.; Germing, U.; Pechtel, S.; Lamers, M.; Fischermanns, C.; Jäger, P.; Geyh, S.; Haas, R.; Kobbe, G.; Schroeder, T. Prognostic impact of peripheral blood WT1-mRNA expression in patients with MDS. Blood Cancer J. 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.A.; Huang, T.C.; Lin, L.I.; Liu, C.Y.; Chen, C.Y.; Chou, W.C.; Tang, J.L.; Tseng, M.H.; Huang, C.F.; Chiang, Y.C.; et al. WT1 mutation in 470 adult patients with acute myeloid leukemia: Stability during disease evolution and implication of its incorporation into a survival scoring system. Blood 2010, 115, 5222–5231. [Google Scholar] [CrossRef] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomfield, C.D.; Estey, E.; Pleyer, L.; Schuh, A.C.; Stein, E.M.; Tallman, M.S.; Wei, A. Time to repeal and replace response criteria for acute myeloid leukemia? Blood Rev. 2018, 32, 416–425. [Google Scholar] [CrossRef]
- Cilloni, D.; Saglio, G. WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Haematol. 2004, 112, 79–84. [Google Scholar] [CrossRef]
- Miyagi, T.; Ahuja, H.; Kubota, T.; Kubonishi, I.; Koeffler, H.P.; Miyoshi, I. Expression of the candidate Wilm’s tumor gene, WT1, in human leukemia cells. Leukemia. 1993, 7, 970–977. [Google Scholar]
- Miwa, H.; Beran, M.; Saunders, G.F. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 1992, 6, 405–409. [Google Scholar] [PubMed]
- Barragán, E.; Cervera, J.; Bolufer, P.; Ballester, S.; Martín, G.; Fernández, P.; Collado, R.; Sayas, M.J.; Sanz, M.A. Prognostic implications of Wilms’ tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica 2004, 89, 926–933. [Google Scholar] [PubMed]
- Kwon, M.; Martínez-Laperche, C.; Infante, M.; Carretero, F.; Balsalobre, P.; Serrano, D.; Gayoso, J.; Pérez-Corral, A.; Anguita, J.; Díez-Martín, J.L.; et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell transplantation: Correlation with flow cytometry and chimerism. Biol. Blood Marrow Transplant. 2012, 18, 1235–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brieger, J.; Weidmann, E.; Fenchel, K.; Mitrou, P.S.; Hoelzer, D.; Bergmann, L. The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia 1994, 8, 2138–2143. [Google Scholar]
- Awada, H.; Durmaz, A.; Gurnari, C.; Kishtagari, A.; Zawit, M.; Pagliuca, S.; Visconte, V. Friend or foe? The case of Wilms’ Tumor 1 (WT1) mutations in acute myeloid leukemia. Blood Cells Mol. Dis. 2021, 88, 102549. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Ogawa, H.; Ohyashiki, K.; Ohyashiki, J.H.; Iwama, H.; Inoue, K.; Soma, T.; Oka, Y.; Tatekawa, T.; Oji, Y.; et al. The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 1999, 13, 393–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malagola, M.; Skert, C.; Ruggeri, G.; Turra, A.; Ribolla, R.; Cancelli, V.; Cattina, F.; Alghisi, E.; Bernardi, S.; Perucca, S.; et al. Peripheral blood WT1 expression predicts relapse in AML patients undergoing allogeneic stem cell transplantation. Biomed Res. Int. 2014, 2014, 123079. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, H.; Xiong, S.; Zhang, X.; Zhang, C.; Yang, D.; Zhang, J.; Zhai, Z. Simplified flow cytometry scoring for diagnosis and prognosis of myelodysplastic symptom. Am. J. Transl. Res. 2020, 12, 7449–7458. [Google Scholar]
- Hodes, A.; Calvo, K.R.; Dulau, A.; Maric, I.; Sun, J.; Braylan, R. The challenging task of enumerating blasts in the bone marrow. Semin. Hematol. 2019, 56, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Zini, G. How I investigate difficult cells at the optical microscope. Int. J. Lab. Hematol. 2020. [Google Scholar] [CrossRef]
- DeZern, A.E.; Sekeres, M.A. The challenging world of cytopenias: Distinguishing myelodysplastic syndromes from other disorders of marrow failure. Oncologist 2014, 19, 735–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renneville, A.; Boissel, N.; Zurawski, V.; Llopis, L.; Biggio, V.; Nibourel, O.; Philippe, N.; Thomas, X.; Dombret, H.; Preudhomme, C. Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia: A study from the Acute Leukemia French Association. Cancer 2009, 115, 3719–3727. [Google Scholar] [CrossRef] [PubMed]
