Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = mycotoxigenic potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1997 KiB  
Article
Occurrence of Aspergillus and Penicillium Species, Accumulation of Fungal Secondary Metabolites, and qPCR Detection of Potential Aflatoxigenic Aspergillus Species in Chickpea (Cicer arietinum L.) Seeds from Different Farming Systems
by Mara Quaglia, Francesco Tini, Emina Bajrami, Erica Quadrini, Mariateresa Fedeli, Michael Sulyok, Giovanni Beccari and Lorenzo Covarelli
Foods 2025, 14(15), 2610; https://doi.org/10.3390/foods14152610 - 25 Jul 2025
Viewed by 682
Abstract
The European chickpea market raises concerns about health risks for consumers due to contamination by mycotoxins. Contamination levels can vary depending on the farming system, and rapid and reliable screening tools are desirable. In this study, marketed chickpea seed samples from organic and [...] Read more.
The European chickpea market raises concerns about health risks for consumers due to contamination by mycotoxins. Contamination levels can vary depending on the farming system, and rapid and reliable screening tools are desirable. In this study, marketed chickpea seed samples from organic and non-organic farming systems were analyzed for fungal and mycotoxin contamination. Aspergillus and Penicillium were the most frequently identified mycotoxigenic genera. Significant differences in fungal detection were observed among the three isolation methods used, whose combined application is proposed to enhance detection efficiency. The number of Aspergillus and Penicillium colonies was significantly higher in the organic samples. Molecular analysis identified different species within each genus, including several not previously reported in chickpea, as well as potentially aflatoxigenic species such as A. flavus/oryzae and A. parasiticus. LC-MS/MS analysis revealed aflatoxin production only by A. parasiticus, which was present in low amounts. However, the presence of potentially aflatoxigenic Aspergillus species suggests that chickpeas should be monitored to detect their safety and subsequently protect consumer health. A qPCR protocol targeting the omt-1 gene, involved in aflatoxin biosynthesis, proved to be a promising rapid tool for detecting potentially aflatoxigenic Aspergillus species. Full article
Show Figures

Figure 1

13 pages, 1449 KiB  
Article
Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria
by Daniela Stoeva, Deyana Gencheva, Georgi Radoslavov, Peter Hristov, Rozalina Yordanova and Georgi Beev
Methods Protoc. 2025, 8(4), 78; https://doi.org/10.3390/mps8040078 - 9 Jul 2025
Viewed by 479
Abstract
Fusarium spp. represent a critical threat to maize production and food safety due to their mycotoxin production. This study introduces a refined molecular identification protocol integrating four genomic regions—ITS1, IGS, TEF-1α, and β-TUB—for robust species differentiation of Fusarium spp. isolates from [...] Read more.
Fusarium spp. represent a critical threat to maize production and food safety due to their mycotoxin production. This study introduces a refined molecular identification protocol integrating four genomic regions—ITS1, IGS, TEF-1α, and β-TUB—for robust species differentiation of Fusarium spp. isolates from post-harvest maize in Bulgaria. The protocol enhances species resolution, especially for closely related taxa within the Fusarium fujikuroi species complex (FFSC). A newly optimized multiplex PCR strategy was developed using three primer sets, each designed to co-amplify a specific pair of toxigenic genes: fum6/fum8, tri5/tri6, and tri5/zea2. Although all five genes were analyzed, they were detected through separate two-target reactions, not in a single multiplex tube. Among 17 identified isolates, F. proliferatum (52.9%) dominated, followed by F. verticillioides, F. oxysporum, F. fujikuroi, and F. subglutinans. All isolates harbored at least one toxin biosynthesis gene, with 18% co-harboring genes for both fumonisins and zearalenone. This dual-protocol approach enhances diagnostic precision and supports targeted mycotoxin risk management strategies. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

