Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (180)

Search Parameters:
Keywords = mycotoxin production inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3260 KiB  
Article
Interaction of Trichoderma Species with Fusarium graminearum Growth and Its Trichothecene Biosynthesis as Further Contribution in Selection of Potential Biocontrol Agents
by Xianfeng Ren, Lixia Fan, Guidong Li, Ilya V. Lyagin, Bingchun Zhang, Mingxiao Ning, Mengmeng Yan, Jing Gao, Fei Wang, Changying Guo and Antonio F. Logrieco
J. Fungi 2025, 11(7), 521; https://doi.org/10.3390/jof11070521 - 14 Jul 2025
Viewed by 366
Abstract
The interactions of Fusarium graminearum PG-Fg1 and its main trichothecenes with the 28 Trichoderma isolates were studied in vitro. The antagonistic effect assessed by dual-culture tests showed that Trichoderma isolates arrested the growth of PG-Fg1 after contact, overgrew the PG-Fg1 colony and inhibited [...] Read more.
The interactions of Fusarium graminearum PG-Fg1 and its main trichothecenes with the 28 Trichoderma isolates were studied in vitro. The antagonistic effect assessed by dual-culture tests showed that Trichoderma isolates arrested the growth of PG-Fg1 after contact, overgrew the PG-Fg1 colony and inhibited the production of deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON) by up to 95.3%, 99.4%, and 99.6%, respectively. PG-Fg1 was hard to overgrow Trichoderma for further extension. Additionally, the inhibitory effects on PG-Fg1 by the Trichoderma metabolites, including volatiles and non-volatiles, were also investigated. Most of the Trichoderma isolates produced metabolites which inhibited PG-Fg1 growth and mycotoxins production. Specifically, Trichoderma non-volatiles and volatiles showed Fusarium growth inhibition rates ranging from 7% to 72% and 3% to 32%, respectively. Notably, non-volatile compounds from two isolates and volatiles from one isolate up-regulated the expression of DON biosynthesis genes (tri4 and tri5), leading to increased production of DON, 3-ADON, and 15-ADON. This study highlights the potential risk posed by certain Trichoderma strains as microbial agents, which can stimulate toxigenic fungi to produce higher levels of mycotoxins. Based on our results and previous reports, when selecting Trichoderma species as biocontrol agents against Fusarium graminearum, its effects on mycotoxins production should be carefully assessed, particularly given observed stimulatory impacts. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

17 pages, 778 KiB  
Review
Factors Affecting Patulin Production by Penicillium expansum in Apples
by Tamara Edina Gal, Ersilia Călina Alexa, Renata Maria Șumălan, Ionuț Dascălu and Olimpia Alina Iordănescu
Foods 2025, 14(13), 2310; https://doi.org/10.3390/foods14132310 - 30 Jun 2025
Viewed by 600
Abstract
The main mycotoxin found in apples is patulin (PAT), mostly produced by Penicillium expansum, during the storage of fruits. It is very difficult to control the quality of every fruit that enters the processing line, so there is a high probability that [...] Read more.
The main mycotoxin found in apples is patulin (PAT), mostly produced by Penicillium expansum, during the storage of fruits. It is very difficult to control the quality of every fruit that enters the processing line, so there is a high probability that apple juice, applesauce, apple cider, even products intended for babies, contain moldy fruits, with PAT content. This review paper provides detailed information about the extrinsic and intrinsic factors that affect PAT prevalence in apples. Extrinsic factors, such as temperature, air composition in the storage room or packaging material, play a key role in infection with P. expansum and PAT accumulation. Lower temperatures often prevent fungal growth and the production of the mycotoxin, whereas higher or unstable temperatures can promote the buildup of the toxin in infected fruits. Controlled atmosphere storage appears to inhibit the accumulation of PAT in apples. In terms of internal composition, variations in the pH of the fruits and flesh firmness significantly impact fungal growth and PAT production in the fruits. The presence of ethylene, sucrose and polyphenols are some of the decisive chemical components that regulate PAT buildup. Susceptibility of different cultivars is also genetically driven, but the size of the decay area and the toxin-producing capacity of the fungal strain have noteworthy influence as well. Knowledge of these elements helps to understand the mechanisms of PAT production. Full article
Show Figures

