Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = myelin oligodendrocyte glycoprotein antibody disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1076 KB  
Article
Live-Cell-Based Assay Outperforms Fixed Assay in MOGAD Diagnosis: A Retrospective Validation Against the 2023 International Criteria
by Anna Zhou, Weihua Zhang, Ji Zhou, Changhong Ren, Ke Zhan, Wenhan Li, Hui Xiong and Xiaotun Ren
Diagnostics 2026, 16(1), 157; https://doi.org/10.3390/diagnostics16010157 - 4 Jan 2026
Viewed by 396
Abstract
Background and Objective: Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is a significant component of demyelinating diseases in pediatric populations. Recently, diagnostic criteria for MOGAD were established. This study aims to evaluate and compare the diagnostic efficacy of the fixed-cell-based assay (Fixed-CBA) [...] Read more.
Background and Objective: Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is a significant component of demyelinating diseases in pediatric populations. Recently, diagnostic criteria for MOGAD were established. This study aims to evaluate and compare the diagnostic efficacy of the fixed-cell-based assay (Fixed-CBA) and the live cell-based assay (Live-CBA) in patients who meet the 2023 clinical diagnostic criteria for MOGAD. Methods: This retrospective study included patients suspected of having MOGAD who were enrolled between June 2023 and June 2024. Patients were selected based on the “core clinical demyelinating events” outlined in the 2023 proposed criteria of the International MOGAD Panel. Patients with multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD) with aquaporin-4 antibody-positive (AQP4-Abs-positive), and non-central nervous system (non-CNS) inflammatory diseases were chosen as controls. Serum samples were simultaneously tested for MOG-Abs using Fixed-CBA and Live-CBA. Results: A total of 86 patients were enrolled in the study: 52 in the suspected MOGAD group and 34 in the control group. Out of these patients studied, 16 presented with optic neuritis (ON), 5 with myelitis, 8 with acute disseminated encephalomyelitis (ADEM), and 7 with cortical encephalitis. Sixteen patients could not be classified by clinical phenotype. The highest MOG-Ab positivity rate was among patients with cortical encephalitis [85.7% (Live-CBA)/71.4% (Fixed-CBA)]. Both assays identified 22 positive samples, with Fixed-CBA and Live-CBA sensitivities at 44.2% and 55.8%, respectively, and a specificity of 97%. Of the patients suspected of having MOGAD, 19 cases were confirmed using the Fixed-CBA, while 28 cases were confirmed using the Live-CBA. This resulted in an upgrade in diagnostic classification for nine cases. This led to a diagnostic reclassification in nine cases. Conclusions: Both the Fixed-CBA and Live-CBA were associated with higher sensitivity for patients selected based on the 2023 MOGAD clinical diagnostic criteria. The Live-CBA exhibited an 11.6% increase in sensitivity, contributing to a 17.3% (9/52) enhancement in clinical diagnostic accuracy. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

35 pages, 1208 KB  
Review
Targeting Lifestyle in CNS Inflammatory Demyelinating Diseases: Insights from Diet and Exercise as Potential Disease Modifiers
by Eleonora Virgilio, Federico Abate Daga, Matteo Bronzini, Marta Morra, Rachele Rosso, Alessandro Maglione, Manuela Matta, Federica Masuzzo and Simona Rolla
Brain Sci. 2026, 16(1), 57; https://doi.org/10.3390/brainsci16010057 - 30 Dec 2025
Viewed by 362
Abstract
This narrative review explores the impact of diet and physical exercise both as a risk factor of central nervous system inflammatory diseases, but more importantly as potential adjunctive disease modifiers in Multiple Sclerosis (MS), Neuromyelitis Optica Spectrum Disorders (NMOSD), and Myelin Oligodendrocyte Glycoprotein [...] Read more.
This narrative review explores the impact of diet and physical exercise both as a risk factor of central nervous system inflammatory diseases, but more importantly as potential adjunctive disease modifiers in Multiple Sclerosis (MS), Neuromyelitis Optica Spectrum Disorders (NMOSD), and Myelin Oligodendrocyte Glycoprotein (MOG) antibody-associated disease (MOGAD). The majority of evidence relies on MS preclinical and clinical studies, but preclinical studies also support the benefit of lifestyle intervention in NMOSD and MOGAD. In MS, adherence to healthy diets (particularly Mediterranean and MIND diets) could lead to a milder disease course with reduced relapse rates, while structured exercise from early disease stages promotes neuroprotection by upregulating neurotrophic factors and preserving brain volume, possibly impacting disease progression. The ketogenic diet and intermittent caloric restriction also showed promising results. Physical activity, including both aerobic training and resistance training, emerges as a potential disease-modifying strategy by promoting neuroprotection, reducing inflammation, and supporting functional and cognitive outcomes, particularly when implemented early in the disease course. A synergistic approach alongside disease-modifying treatments (DMTs) would further positively modulate core pathological processes. Evidence for NMOSD and MOGAD warrants further investigation. We highlight that integrating personalized lifestyle strategies would be beneficial from the early stages. However, future large-scale, standardized trials are required to fully confirm the neuroprotective potential of diet and exercise across the entire spectrum of CNS disorders. Full article
(This article belongs to the Special Issue Lifestyle and Risk Factors for Multiple Sclerosis)
Show Figures