16 pages, 3920 KiB  
Article
Tangeretin Suppresses Fumonisin Production by Modulating an NmrA- and HSCARG-like Protein in Fusarium verticillioides
by Liuqing Wang, Wenlei Zhai, Dongmei Jiang, Nan Jiang, Jiaqi Yan, Haoyun Jiang and Meng Wang
J. Fungi 2025, 11(4), 313; https://doi.org/10.3390/jof11040313 - 15 Apr 2025
Viewed by 589
Abstract
Fumonisins are polyketide-derived mycotoxins posing significant health threats to humans and animals. Among these, fumonisin B1 (FB1) is the most prevalent mycotoxin, primarily produced by Fusarium verticillioides, especially in maize and its derived products. Tangeretin, a polymethoxyflavonoid, has been [...] Read more.
Fumonisins are polyketide-derived mycotoxins posing significant health threats to humans and animals. Among these, fumonisin B1 (FB1) is the most prevalent mycotoxin, primarily produced by Fusarium verticillioides, especially in maize and its derived products. Tangeretin, a polymethoxyflavonoid, has been identified as having potential medicinal properties, particularly as an antioxidant. To evaluate the antifungal and anti-mycotoxigenic properties of tangeretin and to elucidate the mechanisms underlying its inhibitory effects, assessments of fungal growth, FB1 production, conidial germination, and cellulase activity, antioxidant capacity and enzyme activities, transcriptomic analysis and gene deletion experiments were conducted. Consequently, tangeretin significantly curtailed fungal growth and FB1 production and provided protection against pathogenic infection on corn. It affected genes associated with fungal growth, conidial development, and antioxidant response. Furthermore, tangeretin interfered with the supply of biosynthetic substrate necessary for fumonisin production, particularly impacting pathways involved in alanine metabolism, pyruvate metabolism, fatty acid degradation, and sphingolipid metabolism. Notably, tangeretin downregulated four biosynthetic genes (Fum2, Fum3, Fum10 and Fum11) that are involved in the final steps of fumonisin formation. It likely disrupted the MAPK signaling pathway and targeted a putative NmrA- and HSCARG-like protein Fv_Tan1, which was identified as having positive effects on fungal growth and mycotoxin biosynthesis. This study presents a promising approach for controlling fumonisin contamination in agricultural settings. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