Figure 1

17 pages, 2154 KiB  
Article
Apricot Bee Pollen Alleviates Deoxynivalenol-Induced Cellular Toxicity in Bovine Granulosa Cells
by Ce Lv, Xiaoxue Zheng, Hanxiao Wu, Peihao Sun, Qun Lu, Fang Fang, Mingxiao Liu, Shuo Zhou, Rui Liu, Xiang Li, Liguo Yang and Aixin Liang
Animals 2025, 15(11), 1580; https://doi.org/10.3390/ani15111580 - 28 May 2025
Viewed by 416
Abstract
Apricot bee pollen is an important natural product that exhibits antioxidant, anti-inflammatory, and antimicrobial properties. Deoxynivalenol (DON), one of the most prevalent mycotoxins produced by Fusarium fungi, poses risks to both human and animal reproductive systems. We observed that exposure to DON inhibited [...] Read more.
Apricot bee pollen is an important natural product that exhibits antioxidant, anti-inflammatory, and antimicrobial properties. Deoxynivalenol (DON), one of the most prevalent mycotoxins produced by Fusarium fungi, poses risks to both human and animal reproductive systems. We observed that exposure to DON inhibited cell proliferation and induced apoptosis in bovine granulosa cells (bGCs), accompanied by a significant downregulation of PCNA expression and an upregulation of BAX expression. RNA sequencing analysis revealed that differentially expressed genes (DEGs) were primarily enriched in the oxidation-reduction process, oxidoreductase activity, and steroid biosynthesis. We further confirmed that DON exposure inhibited the production of estrogen and progesterone by decreasing the protein expression levels of CYP19A1 and StAR. Additionally, DON exposure increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in a dose-dependent manner, suggesting that DON induced oxidative stress in bGCs. Importantly, we demonstrated that apricot bee pollen ethanol extract (ABPE) increased the cell viability of bGCs and alleviated the effects of DON-induced cell viability reduction and estrogen dysfunction. Furthermore, ABPE attenuated the DON-induced increase in ROS levels and upregulated the expression of antioxidant-related gene heme oxygenase-1 (HO-1). These results reveal the protective effects of ABPE against DON-induced cell viability reduction, estrogen disorder, and oxidative stress, providing new insights into the potential of bee pollen as a promising natural agent to improve mycotoxin contamination. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

19 pages, 1121 KiB  
Article
Trichoderma harzianum in Biocontrol of Maize Fungal Diseases and Relevant Mycotoxins: From the Laboratory to the Field
by Ivana Mitrović, Petar Čanak, Sonja Tančić Živanov, Hunor Farkaš, Marko Vasiljević, Svetlana Ćujić, Miroslav Zorić and Bojan Mitrović
J. Fungi 2025, 11(6), 416; https://doi.org/10.3390/jof11060416 - 27 May 2025
Cited by 1 | Viewed by 928
Abstract
Background: Maize, one of the world’s most important food and feed crops, is often threatened by fungal infections that not only reduce yields but also contaminate grains with harmful mycotoxins. Methods: This study evaluated the biocontrol potential of Trichoderma harzianum K179 as an [...] Read more.
Background: Maize, one of the world’s most important food and feed crops, is often threatened by fungal infections that not only reduce yields but also contaminate grains with harmful mycotoxins. Methods: This study evaluated the biocontrol potential of Trichoderma harzianum K179 as an eco-friendly alternative to synthetic fungicides for protecting maize from two major pathogens, Fusarium graminearum and Aspergillus flavus. T. harzianum K179 was cultivated in a lab-scale bioreactor, and its antifungal activity was assessed through in vitro inhibition assays and two-year field trials. During the field trial, maize ear disease severity, yield, and mycotoxin levels in maize samples were monitored to assess the efficacy of the produced Trichoderma biopreparation. Results: In laboratory tests, T. harzianum K179 significantly inhibited both target pathogens. Field trials demonstrated that seed treatments with the Trichoderma bioagent reduced ear rot severity and increased grain yield compared to untreated and chemically treated controls. Notably, maize samples from T. harzianum-treated plots contained lower concentrations of key mycotoxins, including fumonisins and aflatoxins. Conclusions: These findings highlight the usefulness of T. harzianum K179 in integrated pest management strategies, offering a sustainable solution that enhances crop safety and productivity while mitigating the environmental risks associated with chemical fungicides. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection, 2nd Edition)
Show Figures