- Gaidzik, V.I.; Schlenk, R.F.; Moschny, S.; Becker, A.; Bullinger, L.; Corbacioglu, A.; Krauter, J.; Schlegelberger, B.; Ganser, A.; Döhner, H.; et al. German-Austrian AML Study Group. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: A study of the German-Austrian AML Study Group. Blood 2009, 113, 4505–4511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | n = 46 | (Range) |
---|---|---|
Age, years | 58 | (17–93) |
M/F | 26/20 | |
FAB classification | ||
M0–M1 | 25 | 54% |
M2 | 2 | 4% |
M4–M5 | 9 | 20% |
Secondary/others | 10 | 22% |
ELN risk stratification | ||
Favorable | 7 | 15% |
Intermediate | 25 | 54% |
Adverse | 13 | 28% |
Not evaluable | 1 | 3% |
Cytogenetic abnormalities | ||
Isolated del(5q) | 1 | 2% |
Isolated del(1q) | 1 | 2% |
Isolated monosomy 7 | 1 | 2% |
Any isolated trisomy | 2 | 4% |
Isolated inv (16) | 1 | 2% |
≥2 chromosomal abnormalities | 10 | 22% |
Normal karyotype | 23 | 50% |
Not evaluable | 5 | 11% |
Not performed | 2 | 4% |
Molecular features | ||
FLT3 (mutated/WT) | 6/38 | |
NPM1 (mutated/WT) | 9/33 | |
FLT3+NPM1+ | 2 | |
WT1 (copies/104 ABL copies) | 3780.3 | (2–34,537) |
BM blasts, % | 43.8 | (6–90) |
WBC (cells/μL) | 27,867.30 | (510–169,000) |
NBC | 4.38 | (0.001–86) |
Follow-up, months | 27.2 | (0.33–123.2) |
Dead/Alive | 29/16 | |
First-line therapy | 43/46 | |
Hypomethylating agents ± venetoclax | 18 | 42% |
Daunorubicin + Ara-C | 15 | 35% |
Others | 10 | 23% |
Characteristics | n = 25 | (Range) |
---|---|---|
Age, years | 70 | (57–84) |
M/F | 17/8 | |
WHO classification | ||
MLD | 7 | 28% |
EB-1 | 10 | 40% |
EB-2 | 4 | 16% |
CMML | 4 | 16% |
IPSS risk stratification | ||
Low | 3 | 4% |
Intermediate-1 | 6 | 20% |
Intermediate-2 | 15 | 60% |
High | 1 | 4% |
Cytogenetic abnormalities | ||
Isolated del(5q) | 1 | 4% |
Isolated del(20q) | 1 | 4% |
Isolated der(13) | 1 | 4% |
Any isolated trisomy | 4 | 16% |
≥2 chromosomal abnormalities | 6 | 24% |
Normal karyotype | 6 | 24% |
Not evaluable | 3 | 12% |
Not performed | 3 | 12% |
WT1 (copies/104 ABL copies) | 2013 | (0.4–16,364) |
BM blasts, % | 6.6 | (1–16) |
WBC (cells/μL) | 4207 | (1180–12,580) |
Hb (g/dL) | 9.4 | (7.2–13.9) |
Platelets (/μL) | 86,850 | (6000–256,000) |
NBC | 0.6 | (0.01–5.25) |
Follow-up, months | 25.1 | (1.7–74.3) |
Dead/Alive | 15/7 | |
First-line therapy | ||
Hypomethylating agents ± venetoclax | 21 | 84% |
Supportive therapies | 4 | 16% |
Antigen | Fluorochrome | Clone |
---|---|---|
CD3 | APC | UCHT1 |
CD4 | PE | 13B8.2 |
CD8 | APC-A750 | B9.11 |
CD5 | PC7 | BL1a |
CD7 | PC7 | 8H8.1 |
CD19 | PC5.5 | J3-119 |
CD20 | PB | B9E9 |
SmIg-kappa/SmIg-lambda/CD19 | FITC/PE/ECD | Polyclonal/Polyclonal/J3-119 |
CD56 | ECD | N901 |
CD16 | PB | 3G8 |
CD10 | PC7 | ALB1 |
CD11a | FITC | 25.3 |
CD11b | PC7 | Bear1 |
CD11c | PE | BU15 |
CD13 | PC5.5 | Immu103.44 |
CD14 | APC-A750 | RMO52 |
CD15 | PE | 80H5 |
CD33 | APC | D3HL60.251 |
CD34 | APC700 | 581 |
CD36 | FITC | FA6.152 |
CD64 | ECD | 22 |
CD117 | PE | 104D2D1 |
HLA-DR | FITC | Immu-357 |
CD45 | KO | J33 |
CD45RA | FITC | ALB11 |
CD45R0 | ECD | UCHL1 |
CD71 | FITC | YDJ1.2.2 |
CD61 | FITC | SZ21 |
CD42b | PE | SZ2 |
TdT | FITC | HT1+HT4+HT8+HT9 |
MPO | PE | CLB-MPO-1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giudice, V.; Gorrese, M.; Vitolo, R.; Bertolini, A.; Marcucci, R.; Serio, B.; Guariglia, R.; Ferrara, I.; Pepe, R.; D’Alto, F.; et al. WT1 Expression Levels Combined with Flow Cytometry Blast Counts for Risk Stratification of Acute Myeloid Leukemia and Myelodysplastic Syndromes. Biomedicines 2021, 9, 387. https://doi.org/10.3390/biomedicines9040387
Giudice V, Gorrese M, Vitolo R, Bertolini A, Marcucci R, Serio B, Guariglia R, Ferrara I, Pepe R, D’Alto F, et al. WT1 Expression Levels Combined with Flow Cytometry Blast Counts for Risk Stratification of Acute Myeloid Leukemia and Myelodysplastic Syndromes. Biomedicines. 2021; 9(4):387. https://doi.org/10.3390/biomedicines9040387
Chicago/Turabian StyleGiudice, Valentina, Marisa Gorrese, Rosa Vitolo, Angela Bertolini, Rossella Marcucci, Bianca Serio, Roberto Guariglia, Idalucia Ferrara, Rita Pepe, Francesca D’Alto, and et al. 2021. "WT1 Expression Levels Combined with Flow Cytometry Blast Counts for Risk Stratification of Acute Myeloid Leukemia and Myelodysplastic Syndromes" Biomedicines 9, no. 4: 387. https://doi.org/10.3390/biomedicines9040387