Figure 1

14 pages, 915 KB  
Article
Live Cell-Based Semi-Quantitative Stratification Highlights Titre-Dependent Phenotypic Heterogeneity in MOGAD: A Single-Centre Experience
by Donato Regina, Concetta Domenica Gargano, Tommaso Guerra, Antonio Frigeri, Damiano Paolicelli, Maddalena Ruggieri and Pietro Iaffaldano
Int. J. Mol. Sci. 2025, 26(19), 9615; https://doi.org/10.3390/ijms26199615 - 1 Oct 2025
Viewed by 1129
Abstract
Myelin oligodendrocyte glycoprotein antibody–associated disease (MOGAD) is an inflammatory demyelinating disorder of the central nervous system characterised by heterogeneous clinical and radiological presentations. Accurate interpretation of serum anti–myelin oligodendrocyte glycoprotein (anti-MOG) antibody titres is critical to improve diagnostic precision and prognostic assessment. This [...] Read more.
Myelin oligodendrocyte glycoprotein antibody–associated disease (MOGAD) is an inflammatory demyelinating disorder of the central nervous system characterised by heterogeneous clinical and radiological presentations. Accurate interpretation of serum anti–myelin oligodendrocyte glycoprotein (anti-MOG) antibody titres is critical to improve diagnostic precision and prognostic assessment. This single-centre retrospective study evaluated 19 patients diagnosed with MOGAD in 2023, all of whom were seropositive for anti-MOG IgG, as confirmed by live cell-based assays (CBAs) using full-length human MOG and IgG1-specific secondary antibodies. Antibody quantification combined a ratiometric semi-quantitative fluorescence index with classical endpoint dilution titres, enabling classification into low, medium, and high titre groups. Stratification revealed titre-dependent phenotypic heterogeneity: high-titre patients were older at onset and predominantly presented with optic neuritis, often bilateral, and encephalic involvement, whereas low-titre patients more frequently exhibited spinal cord syndromes, cerebellar or brainstem symptoms, and a higher prevalence of cerebrospinal fluid-restricted oligoclonal bands. Semi-quantitative fluorescence ratios correlated consistently with endpoint titres, and exponential decay analysis demonstrated slower signal loss in high-titre sera, confirming assay reliability. No significant association emerged between titre level and monophasic versus relapsing disease course. Anti-MOG antibody titres could serve not only as a diagnostic biomarker but also to capture clinically relevant immunopathological diversity, supporting a titre-stratified approach to diagnosis and early prognostication. Incorporating semi-quantitative metrics alongside clinical and imaging features may refine the diagnostic algorithm and prevent misclassification of atypical presentations. Full article
(This article belongs to the Special Issue Multiple Sclerosis: The Latest Developments in Immunology and Therapy)
Show Figures