Figure 1

21 pages, 1053 KiB  
Review
Benefits of Probiotics—Biodetoxification
by Barbara Sionek, Aleksandra Szydłowska, Danuta Jaworska and Danuta Kołożyn-Krajewska
Appl. Sci. 2025, 15(10), 5297; https://doi.org/10.3390/app15105297 - 9 May 2025
Viewed by 1066
Abstract
The rapid growth of the world’s population is generating escalating demands for food production. Global food demand is expected to increase by 35% to 56% between 2010 and 2050. Therefore, food mass production is becoming more challenging. The chemicalization of food production, processing, [...] Read more.
The rapid growth of the world’s population is generating escalating demands for food production. Global food demand is expected to increase by 35% to 56% between 2010 and 2050. Therefore, food mass production is becoming more challenging. The chemicalization of food production, processing, transport, packaging, and storage is almost impossible to avoid. These factors, along with environmental pollution, contribute to the increase in food product contamination. Xenobiotics appearing in food, including a variety of toxic substances (heavy metals, acrylamide, polycyclic aromatic hydrocarbons), and pathogens (pathogenic bacteria, fungi, molds, and yeast-producing mycotoxins) can threaten consumers’ safety and have negative economic implications. In this regard, the introduction of effective detoxification methods appears to be very important. It can be accomplished by physical, chemical, and biological means. Many reports have proved that probiotics are useful in food biodetoxification. Probiotics effectively reduce food contamination (at various stages of food production) and, moreover, annihilate toxins present in the human body. Many in vitro studies have confirmed the biodetoxification properties of probiotics, demonstrating that they diminish the toxic effects of the main types of food contaminants (heavy metals, polycyclic aromatic hydrocarbons, pesticides, mycotoxins, nitrates and nitrites, acrylamide, alkylphenols, biogenic amines, and dioxins). Probiotics produce various bioactive compounds, including antimutagenic, antioxidant, and anti-carcinogenic compounds. Their protective and beneficial influence on human microbiota can modulate host inflammatory processes, inhibit carcinogenesis, and modify immune resistance. Detoxification with probiotics is environment-friendly and, unlike physical and chemical methods, does not adversely affect the nutritional value and quality of food. In addition, probiotics in food are associated with well-known human health benefits; therefore, as a functional food, they have gained common consumer acceptance. The large-scale application of biodetoxification methods in both agriculture and the food industry is a challenge for the future. Based on contemporary research, this review provides the mechanism of probiotic biodetoxification, possible applications of various probiotics, and future trends. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

21 pages, 4449 KiB  
Article
Zearalenone Exposure Damages Skeletal Muscle Through Oxidative Stress and Is Alleviated by Glutathione, Nicotinamide Mononucleotide, and Melatonin
by Dandan Li, Wei Fu, Jiyue Zhang, Yaqiu Lin, Xianrong Xiong, Jian Li and Yan Xiong
Antioxidants 2025, 14(5), 528; https://doi.org/10.3390/antiox14050528 - 28 Apr 2025
Viewed by 488
Abstract
Zearalenone (ZEN), a mycotoxin, is toxic to skeletal muscle, and the solution to alleviate its damage remains unknown. Here, we analyzed the toxic effect of ZEN on muscle and the mitigation of antioxidants (GSH, NMN, and melatonin) for this toxicity. The results showed [...] Read more.
Zearalenone (ZEN), a mycotoxin, is toxic to skeletal muscle, and the solution to alleviate its damage remains unknown. Here, we analyzed the toxic effect of ZEN on muscle and the mitigation of antioxidants (GSH, NMN, and melatonin) for this toxicity. The results showed that 0.02 mmol/L ZEN inhibited myoblast viability and myogenic differentiation, accompanied by reducing Type I and Type IIA and increasing Type IIX myofibers. Antioxidants (NMN with 0.5 mmol/L, GSH with 1 mmol/L, and melatonin with 1 mmol/L) rescued these phenotypes. Mice that were delivered 3 mg/kg body weight (BW)/day of ZEN by gavage for 35 days exhibited a similar trend of muscle fiber composition, but the gavage of antioxidants (NMN with 500 mg/kg BW/day, GSH with 300 mg/kg BW/day, and melatonin with 100 mg/kg BW/day) abolished this phenotype. Mechanistically, ZEN treatment increased ROS production, resulting in oxidative stress, mitochondrial dysfunction, and, subsequently, myofiber changes. Additionally, ZEN indirectly contributed to its damage, decreasing the abundance of Lactobacillus at the genus level and increasing Streptococcus sp. at the species level, which was associated with lactic acid production. Antioxidants partially rescued this microbiota composition. This study explores ZEN toxicity effects and alleviation of antioxidants, which provides new insights and attenuation solutions for ZEN damage to skeletal muscle. However, the underlying molecular mechanism of ZEN and antioxidants in the skeletal muscle still needs to be explored. Full article
(This article belongs to the Special Issue Antioxidant Response in Skeletal Muscle)
Show Figures