23 pages, 367 KiB  
Review
Occurrence of Moulds and Yeasts in the Slaughterhouse: The Underestimated Role of Fungi in Meat Safety and Occupational Health
by Melissa Alves Rodrigues, Pedro Teiga-Teixeira and Alexandra Esteves
Foods 2025, 14(8), 1320; https://doi.org/10.3390/foods14081320 - 11 Apr 2025
Cited by 1 | Viewed by 1070
Abstract
Despite their potential impact on meat safety and occupational health, fungi are often underestimated contaminants in slaughterhouses. Moulds and yeasts may be associated with meat contamination in multiple processing stages, and mycotoxigenic species, such as Aspergillus, Fusarium, and Penicillium, pose [...] Read more.
Despite their potential impact on meat safety and occupational health, fungi are often underestimated contaminants in slaughterhouses. Moulds and yeasts may be associated with meat contamination in multiple processing stages, and mycotoxigenic species, such as Aspergillus, Fusarium, and Penicillium, pose food safety concerns. Bioaerosols may carry infectious fungi at the slaughterhouse that are capable of causing respiratory conditions and allergies. Chronic exposure to mycotoxins can have hepatotoxic, nephrotoxic, and carcinogenic effects in humans. While bacterial contamination in meat has been widely studied, fungal contamination remains overlooked due to limited evidence of immediate disease and the perception that its risks are lower than those of bacteria, which may contribute to insufficient research, awareness, and standardised surveillance protocols. This review compiles published data on the occurrence of fungi in slaughterhouses over the past twenty-five years. It highlights the primary mould and yeast isolated species, mainly identified based on morphological and microscopic characteristics, providing context for their role in meat safety and occupational health. The findings emphasise the need for improved risk assessment and fungal monitoring in meat plants. Standardised fungal detection and control protocols are also suggested for implementation to enhance meat safety and workplace conditions. Full article
19 pages, 4352 KiB  
Article
Occurrence and Diversity of Fungi and Their Mycotoxin Production in Common Edible and Medicinal Substances from China
by Ling Chen, Junhui Wu, Shuhong Zhang, Xinqi Liu, Meiping Zhao, Weipeng Guo, Jumei Zhang, Wei Chen, Zhenjie Liu, Meiqing Deng and Qingping Wu
J. Fungi 2025, 11(3), 212; https://doi.org/10.3390/jof11030212 - 10 Mar 2025
Cited by 2 | Viewed by 1296
Abstract
Edible and medicinal substances can be contaminated by fungi during harvesting, processing, and storage, leading to mycotoxin production and quality deterioration. The distribution of mycotoxigenic fungi in edible and medicinal substances was investigated in this study. Fungi and mycotoxins were detected in 163 [...] Read more.
Edible and medicinal substances can be contaminated by fungi during harvesting, processing, and storage, leading to mycotoxin production and quality deterioration. The distribution of mycotoxigenic fungi in edible and medicinal substances was investigated in this study. Fungi and mycotoxins were detected in 163 commercially available edible and medicinal substances using standard microbiological techniques and high-performance liquid chromatography. A total of 92.0% of samples contained fungi (0.5–5.3 lg colony-forming units (CFU)·g−1); 208 fungal strains belonging to 16 genera were identified, predominantly Aspergillus and Penicillium. Aspergillus section Nigri (30.3%) produced fumonisin B2, which was distributed mainly in radix and rhizome samples. Thirteen samples had mycotoxins, of which ochratoxin A was the most common, followed by aflatoxins and zearalenone (ZEN). One Nelumbinis semen sample contained 10.75 μg·kg−1 AFB1, and one Raisin tree semen sample contained 484.30 μg·kg−1 ZEN, which exceeded regulatory limits in Europe and China. These findings highlight the potential risks associated with fungal contamination and mycotoxins in edible and medicinal substances. Enhanced quality control measures are essential to reduce contamination during harvesting, processing, and storage. Expanded mycotoxin screening, improved preservation techniques, and stricter regulatory standards need to be implemented to ensure consumer safety. Full article
Show Figures

Figure 1

40 pages, 2108 KiB  
Article
Multi-Mycotoxin Contamination of Aquaculture Feed: A Global Survey
by Christiane Gruber-Dorninger, Anneliese Müller and Roy Rosen
Toxins 2025, 17(3), 116; https://doi.org/10.3390/toxins17030116 - 1 Mar 2025
Cited by 3 | Viewed by 1717
Abstract
Plant-based materials are increasingly being used as ingredients of aquaculture feed. These materials are prone to mycotoxin contamination, as mycotoxigenic fungi infest crop plants in the field and agricultural products during storage. As mycotoxins can cause toxic effects in aquatic animals, their occurrence [...] Read more.
Plant-based materials are increasingly being used as ingredients of aquaculture feed. These materials are prone to mycotoxin contamination, as mycotoxigenic fungi infest crop plants in the field and agricultural products during storage. As mycotoxins can cause toxic effects in aquatic animals, their occurrence in feedstuffs should be monitored. To this end, we performed an extensive global survey of mycotoxin contamination in aquaculture feed and plant-based feed raw materials. We collected samples of compound feed for fish (n = 226) and shrimps (n = 61), maize (n = 3448), maize DDGS (n = 149), wheat (n = 1578), soybean (n = 428), and rice (n = 65). We analyzed concentrations of 51 mycotoxins, emerging mycotoxins, masked mycotoxins, and mycotoxin metabolites. Mycotoxins were almost ubiquitously present in compound feed, as >90% of samples were contaminated with at least one mycotoxin. Feed raw materials exhibited distinct mycotoxin occurrence patterns consistent with known susceptibility to fungal pathogens and with their production process. Unsafe concentrations of aflatoxin B1 exceeding the EU maximum level were detected in 7.2% of fish feed samples. While most feedstuffs complied with EU guidance values for deoxynivalenol, zearalenone, and fumonisins, a comparison of detected concentrations with dietary concentrations reported to cause adverse effects in fish and shrimps in published studies indicated that significant fractions of samples contained potentially harmful levels of these mycotoxins. In addition to regulated mycotoxins, several emerging mycotoxins (e.g., enniatins, beauvericin, alternariol, moniliformin) were prevalent. Feed was frequently co-contaminated with multiple mycotoxins indicating a risk of combined effects. In conclusion, mycotoxin contamination was common in aquaculture feed and fractions of samples were contaminated with mycotoxin levels known to exert adverse effects in aquaculture species. Results of this survey highlight the necessity for targeted studies on the effects of frequently detected mycotoxin mixtures and emerging mycotoxins in fish and shrimp. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