Figure 1

28 pages, 2721 KB  
Review
MOGAD: A Shifting Landscape—From Pathogenesis to Personalised Management, Global Perspectives and Latin American Insights
by Ethel Ciampi
Biomedicines 2025, 13(10), 2344; https://doi.org/10.3390/biomedicines13102344 - 25 Sep 2025
Viewed by 3314
Abstract
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) has emerged as a distinct autoimmune demyelinating disorder, characterised by clinical, radiological, and immunopathological features that differentiate it from Multiple Sclerosis (MS) and AQP4+ neuromyelitis optica spectrum disorder (AQP4+NMOSD). This review provides a comprehensive synthesis of the [...] Read more.
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) has emerged as a distinct autoimmune demyelinating disorder, characterised by clinical, radiological, and immunopathological features that differentiate it from Multiple Sclerosis (MS) and AQP4+ neuromyelitis optica spectrum disorder (AQP4+NMOSD). This review provides a comprehensive synthesis of the evolving landscape of MOGAD, from its immunopathogenesis and diagnostic criteria to treatment strategies and global epidemiological insights. We explore the role of MOG-IgG antibodies in disease mechanisms, the utility of emerging biomarkers, and the prognostic value of tools like clinical scores or longitudinal MOG-IgG assessment. Special attention is given to regional disparities, with a focus on Latin America, highlighting diagnostic delays, access inequities, and unique clinical phenotypes. We also examine the limitations of current evidence, including gaps in long-term longitudinal follow-up and variability in diagnostic testing. Finally, we discuss global collaborative efforts and clinical trials that are shaping the future of personalised care in MOGAD. As the field advances, integrating biomarker-driven monitoring, equitable access to therapies, and regionally adapted guidelines will be essential to improving outcomes for patients worldwide. Full article
(This article belongs to the Special Issue Multiple Sclerosis: Diagnosis and Treatment—3rd Edition)
Show Figures

Figure 1

21 pages, 820 KB  
Review
Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease: Pathophysiology, Clinical Patterns, and Therapeutic Challenges of Intractable and Severe Forms
by Tatsuro Misu
Int. J. Mol. Sci. 2025, 26(17), 8538; https://doi.org/10.3390/ijms26178538 - 2 Sep 2025
Viewed by 7142
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is characterized by the predominance of optic neuritis, myelitis, acute disseminated encephalomyelitis (ADEM), and cortical encephalitis, and can be diagnosed by the presence of pathogenic immunoglobulin G (IgG) antibodies targeting the extracellular domain of MOG in [...] Read more.
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is characterized by the predominance of optic neuritis, myelitis, acute disseminated encephalomyelitis (ADEM), and cortical encephalitis, and can be diagnosed by the presence of pathogenic immunoglobulin G (IgG) antibodies targeting the extracellular domain of MOG in the serum and cerebrospinal fluid (CSF). Initially considered a variant of multiple sclerosis (MS) or neuromyelitis optica spectrum disorder (NMOSD), it is now widely recognized as a separate entity, supported by converging evidence from serological, pathological, and clinical studies. Patients with MOGAD often exhibit better recovery from acute attacks; however, their clinical and pathological features vary based on the immunological role of MOG-IgG via antibody- or complement-mediated perivenous demyelinating pathology, in addition to MOG-specific cellular immunity, resulting in heterogeneous demyelinated lesions from vanishing benign forms to tissue necrosis, even though MOGAD is not a mild disease. The key is the immunological mechanism of devastating lesion coalescence and long-term degenerating mechanisms, which may still accrue, particularly in the relapsing, progressing, and aggressive clinical course of encephalomyelitis. The warning features of the severe clinical forms are: (1) fulminant acute multifocal lesions or multiphasic ADEM transitioning to diffuse (Schilder-type) or tumefactive lesions; (2) cortical or subcortical lesions related to brain atrophy and/or refractory epilepsy (Rasmussen-type); (3) longitudinally extended spinal cord lesions severely affected with residual symptoms. In addition, it is cautious for patients refractory to acute stage early 1st treatment including intravenous methylprednisolone treatment and apheresis with residual symptoms and relapse activity with immunoglobulin and other 2nd line treatments including B cell depletion therapy. Persistent MOG-IgG high titration, intrathecal production of MOG-IgG, and suggestive markers of higher disease activity, such as cerebrospinal fluid interleukin-6 and complement C5b-9, could be identified as promising markers of higher disease activity, worsening of disability, and poor prognosis, and used to identify signs of escalating treatment strategies. It is promising of currently ongoing investigational antibodies against anti-interleukin-6 receptor and the neonatal Fc receptor. Moreover, due to possible refractory issues such as the intrathecal production of autoantibody and the involvement of complement in the worsening of the lesion, further developments of other mechanisms of action such as chimeric antigen receptor T-cell (CAR-T) and anti-complement therapies are warranted in the future. Full article
Show Figures