Figure 1

15 pages, 2947 KiB  
Article
4′-Hydroxydehydrokawain Mitigate the Cytotoxicity of Citrinin in Porcine Intestinal Epithelial Cells
by Seung Joon Lim, Sangsu Shin and Sang In Lee
Toxics 2025, 13(4), 315; https://doi.org/10.3390/toxics13040315 - 18 Apr 2025
Viewed by 466
Abstract
Citrinin (CTN) is a mycotoxin that adversely affects livestock by contaminating stored grains, leading to significant health and economic impacts. This study investigates the toxicological effects of CTN on porcine small intestinal epithelial cells (IPEC-J2) and explores potential mitigation strategies using natural products [...] Read more.
Citrinin (CTN) is a mycotoxin that adversely affects livestock by contaminating stored grains, leading to significant health and economic impacts. This study investigates the toxicological effects of CTN on porcine small intestinal epithelial cells (IPEC-J2) and explores potential mitigation strategies using natural products and chemical inhibitors. Our study demonstrates that CTN induces cytotoxicity through the TGF-β signaling pathway, triggering apoptosis and G2/M phase cell cycle arrest. We examined cell viability, cell cycle progression, and gene expression changes in IPEC-J2 cells treated with CTN, 4′-Hydroxydehydrokawain (4-HDK), and LY-364947, a TGF-β receptor inhibitor. LY-364947 treatment confirmed that CTN-induced toxicity is mediated through TGF-β signaling. Although 4-HDK alleviated CTN-induced cytotoxicity by improving cell viability and reducing apoptosis, its direct involvement in TGF-β inhibition remains unclear. These results suggest that CTN disrupts intestinal epithelial cell homeostasis via TGF-β activation, whereas 4-HDK may exert protective effects through an alternative mechanism. Our study provides novel insights into CTN-induced toxicity mechanisms and highlights the therapeutic potential of 4-HDK as a mitigator of mycotoxin-induced cellular damage. Full article
Show Figures

Graphical abstract

13 pages, 2003 KiB  
Article
Ivangustin Alleviates Deoxynivalenol-Induced Apoptosis by Regulating FOXO3a Translocation in Porcine Intestinal Epithelial Cells
by Tae Hong Kang, Sang Su Shin, Tae Hyun Kim and Sang In Lee
Toxins 2025, 17(4), 174; https://doi.org/10.3390/toxins17040174 - 2 Apr 2025
Cited by 1 | Viewed by 523
Abstract
Deoxynivalenol (DON) is a mycotoxin derived from Fusarium species. It is commonly found in crops and has a high detection rate in animal feedstuffs. We previously confirmed that apoptosis could be induced by DON through the FOXO3a (Forkhead box 3a) signaling pathway. In [...] Read more.
Deoxynivalenol (DON) is a mycotoxin derived from Fusarium species. It is commonly found in crops and has a high detection rate in animal feedstuffs. We previously confirmed that apoptosis could be induced by DON through the FOXO3a (Forkhead box 3a) signaling pathway. In this study, to identify a natural compound to mitigate DON-induced apoptosis via FOXO3a, we performed high-throughput screening. We found that ivangustin (IVAN) alleviated DON-induced cytotoxicity. It also decreased DON-mediated apoptosis and the expression levels of apoptosis-associated genes at the mRNA level. Furthermore, treatment with IVAN inhibited FOXO3a from translocating into the nucleus. The results demonstrated the mitigating effects of the natural compound IVAN on DON-induced apoptosis through the FOXO3a signaling pathway. This study focused on elucidating the mechanism underlying damage caused by DON. According to the results of this study, novel alternatives to mitigate DON cytotoxicity may be developed. This study could provide fundamental data for the formulation of mycotoxin alleviation strategies to improve pig productivity. Full article
(This article belongs to the Special Issue Alleviation of Mycotoxin-Induced Toxicity)
Show Figures