14 pages, 679 KiB  
Review
Biocontrol of Mycotoxigenic Fungi by Actinobacteria
by Louise Maud, Nathalie Barakat, Julie Bornot, Selma P. Snini and Florence Mathieu
J. Fungi 2025, 11(1), 4; https://doi.org/10.3390/jof11010004 - 24 Dec 2024
Viewed by 1380
Abstract
Actinobacteria are well known for their production of metabolites of interest. They have been previously studied to identify new antibiotics in medical research and for their ability to stimulate plant growth in agronomic research. Actinobacteria represents a real source of potential biocontrol agents [...] Read more.
Actinobacteria are well known for their production of metabolites of interest. They have been previously studied to identify new antibiotics in medical research and for their ability to stimulate plant growth in agronomic research. Actinobacteria represents a real source of potential biocontrol agents (BCAs) today. With the aim of reducing the use of phytosanitary products by 50% with the different Ecophyto plans, a possible application is the fight against mycotoxin-producing fungi in food matrices and crops using BCAs. To deal with this problem, the use of actinobacteria, notably belonging to the Streptomyces genus, or their specialized metabolites seems to be a solution. In this review, we focused on the impact of actinobacteria or their metabolites on the development of mycotoxigenic fungi and mycotoxin production on the one hand, and on the other hand on their ability to detoxify food matrices contaminated by mycotoxins. Full article
(This article belongs to the Special Issue Mycotoxin Contamination and Control in Food)
Show Figures