Graphical abstract

13 pages, 1280 KB  
Article
CD4-Positive T-Cell Responses to MOG Peptides in MOG Antibody-Associated Disease
by Hirohiko Ono, Tatsuro Misu, Chihiro Namatame, Yuki Matsumoto, Yoshiki Takai, Shuhei Nishiyama, Hiroshi Kuroda, Toshiyuki Takahashi, Ichiro Nakashima, Kazuo Fujihara and Masashi Aoki
Int. J. Mol. Sci. 2025, 26(8), 3606; https://doi.org/10.3390/ijms26083606 - 11 Apr 2025
Cited by 1 | Viewed by 2105
Abstract
To clarify T-cell responses in myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD), we cultured the peripheral blood mononuclear cells of 24 patients with MOGAD and 20 with aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorders (NMOSD), and those of 17 healthy controls (HCs), in [...] Read more.
To clarify T-cell responses in myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD), we cultured the peripheral blood mononuclear cells of 24 patients with MOGAD and 20 with aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorders (NMOSD), and those of 17 healthy controls (HCs), in the presence of fourteen MOG peptides covering the full-length MOG, five AQP4 peptides, two myelin basic protein peptides, or two proteolipid protein peptides. Then, we measured T-cell activation markers, such as cell surface CD69 and the intracellular production of granulocyte–macrophage colony-stimulating factor (GM-CSF) and interferon-γ in CD4-positive T-cells, with a flow cytometer. The expression of CD69 in response to MOG p16–40 and MOG p181–205 was significantly higher (Stimulation Index > 2) in MOGAD than in HCs. Also, CD69 for AQP4 p21–40, AQP4 p211–230, and MOG p166–190 were significantly increased in NMOSD than in HCs. Intracellular GM-CSF production responding to MOG p16–40 was significantly higher in MOGAD than in HCs (p < 0.05), although intracellular interferon-γ was not elevated. None of the responses to the other peptides were different between the groups. The present study showed subtle CD4-positive T-cell activation elicited by some MOG peptides alone in patients with MOGAD. Further studies of cytokines or other stimulation and alternative assay markers and metrics are needed to delineate the immunopathological roles of T-cells in MOGAD. Full article
Show Figures

Figure 1

14 pages, 2335 KB  
Article
Brain Volume Measures in Adults with MOG-Antibody-Associated Disease: A Longitudinal Multicenter Study
by Riccardo Orlandi, Sara Mariotto, Francesca Gobbin, Francesca Rossi, Valentina Camera, Massimiliano Calabrese, Francesca Calabria and Alberto Gajofatto
J. Clin. Med. 2025, 14(7), 2445; https://doi.org/10.3390/jcm14072445 - 3 Apr 2025
Viewed by 1115
Abstract
Background/Objectives: Little is known about the impact of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) on brain atrophy. This multicenter longitudinal study compares brain MRI volumes and T2 lesion volume between MOGAD patients, relapsing-remitting MS (RRMS) patients and a healthy control (HC) group [...] Read more.
Background/Objectives: Little is known about the impact of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) on brain atrophy. This multicenter longitudinal study compares brain MRI volumes and T2 lesion volume between MOGAD patients, relapsing-remitting MS (RRMS) patients and a healthy control (HC) group with brain MRI scans available from an online repository. Methods: In total, 16 adult MOGAD patients (9 F) were age- and sex-matched with 44 RRMS patients (17 F) recruited in Verona MS Center and 14 HC subjects. The availability of two brain MRI scans performed 18 ± 6 months apart was mandatory for each patient. Annual percentage brain volume change (PBVC/y), baseline global brain, white matter (WM), gray matter (GM) regional brain volumes and T2 lesion volume were compared between groups. Results: PBVC/y was lower in MOGAD than in RRMS patients (p = 0.014) and lower in HC subjects than in MS patients (p = 0.005). Overall, MOGAD showed higher mean global brain (p = 0.012) and WM volume (p = 0.024) but lower median T2 lesion volume at timepoint 1 (p < 0.001); T2 lesion volume increased over time in the RRMS (p < 0.001) but not in the MOGAD cohort (p = 0.262). Conclusions: The structural brain MRI features of MOGAD show higher global brain and WM volumes and lower brain volume loss over time compared to RRMS, suggesting different underlining pathogenetic mechanisms. Full article
Show Figures