Figure 1

14 pages, 1583 KiB  
Article
A Novel Approach for Fungal Control with Ethyl Formate in Barley and Its Impact on Germination
by Eman Barkat, Xin Du, Jun-Ran Kim, Zhengyan Wang, Byung-Ho Lee, Abrar Uaraboa, Esra Uaraboa and Bong-Su Kim
Agriculture 2025, 15(7), 748; https://doi.org/10.3390/agriculture15070748 - 31 Mar 2025
Viewed by 585
Abstract
Fungi can degrade grain quality, produce harmful mycotoxins, and hinder germination in the post-harvest stage, resulting in significant economic losses. Ethyl formate (EF) is an efficient and eco-friendly fumigant for controlling pest insects in grains, horticulture, and quarantine treatments. However, there is a [...] Read more.
Fungi can degrade grain quality, produce harmful mycotoxins, and hinder germination in the post-harvest stage, resulting in significant economic losses. Ethyl formate (EF) is an efficient and eco-friendly fumigant for controlling pest insects in grains, horticulture, and quarantine treatments. However, there is a lack of research on the antifungal activity of EF and its degradation products on barley seeds. In this study, fifteen fungal species, predominantly Alternaria infectoria, were isolated and identified from seven Australian barley samples. Efficacy results indicated that EF significantly inhibited fungal growth at a commercial concentration of 2.4 mmol/L, except for Penicillium sp. 2, Fusarium chlamydosporum, and Rhizopus arrhizus. To control these EF-tolerant fungal species, the EF concentration was increased to 5 mmol/L, which achieved a 100% inhibition rate. The degradation product of EF, formic acid, effectively inhibited all EF-tolerant fungi, requiring only 0.08 mmol/L in the in vitro study. There were no significant differences in vigor and germination rates in barley treated with EF at concentrations of 2.5, 3.7, and 5 mmol/L. Additionally, EF treatments led to a significant increase in the barley root length from an average of 9.1 cm in the control group to 13.2, 13. 6, and 12.3 cm at 2.5, 3.7, and 5 mmol/L. The findings suggest that EF could be a suitable alternative fumigant to safeguard grain from fungal infestation, particularly in the context of advancing agricultural practices and improving seed germination quality. The degradation compound, formic acid, may contribute significantly to the overall antifungal function of ethyl formate fumigation, particularly in high-humidity environments. Full article
(This article belongs to the Special Issue Biosecurity Innovations for Pest Management in Agricultural Products)
Show Figures

Figure 1

22 pages, 10083 KiB  
Article
Biocontrol Potential of Bacillus subtilis A3 Against Corn Stalk Rot and Its Impact on Root-Associated Microbial Communities
by Liming Wang, Shiqi Jia, Yue Du, Hongzhe Cao, Kang Zhang, Jihong Xing and Jingao Dong
Agronomy 2025, 15(3), 706; https://doi.org/10.3390/agronomy15030706 - 14 Mar 2025
Cited by 2 | Viewed by 1115
Abstract
Fusarium stalk rot (FSR), a devastating soil-borne disease caused by Fusarium species, severely threatens global maize production through yield losses and mycotoxin contamination. Bacillus subtilis, a plant growth-promoting rhizobacterium (PGPR), has shown potential as a biocontrol agent against soil-borne pathogens, but its [...] Read more.
Fusarium stalk rot (FSR), a devastating soil-borne disease caused by Fusarium species, severely threatens global maize production through yield losses and mycotoxin contamination. Bacillus subtilis, a plant growth-promoting rhizobacterium (PGPR), has shown potential as a biocontrol agent against soil-borne pathogens, but its efficacy and mechanisms against maize FSR remain poorly understood. In this study, an identified strain of B. subtilis A3 was introduced to study its biological control potential against corn stalk rot. The bacteriostatic stability of the biocontrol strain was assessed, revealing that its inhibitory activity against F. graminearum remained consistent over five consecutive generations, indicating robust bacteriostatic stability. The strain also exhibited inhibitory effects on F. verticilliodes, F. proliferalum, and other pathogenic fungi, demonstrating it has broad-spectrum antibacterial activity. Indoor experiments showed that treatment with the biocontrol strain significantly increased plant height, stem diameter, and fresh weight, indicating a positive impact on corn growth. Additionally, the biocontrol strain A3 markedly reduced the lesion length of corn stalk rot, confirming its efficacy in controlling the disease. Field trials demonstrated that the growth of the A3-coated corn seeds was better than the control seeds, the control effect of FSR disease was 45.75%, and the yield increase was 3.6%. Microscopic observations revealed that the biocontrol strain A3 caused the hyphal tips of F. graminearum to swell and exhibit a beaded morphology, inhibiting normal growth. The volatile substances produced by A3 also showed significant antibacterial activity, with the antibacterial spectrum aligning with that of the biocontrol strain. Using headspace solid-phase microextraction and GC-MS, various antibacterial compounds were identified in the volatile substances. Analysis of root-associated microorganisms indicated that A3 significantly changed the microbial community composition. Co-occurrence network analysis revealed that A3-treated plants had fewer edges and lower negative correlations among bacterial communities. This study establishes the strong biocontrol potential of B. subtilis A3 against Fusarium stalk rot in corn, demonstrating its robust bacteriostatic stability, broad-spectrum antibacterial activity, positive impact on plant growth, and significant disease control efficacy, while also revealing its ability to alter root-associated microbial communities. These findings provide a foundation for further research into the mechanism of B. subtilis and its application in field biological control. Full article
(This article belongs to the Special Issue Environmentally Friendly Ways to Control Plant Disease)
Show Figures