Figure 1

14 pages, 1337 KiB  
Article
Assessment of Fumonisin, Deoxynivalenol, and Zearalenone Levels and the Occurrence of Mycotoxigenic Fusarium Species in Cereal Grains from Muscat, Sultanate of Oman
by Fatma Khuseib Hamed Al-Rashdi, Abdullah Mohammed Al-Sadi, Mostafa Ibrahim Waly, Shah Hussain and Rethinasamy Velazhahan
Agriculture 2024, 14(12), 2225; https://doi.org/10.3390/agriculture14122225 - 5 Dec 2024
Cited by 1 | Viewed by 1953
Abstract
Mycotoxin contamination in agricultural goods is a major global problem due to its negative impact on human and animal health. The principal mycotoxin producers are fungal species from the genera Fusarium, Aspergillus, Alternaria, and Penicillium. The toxigenic fungal species [...] Read more.
Mycotoxin contamination in agricultural goods is a major global problem due to its negative impact on human and animal health. The principal mycotoxin producers are fungal species from the genera Fusarium, Aspergillus, Alternaria, and Penicillium. The toxigenic fungal species produce the mycotoxins as secondary metabolites when they invade agricultural commodities during crop cultivation in the field (preharvest) or after harvesting or during transport and storage. This study was designed to investigate the levels of Fusarium mycotoxins, viz., fumonisin (FUM), zearalenone (ZEN), and deoxynivalenol (DON) in cereal grain samples collected from Muscat, Sultanate of Oman during 2023-24. A total of 90 cereal grain (wheat, corn, rice, barley) samples from local markets at Muscat, the Plant Quarantine Department, Oman, and Oman Flour Mills Company were analyzed using competitive enzyme immunoassay kits. Furthermore, Fusarium spp. associated with the contaminated grain samples were isolated, and their mycotoxin-producing potential was assessed. The results indicated that FUM, ZEN, and DON levels were below the detection limit (LOD) in 81%, 97%, and 44% of the samples, respectively. Two out of fifteen corn samples and one out of thirty-seven wheat samples tested exceeded the maximum permissible limit for FUM and ZEN, respectively, as set by the European Commission. A total of 19 Fusarium spp. associated with the contaminated grain samples were isolated and identified through molecular techniques. Sixteen isolates of F. verticillioides, one isolate of F. thapsinum, and two new Fusarium species were identified based on nuclear ribosomal DNA internal transcribed spacer and elongation factor 1-alpha sequences. Two isolates of F. verticillioides (FQD-1 and FQD-20) produced FUM levels exceeding 2000 µg kg−1. The maximum ZEN concentration was observed in F. verticillioides FQD-20 (9.2 µg kg−1), followed by F. verticillioides FQD-2 (2.8 µg kg−1) and Fusarium sp. FOFMC-26 (2.5 µg kg−1). All tested Fusarium strains produced DON, with levels ranging from 25.6 to 213 µg kg−1, with F. thapsinum FQD-4 producing the highest level (213 µg kg−1). To our knowledge, this is the first report on the occurrence of Fusarium mycotoxins and mycotoxigenic Fusarium spp. in food commodities in Oman. Full article
Show Figures