Figure 1

10 pages, 7275 KB  
Case Report
Confusing Onset of MOGAD in the Form of Focal Seizures
by Małgorzata Jączak-Goździak and Barbara Steinborn
Neurol. Int. 2025, 17(3), 37; https://doi.org/10.3390/neurolint17030037 - 27 Feb 2025
Cited by 1 | Viewed by 1686
Abstract
MOGAD is a demyelinating syndrome with the presence of antibodies against myelin oligodendrocyte glycoprotein, which is, next to multiple sclerosis and the neuromyelitis optica spectrum, one of the manifestations of the demyelinating process, more common in the pediatric population. MOGAD can take a [...] Read more.
MOGAD is a demyelinating syndrome with the presence of antibodies against myelin oligodendrocyte glycoprotein, which is, next to multiple sclerosis and the neuromyelitis optica spectrum, one of the manifestations of the demyelinating process, more common in the pediatric population. MOGAD can take a variety of clinical forms: acute disseminated encephalomyelitis (ADEM), retrobulbar optic neuritis, often binocular (ON), transverse myelitis (TM), or NMOSD-like course (neuromyelitis optica spectrum disorders), less often encephalopathy. The course may be monophasic (40–50%) or polyphasic (50–60%), especially with persistently positive anti-MOG antibodies. Very rarely, the first manifestation of the disease, preceding the typical symptoms of MOGAD by 8 to 48 months, is focal seizures with secondary generalization, without typical demyelinating changes on MRI of the head. The paper presents a case of a 17-year-old patient whose first symptoms of MOGAD were focal epileptic seizures in the form of turning the head to the right with the elevation of the left upper limb and salivation. Seizures occurred after surgical excision of a tumor of the right adrenal gland (ganglioneuroblastoma). Then, despite a normal MRI of the head and the exclusion of onconeural antibodies in the serum and cerebrospinal fluid after intravenous treatment, a paraneoplastic syndrome was suspected. After intravenous steroid treatment and immunoglobulins, eight plasmapheresis treatments, and the initiation of antiepileptic treatment, the seizures disappeared, and no other neurological symptoms occurred for nine months. Only subsequent relapses of the disease with typical radiological and clinical picture (ADEM, MDEM, recurrent ON) allowed for proper diagnosis and treatment of the patient both during relapses and by initiating supportive treatment. The patient’s case allows us to analyze the multi-phase, clinically diverse course of MOGAD and, above all, indicates the need to expand the diagnosis of epilepsy towards demyelinating diseases: determination of anti-MOG and anti-AQP4 antibodies. Full article
Show Figures