Figure 1

15 pages, 1514 KiB  
Article
Unveiling a Novel Zearalenone Biodegradation Pathway in Metarhizium anisopliae and Elucidating the Role of Cytochrome P450
by Monika Nowak, Elżbieta Kozłowska, Justyna Agier, Aleksandra Góralczyk-Bińkowska and Sylwia Różalska
Int. J. Mol. Sci. 2025, 26(6), 2547; https://doi.org/10.3390/ijms26062547 - 12 Mar 2025
Viewed by 857
Abstract
Metarhizium fungi, essential for ecosystem function and commonly utilised in pest control, often occupy ecological niches contaminated by toxic compounds of both anthropogenic and microbiological origin. The present study reveals the potential of Metarhizium anisopliae for biodegradation of the Fusarium mycotoxin zearalenone (ZEN), [...] Read more.
Metarhizium fungi, essential for ecosystem function and commonly utilised in pest control, often occupy ecological niches contaminated by toxic compounds of both anthropogenic and microbiological origin. The present study reveals the potential of Metarhizium anisopliae for biodegradation of the Fusarium mycotoxin zearalenone (ZEN), a common contaminant of crops that poses a significant threat to human and animal health due to its oestrogenic potential and toxicity. A key aspect of the pathway described is the degradation of ZEN by cleaving the lactone bond, which results in a significant reduction in mycotoxin toxicity, highlighting the fungus’s bioremediation potential. Furthermore, this study provides the first evidence of subsequent degradation of ZEN metabolites through progressive shortening of the aliphatic chain, primarily via alternating oxidation and demethylation, ultimately yielding trihydroxybenzene. Significantly, lactone bond cleavage occurred not only in ZEN itself but also in its reduced forms, the zearalanols, formed through the initial reduction of ZEN to zearalenols. Elevated mRNA levels of cytochrome P450 (CYP450) monooxygenases in M. anisopliae exposed to ZEN indicate their significant involvement in degradation mechanisms. Intriguingly, the inhibition of CYP450 activity resulted in a substantial shift in the quantitative ratio of α- and β-epimers of zearalenols and zearalanols. The observed alteration towards β-form production likely stems from the inhibition of other CYP450-dependent reactions, indirectly influencing ZEN reduction pathways—a particularly noteworthy finding. These insights are crucial for developing strategies to utilise M. anisopliae in the bioremediation of ZEN-contaminated areas. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 265 KiB  
Review
Application Potential of Lactic Acid Bacteria in Horticultural Production
by Beata Kowalska and Anna Wrzodak
Sustainability 2025, 17(4), 1385; https://doi.org/10.3390/su17041385 - 8 Feb 2025
Cited by 1 | Viewed by 1839
Abstract
Lactic acid bacteria (LAB) are found on the surface of some plants, forming their natural microbiome, and are especially common in fermented plant products. They are microorganisms capable of performing lactic fermentation, during which they utilize carbohydrates and produce lactic acid. They are [...] Read more.
Lactic acid bacteria (LAB) are found on the surface of some plants, forming their natural microbiome, and are especially common in fermented plant products. They are microorganisms capable of performing lactic fermentation, during which they utilize carbohydrates and produce lactic acid. They are considered probiotic microorganisms. LAB are characterized by strong antagonistic activity against other microorganisms. The mechanism of action of these bacteria is mainly based on the production of substances with strong antimicrobial activity. Some strains of LAB also inhibit the secretion