Figure 1

18 pages, 3494 KiB  
Communication
The Inhibitory Activity of Salicylaldehyde Compounds on Aspergillus Species and Their Effects on Aflatoxin Production and Crop Seed Germination
by Jong H. Kim, Kathleen L. Chan, William M. Hart-Cooper, DeAngela Ford, Kaydren Orcutt, Siov Bouy L. Sarreal, Jeffrey D. Palumbo and William J. Orts
Appl. Sci. 2024, 14(21), 10000; https://doi.org/10.3390/app142110000 - 1 Nov 2024
Cited by 1 | Viewed by 1646
Abstract
Crops such as tree nuts, corn and peanut are highly susceptible to infestation by the aspergilli Aspergillus flavus or Aspergillus parasiticus and subsequent aflatoxin (AF) contamination, a serious threat to public food safety. Conventional control of the aspergilli has been through the application [...] Read more.
Crops such as tree nuts, corn and peanut are highly susceptible to infestation by the aspergilli Aspergillus flavus or Aspergillus parasiticus and subsequent aflatoxin (AF) contamination, a serious threat to public food safety. Conventional control of the aspergilli has been through the application of fungicides; however, certain fungicides at sub-optimal doses have been correlated with increased production of mycotoxins including AF. Natural products (NP) have been a potential source of antifungal agents. In this study, we performed risk assessment testing, for which thirteen NP/derivatives (generally recognized as safe) were examined at sub-inhibitory concentrations to determine the enhancement of AF production in aspergilli. We found that benzaldehyde derivatives or thymol (THY) enhanced AF production in aspergilli, while 4-isopropyl-3-methylphenol (4I3M), a synthetic analog of the NP THY and carvacrol, or salicylaldehyde (SLD) exerted a potent antifungal or mycotoxin-inhibitory effect. In seed testing (corn, pistachio kernels), SLD effectively prevented fungal growth as a fumigant, while 4I3M completely inhibited AF production at ≥1.0 mM. Therefore, we concluded that NP/derivatives that do not have any significant environmental impact can be a potent source of antifungal or anti-mycotoxigenic agents, either in their nascent form or as leads for more effective derivatives; however, NP should be applied at optimum concentrations to prevent the abnormal enhancement of mycotoxin production by fungi. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Modulation of Growth and Mycotoxigenic Potential of Pineapple Fruitlet Core Rot Pathogens during In Vitro Interactions
by Manon Vignassa, Christian Soria, Noël Durand, Charlie Poss, Jean-Christophe Meile, Marc Chillet and Sabine Schorr-Galindo
Toxins 2024, 16(8), 344; https://doi.org/10.3390/toxins16080344 - 7 Aug 2024
Viewed by 1525
Abstract
Pineapple Fruitlet Core Rot (FCR) is a fungal disease characterized by a multi-pathogen pathosystem. Recently, Fusarium proliferatum, Fusarium oxysporum, and Talaromyces stollii joined the set of FCR pathogens until then exclusively attributed to Fusarium ananatum. The particularity of FCR relies on the presence of [...] Read more.
Pineapple Fruitlet Core Rot (FCR) is a fungal disease characterized by a multi-pathogen pathosystem. Recently, Fusarium proliferatum, Fusarium oxysporum, and Talaromyces stollii joined the set of FCR pathogens until then exclusively attributed to Fusarium ananatum. The particularity of FCR relies on the presence of healthy and diseased fruitlets within the same infructescence. The mycobiomes associated with these two types of tissues suggested that disease occurrence might be triggered by or linked to an ecological chemical communication-promoting pathogen(s) development within the fungal community. Interactions between the four recently identified pathogens were deciphered by in vitro pairwise co-culture bioassays. Both fungal growth and mycotoxin production patterns were monitored for 10 days. Results evidenced that Talaromyces stollii was the main fungal antagonist of Fusarium species, reducing by 22% the growth of Fusarium proliferatum. A collapse of beauvericin content was observed when FCR pathogens were cross-challenged while fumonisin concentrations were increased by up to 7-fold. Antagonism between Fusarium species and Talaromyces stollii was supported by the diffusion of a red pigmentation and droplets of red exudate at the mycelium surface. This study revealed that secondary metabolites could shape the fungal pathogenic community of a pineapple fruitlet and contribute to virulence promoting FCR establishment. Full article
(This article belongs to the Special Issue Toxins: 15th Anniversary)
Show Figures

Figure 1

11 pages, 1897 KiB  
Article
Exploring a Cheese Ripening Process That Hinders Ochratoxin A Production by Penicillium nordicum and Penicillium verrucosum
by Alicia Rodríguez, Naresh Magan and Josué Delgado
Biology 2024, 13(8), 582; https://doi.org/10.3390/biology13080582 - 1 Aug 2024
Cited by 4 | Viewed by 1645
Abstract
A lack of control of the technological abiotic parameters apparent during cheese manufacture, including temperature and relative humidity, results in this dairy product being prone to mold contamination. Sometimes, inoculant molds are used to obtain the characteristic sensory properties of this type of [...] Read more.
A lack of control of the technological abiotic parameters apparent during cheese manufacture, including temperature and relative humidity, results in this dairy product being prone to mold contamination. Sometimes, inoculant molds are used to obtain the characteristic sensory properties of this type of product. However, during the maturation process, some unwanted molds can colonize the ripening cheese and produce mycotoxins. Mycotoxigenic molds such as Penicillium nordicum and Penicillium verrucosum can colonize ripened cheeses, contaminating them with ochratoxin A (OTA), a nephrotoxic 2B toxin. Thus, the presence of OTA in cheeses could represent a hazard to consumers’ health. This study has evaluated the growth and OTA production of P. nordicum and P. verrucosum on a cheese analogue under simulated ripening conditions of 10 and 15 °C and 0.96 water activity (aw). Ecophysiological, molecular, and analytical tools assessed the mold growth, gene expression, and OTA production under these environmental conditions. Both species were able to effectively colonize the cheese under these ripening conditions. However, neither species expressed the otapks and otanps biosynthetic genes or produced phenotypic OTA. Therefore, these results suggest a relatively low risk of exposure to OTA for consumers of this type of cheese product. The conditions used were thus appropriate for cheese ripening to minimize the potential for contamination with such mycotoxins. An appropriate adjustment of the technological ripening parameters during such cheese manufacture could contribute to OTA-free cheeses. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