Figure 1

13 pages, 1975 KB  
Article
Novel Automated Chemiluminescent Immunoassay for the Detection of Autoantibodies Against Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders
by Nozomi Yamazaki, Toshiyuki Takahashi, Tatsuro Misu and Yukihiro Nishikawa
Diagnostics 2025, 15(3), 298; https://doi.org/10.3390/diagnostics15030298 - 27 Jan 2025
Cited by 2 | Viewed by 2916
Abstract
Background/Objectives: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-related neurological disease that primarily affects the optic nerve and spinal cord. According to current international consensus guidelines for NMOSD, confirming the presence of aquaporin-4 immunoglobulin G antibody (AQP4-IgG) is one of the most [...] Read more.
Background/Objectives: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-related neurological disease that primarily affects the optic nerve and spinal cord. According to current international consensus guidelines for NMOSD, confirming the presence of aquaporin-4 immunoglobulin G antibody (AQP4-IgG) is one of the most important diagnostic criteria because AQP4-IgG is a significant diagnostic biomarker of NMOSD. Several assays are currently available for detecting AQP4-IgG, including cell-based assays (CBAs) and enzyme-linked immunosorbent assays (ELISAs). However, each assay has certain disadvantages, including insufficient sensitivity and specificity, the need for sophisticated techniques, and semi-quantitative results. Methods: We developed a fully automated chemiluminescent enzyme immunoassay (CLEIA) to detect AQP4-IgG (AQP4-CLEIA). This assay utilizes the recombinant antigen purified from the newly generated AQP4-M23 stably expressing Chinese hamster ovary cell line and an anti-AQP4 monoclonal antibody as a calibrator. Results: In analytical performance studies, the assay demonstrates good precision and linearity over the entire measurement range. Moreover, this assay showed no high-dose hook effect and interference from endogenous substances. In clinical validation studies, patients with AQP4-IgG positive NMOSD, multiple sclerosis, or myelin oligodendrocyte glycoprotein antibody-associated disorder and healthy individuals were tested. A cutoff value of 10.0 U/mL was determined by receiver operating characteristic curves based on the results of a microscopic live CBA. The sensitivity and specificity for AQP4-IgG-positive NMOSD were 97.0% and 100.0%, respectively, at the cutoff value. Conclusions: The results suggest that AQP4-CLEIA is a convenient automated method for measuring AQP4-IgG titers in hospitals and clinical laboratories, offering an effective alternative to the gold-standard CBA. Full article
(This article belongs to the Special Issue Diagnostic Challenges in Neuroimmunology)
Show Figures

Figure 1

28 pages, 6975 KB  
Review
Pediatric Neuroimaging of Multiple Sclerosis and Neuroinflammatory Diseases
by Chloe Dunseath, Emma J. Bova, Elizabeth Wilson, Marguerite Care and Kim M. Cecil
Tomography 2024, 10(12), 2100-2127; https://doi.org/10.3390/tomography10120149 - 20 Dec 2024
Cited by 1 | Viewed by 3536
Abstract
Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional [...] Read more.
Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood–brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases. This work also highlights findings from advanced MRI techniques, often infrequently employed due to the challenges involved in acquisition, post-processing, and interpretation, and identifies the need for future studies to extract the unique information, such as alterations in neurochemistry, disruptions of structural organization, or atypical functional connectivity, that may be relevant for the diagnosis and management of disease. Full article
(This article belongs to the Section Neuroimaging)
Show Figures