of mycotoxins by mold fungi or have the ability to eliminate them from the environment. With the changing climate and the need for plants to adapt to new, often stressful climatic conditions, the use of LAB in crops may offer a promising solution. These bacteria stimulate plant resistance to abiotic factors, i.e., drought and extreme temperatures. Research has also shown the ability of LAB to extend the storage life of fruits and vegetables. These bacteria reduce the number of unfavorable microorganisms that contaminate plant products and cause their spoilage. They also have a negative effect on human pathogenic bacteria, which can contaminate plant products and cause food poisoning in humans. When applied as an edible coating on leaves or fruits, LAB protect vegetables and fruits from microbial contamination; moreover, these vegetables and fruits can be served as carriers of probiotic bacteria that benefit human health. The presented properties of LAB predispose them to practical use, especially as components of biological plant protection products, growth biostimulants, and microbial fertilizer products. They have great potential to replace some agrochemicals and can be used as a safe component of biofertilizers and plant protection formulations for increasing plant resilience, crop productivity, and quality. The use of LAB is in line with the aims and objectives of sustainable horticulture. However, there are some limitations and gaps which should be considered before application, particularly regarding efficient and effective formulations and transfer of antibiotic resistance. Full article
18 pages, 6556 KiB  
Review
Reproductive Toxicity of Zearalenone and Its Molecular Mechanisms: A Review
by Qiongxia Lv, Wenjing Xu, Fan Yang, Wenjuan Wei, Xiaoguang Chen, Ziqiang Zhang and Yumei Liu
Molecules 2025, 30(3), 505; https://doi.org/10.3390/molecules30030505 - 23 Jan 2025
Cited by 4 | Viewed by 2227
Abstract
Zearalenone (ZEA) is one of the common mycotoxins in feeds. ZEA and its metabolites have estrogen-like activity and can competitively bind to estrogen receptors, causing reproductive dysfunction and damage to reproductive organs. The toxicity mechanism of ZEA mainly inhibits the antioxidant pathway and [...] Read more.
Zearalenone (ZEA) is one of the common mycotoxins in feeds. ZEA and its metabolites have estrogen-like activity and can competitively bind to estrogen receptors, causing reproductive dysfunction and damage to reproductive organs. The toxicity mechanism of ZEA mainly inhibits the antioxidant pathway and antioxidant enzyme activity, induces cell cycle arrest and DNA damage, and blocks the process of cellular autophagy to produce toxic effects. In animal husbandry practice, when animals ingest ZEA-contaminated feed, it is likely to lead to abortion in females, abnormal sperm viability in males with inflammatory reactions in various organs, and cancerous changes in the reproductive organs of humans when they ingest contaminated animal products. In this paper, we reviewed in detail how ZEA induces oxidative damage by inducing the generation of reactive oxygen species (ROS) and regulating the expression of genes related to oxidative pathways, induces germ cell apoptosis through the mitochondrial and death receptor pathways, and activates the expression of genes related to autophagy in order to induce cellular autophagy. In addition, the molecular detoxification mechanism of ZEA is also explored in this paper, aiming to provide a new direction and theoretical basis for the development of new ZEA detoxification methods to better reduce the global pollution and harm caused by ZEA. Full article
Show Figures

Figure 1

15 pages, 2215 KiB  
Article
Detoxification of Ustiloxin A Through Oxidative Deamination and Decarboxylation by Endophytic Fungus Petriella setifera
by Peng Li, Gan Gu, Xuwen Hou, Dan Xu, Jungui Dai, Yu Kuang, Mingan Wang, Daowan Lai and Ligang Zhou
Toxins 2025, 17(2), 48; https://doi.org/10.3390/toxins17020048 - 22 Jan 2025
Cited by 1 | Viewed by 1089
Abstract
Ustiloxins are a group of cyclopeptide mycotoxins produced by rice false smut pathogen Villosiclava virens (anamorph: Ustilaginoidea virens) which seriously threaten the safety production of rice and the health of humans and livestock. Ustiloxin A, accounting for 60% of the total ustiloxins, [...] Read more.
Ustiloxins are a group of cyclopeptide mycotoxins produced by rice false smut pathogen Villosiclava virens (anamorph: Ustilaginoidea virens) which seriously threaten the safety production of rice and the health of humans and livestock. Ustiloxin A, accounting for 60% of the total ustiloxins, is the main toxic component. Biotransformation, a process of modifying the functional groups of compounds by means of regio- or stereo-specific reactions catalyzed by the enzymes produced by organisms, has been considered as an efficient way to detoxify mycotoxins. In this study, the endophytic fungus Petriella setifera Nitaf10 was found to be able to detoxify ustiloxin A through biotransformation. Two transformed products were obtained by using the cell-free extract (CFE) containing intracellular enzymes of P. setifera Nitaf10. They were structurally characterized as novel ustiloxin analogs named ustiloxins A1 (1) and A2 (2) by analysis of the 1D and 2D NMR and HRESIMS spectra as well as by comparison with known ustiloxins. The cytotoxic activity of ustiloxins A1 (1) and A2 (2) was much weaker than that of ustiloxin A. The biotransformation of ustiloxin A was found to proceed via oxidative deamination and decarboxylation and was possibly catalyzed by the intracellular amine oxidase and oxidative decarboxylase in the CFE. An appropriate bioconversion was achieved by incubating ustiloxin A with the CFE prepared in 0.5 mol/L phosphate buffer (pH 7.0) for 24 to 48 h. The optimum initial pH values for the bioconversion of ustiloxin A were 7–9. Among eight metal ions (Co2+, Cu2+, Fe3+, Zn2+, Ba2+, Ca2+, Mg2+ and Mn2+) tested at 5 mmol/L, Cu2+, Fe3+ and Zn2+ totally inhibited the conversion of ustiloxin A. In conclusion, detoxification of ustiloxin A through oxidative deamination and decarboxylation is an efficient strategy. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

20 pages, 3171 KiB  
Article
The Global Secondary Metabolite Regulator AcLaeA Modulates Aspergillus carbonarius Virulence, Ochratoxin Biosynthesis, and the Mode of Action of Biopesticides and Essential Oils
by Maria K. Iliadi, Maria Varveri, Anastasia E. Kapetanakou, Panagiotis N. Skandamis and Dimitrios I. Tsitsigiannis
Toxins 2025, 17(1), 2; https://doi.org/10.3390/toxins17010002 - 24 Dec 2024
Cited by 1 | Viewed by 986
Abstract
Aspergillus carbonarius is considered one of the main fungi responsible for black and sour rot in grapes, as well as the production of the carcinogenic mycotoxin ochratoxin A. The global regulatory methyltransferase protein LaeA controls the production of various secondary metabolites in Aspergillus [...] Read more.
Aspergillus carbonarius is considered one of the main fungi responsible for black and sour rot in grapes, as well as the production of the carcinogenic mycotoxin ochratoxin A. The global regulatory methyltransferase protein LaeA controls the production of various secondary metabolites in Aspergillus species, as well as influences sexual and asexual reproduction and morphology. The goal of this study was to investigate the role of the regulatory gene AclaeA in physiology, virulence, and ochratoxin A (OTA) production by deleting this gene from the genome of a wild-type A. carbonarius strain. The evaluation data on the morphological characteristics, virulence experiments in three different grape varieties, and OTA analysis of ΔAclaeA mutants showed that the growth and the OTA production by ΔAclaeA strains were significantly reduced. The mutant strains were also less virulent, producing 40–50% less conidia in three different cultivars of grape berries. Additionally, the gene AclaeA was considerably repressed after the application of three commercial biopesticides (Trianum-P®, Vacciplant®, and Serenade® Max) and the essential oils (EOs) cinnamon, geranium, and thyme, which were also shown to inhibit OTA biosynthesis in A. carbonarius. The study of the regulatory gene AclaeA can contribute to a broader understanding of the role of secondary metabolites during A. carbonarius—grape interactions, as well as the discovery of the mode of action of biological plant protection products and EOs against this mycotoxigenic fungus. Full article
Show Figures

Figure 1

Back to TopTop