Figure 1

22 pages, 374 KB  
Review
Artificial Intelligence-Based Methodologies for Early Diagnostic Precision and Personalized Therapeutic Strategies in Neuro-Ophthalmic and Neurodegenerative Pathologies
by Rahul Kumar, Ethan Waisberg, Joshua Ong, Phani Paladugu, Dylan Amiri, Jeremy Saintyl, Jahnavi Yelamanchi, Robert Nahouraii, Ram Jagadeesan and Alireza Tavakkoli
Brain Sci. 2024, 14(12), 1266; https://doi.org/10.3390/brainsci14121266 - 17 Dec 2024
Cited by 19 | Viewed by 4141
Abstract
Advancements in neuroimaging, particularly diffusion magnetic resonance imaging (MRI) techniques and molecular imaging with positron emission tomography (PET), have significantly enhanced the early detection of biomarkers in neurodegenerative and neuro-ophthalmic disorders. These include Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, neuromyelitis optica, and myelin [...] Read more.
Advancements in neuroimaging, particularly diffusion magnetic resonance imaging (MRI) techniques and molecular imaging with positron emission tomography (PET), have significantly enhanced the early detection of biomarkers in neurodegenerative and neuro-ophthalmic disorders. These include Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. This review highlights the transformative role of advanced diffusion MRI techniques—Neurite Orientation Dispersion and Density Imaging and Diffusion Kurtosis Imaging—in identifying subtle microstructural changes in the brain and visual pathways that precede clinical symptoms. When integrated with artificial intelligence (AI) algorithms, these techniques achieve unprecedented diagnostic precision, facilitating early detection of neurodegeneration and inflammation. Additionally, next-generation PET tracers targeting misfolded proteins, such as tau and alpha-synuclein, along with inflammatory markers, enhance the visualization and quantification of pathological processes in vivo. Deep learning models, including convolutional neural networks and multimodal transformers, further improve diagnostic accuracy by integrating multimodal imaging data and predicting disease progression. Despite challenges such as technical variability, data privacy concerns, and regulatory barriers, the potential of AI-enhanced neuroimaging to revolutionize early diagnosis and personalized treatment in neurodegenerative and neuro-ophthalmic disorders is immense. This review underscores the importance of ongoing efforts to validate, standardize, and implement these technologies to maximize their clinical impact. Full article
22 pages, 3754 KB  
Article
In Silico Modeling of Myelin Oligodendrocyte Glycoprotein Disulfide Bond Reduction by Phosphine-Borane Complexes
by Raheem Remtulla, Sanjoy Kumar Das and Leonard A. Levin
Pharmaceuticals 2024, 17(11), 1417; https://doi.org/10.3390/ph17111417 - 23 Oct 2024
Viewed by 1603
Abstract
Background: Neurodegenerative diseases can cause vision loss by damaging retinal ganglion cells in the optic nerve. Novel phosphine-borane compounds (PBs) can protect these cells from oxidative stress via the reduction of disulfide bonds. However, the specific targets of these compounds are unknown. Proteomic [...] Read more.
Background: Neurodegenerative diseases can cause vision loss by damaging retinal ganglion cells in the optic nerve. Novel phosphine-borane compounds (PBs) can protect these cells from oxidative stress via the reduction of disulfide bonds. However, the specific targets of these compounds are unknown. Proteomic evidence suggests that myelin oligodendrocyte glycoprotein (MOG) is a potential target. MOG is of significant interest due to its role in anti-MOG optic neuritis syndrome. Methods: We used in silico modeling to explore the structural consequences of cleaving the extracellular domain MOG disulfide bond, both in isolation and in complex with anti-MOG antibodies. The potential binding of PBs to this bond was examined using molecular docking. Results: Cleaving the disulfide bond of MOG altered the structure of MOG dimers and reduced their energetic favorability by 46.13 kcal/mol. The energy profiles of anti-MOG antibody complexes were less favorable when the disulfide bond of MOG was reduced in the monomeric state by 55.21 kcal/mol, but the reverse was true in the dimeric state. PBs exhibited reducing capabilities with the MOG extracellular disulfide bond, with this best-scoring compound binding with an energy of −28.54 kcal/mol to the MOG monomer and −24.97 kcal/mol to the MOG dimer. Conclusions: These findings suggest that PBs can affect the structure of MOG dimers and the formation of antibody complexes by reducing the MOG disulfide bond. Structural changes in MOG could have implications for neurodegenerative diseases and anti-MOG syndrome. Full article
Show Figures

Graphical abstract

26 pages, 1528 KB  
Review
Blood–Brain Barrier Disruption in Neuroimmunological Disease
by Fumitaka Shimizu and Masayuki Nakamori
Int. J. Mol. Sci. 2024, 25(19), 10625; https://doi.org/10.3390/ijms251910625 - 2 Oct 2024
Cited by 32 | Viewed by 9595
Abstract
The blood–brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis [...] Read more.
The blood–brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert–Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage. Full article
(This article belongs to the Special Issue New Advance in Neuroinflammation)
Show Figures

Figure 1

20 pages, 5292 KB  
Article
Cellular and Immunological Analysis of 2D2/Th Hybrid Mice Prone to Experimental Autoimmune Encephalomyelitis in Comparison with 2D2 and Th Lines
by Kseniya S. Aulova, Andrey E. Urusov, Aleksander D. Chernyak, Ludmila B. Toporkova, Galina S. Chicherina, Valentina N. Buneva, Irina A. Orlovskaya and Georgy A. Nevinsky
Int. J. Mol. Sci. 2024, 25(18), 9900; https://doi.org/10.3390/ijms25189900 - 13 Sep 2024
Viewed by 1809
Abstract
Previously, we described the mechanisms of development of autoimmune encephalomyelitis (EAE) in 3-month-old C57BL/6, Th, and 2D2 mice. The faster and more profound spontaneous development of EAE with the achievement of deeper pathology occurs in hybrid 2D2/Th mice. Here, the cellular and immunological [...] Read more.
Previously, we described the mechanisms of development of autoimmune encephalomyelitis (EAE) in 3-month-old C57BL/6, Th, and 2D2 mice. The faster and more profound spontaneous development of EAE with the achievement of deeper pathology occurs in hybrid 2D2/Th mice. Here, the cellular and immunological analysis of EAE development in 2D2/Th mice was carried out. In Th, 2D2, and 2D2/Th mice, the development of EAE is associated with a change in the differentiation profile of hemopoietic bone marrow stem cells, which, in 2D2/Th, differs significantly from 2D2 and Th mice. Hybrid 2D2/Th mice demonstrate a significant difference in these changes in all strains of mice, leading to the production of antibodies with catalytic activities, known as abzymes, against self-antigens: myelin oligodendrocyte glycoprotein (MOG), DNA, myelin basic protein (MBP), and five histones (H1–H4) hydrolyze these antigens. There is also the proliferation of B and T lymphocytes in different organs (blood, bone marrow, thymus, spleen, lymph nodes). The patterns of changes in the concentration of antibodies and the relative activity of abzymes during the spontaneous development of EAE in the hydrolysis of these immunogens are significantly or radically different for the three lines of mice: Th, 2D2, and 2D2/Th. Several factors may play an essential role in the acceleration of EAE in 2D2/Th mice. The treatment of mice with MOG accelerates the development of EAE pathology. In the initial period of EAE development, the concentration of anti-MOG antibodies in 2D2/Th is significantly higher than in Th (29.1-fold) and 2D2 (11.7-fold). As shown earlier, antibodies with DNase activity penetrate cellular and nuclear membranes and activate cell apoptosis, stimulating autoimmune processes. In the initial period of EAE development, the concentration of anti-DNA antibodies in 2D2/Th hybrids is higher than in Th (4.6-fold) and 2D2 (25.7-fold); only 2D2/Th mice exhibited a very strong 10.6-fold increase in the DNase activity of IgGs during the development of EAE. Free histones in the blood are cytotoxic and stimulate the development of autoimmune diseases. Only in 2D2/Th mice, during different periods of EAE development, was a sharp increase in the anti-antibody activity in the hydrolysis of some histones observed. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 1602 KB  
Case Report
Isolated Intracranial Hypertensions as Onset of Myelin Oligodendrocyte Glycoprotein Antibody Disease
by Laura Papetti, Giulia Moltoni, Daniela Longo, Gabriele Monte, Francesco Dellepiane, Stefano Pro, Giorgia Bracaglia, Claudia Ruscitto, Alberto Verrotti and Massimiliano Valeriani
J. Clin. Med. 2024, 13(15), 4468; https://doi.org/10.3390/jcm13154468 - 30 Jul 2024
Cited by 6 | Viewed by 2529
Abstract
Myelin oligodendrocyte glycoprotein antibody disease (MOGAD) is characterized by multiple phenotypic conditions such as acute disseminated encephalomyelitis, optic neuritis, and myelitis. MOGAD’s spectrum is expanding, with potential symptoms of increased intracranial pressure that are similar to idiopathic intracranial hypertension (IIH). We report a [...] Read more.
Myelin oligodendrocyte glycoprotein antibody disease (MOGAD) is characterized by multiple phenotypic conditions such as acute disseminated encephalomyelitis, optic neuritis, and myelitis. MOGAD’s spectrum is expanding, with potential symptoms of increased intracranial pressure that are similar to idiopathic intracranial hypertension (IIH). We report a boy with new-onset continuous headache and a brain MRI at onset suggesting idiopathic intracranial hypertension (IIH). The patient showed resistance to treatment with acetazolamide and, after one month, developed optic neuritis in the left eye. Laboratory tests documented positive MOG antibodies (anti-MOG) in the serum. The final diagnosis was MOGAD, with the initial symptoms resembling IIH. Full article
(This article belongs to the Special Issue Advances in Child Neurology)
Show Figures

Figure 1

Back to TopTop