13 pages, 435 KiB  
Article
Field Assessment of Lamium album in Reducing Mycotoxin Biosynthesis in Winter Wheat Infected by Fusarium culmorum
by Pascaline Aimee Uwineza, Maria Kwiatkowska, Romuald Gwiazdowski, Łukasz Stępień, Marcin Bryła and Agnieszka Waśkiewicz
Agriculture 2024, 14(5), 647; https://doi.org/10.3390/agriculture14050647 - 23 Apr 2024
Viewed by 1539
Abstract
Fungicides play a crucial role in conventional agriculture for disease control, but their prolonged use raises health and environmental concerns. Fusarium culmorum (F. culmorum), a major wheat pathogen causing Fusarium head blight (FHB) and Fusarium crown rot (FCR), poses significant mycotoxigenic [...] Read more.
Fungicides play a crucial role in conventional agriculture for disease control, but their prolonged use raises health and environmental concerns. Fusarium culmorum (F. culmorum), a major wheat pathogen causing Fusarium head blight (FHB) and Fusarium crown rot (FCR), poses significant mycotoxigenic threats. The application of natural plant extracts has been proven to fight against phytopathogenic fungi. This study aimed to a field experiment that was carried out at the Field Experimental Station of the Institute of Plant Protection—National Research Institute in Winna Góra, Poland, during the 2022/2023 season to evaluate the potential of Lamium album (L. album) flower extract as a foliar spray against mycotoxigenic fungi in two winter wheat varieties: Arkadia and Julius. The supercritical carbon dioxide extraction method (SC-CO2) was employed to obtain the L. album flower extract. Ergosterol (ERG) and mycotoxin accumulation in the harvested wheat grains were analyzed using chromatography-based methods. The results demonstrated a notable reduction in ERG content in the field plots treated with L. album flower extract, from 26.07 µg/g (control group) to 8.91 µg/g (extract-treated group) for Arkadia and from 70.02 µg/g (control group) to 30.20 µg/g (extract-treated group) for Julius. The treatment with L. album reduced mycotoxin biosynthesis in both varieties, with deoxynivalenol (DON) and zearalenone (ZEN) production significantly decreased. Additionally, Arkadia exhibited greater resistance to Fusarium infection, and the antifungal effect of L. album was more pronounced than in the Julius variety, which proved to be more sensitive. In conclusion, L. album flower extract exhibited promising antifungal effects in field experiments to fight against F. culmorum in winter wheat varieties, suggesting a potential alternative to synthetic fungicides. However, as complete prevention of mycotoxin contamination was not achieved, further research is warranted to optimize extract concentrations and conduct long-term analyses to consider this plant extract as a sustainable control agent. Full article
(This article belongs to the Special Issue Feature Papers in Agricultural Product Quality and Safety)
Show Figures

Figure 1

15 pages, 2214 KiB  
Article
Biopreservative and Anti-Mycotoxigenic Potentials of Lactobacillus paracasei MG847589 and Its Bacteriocin in Soft White Cheese
by Mohamed G. Shehata, Tawfiq Alsulami, Nourhan M. Abd El-Aziz, Hagar S. Abd-Rabou, Sobhy A. El Sohaimy, Amira M. G. Darwish, Karolina Hoppe, Hatem S. Ali and Ahmed Noah Badr
Toxins 2024, 16(2), 93; https://doi.org/10.3390/toxins16020093 - 7 Feb 2024
Cited by 7 | Viewed by 2694
Abstract
Probiotics and their bacteriocins have increasingly attracted interest for their use as safe food preservatives. This study aimed to produce soft white cheese fortified with Lacticaseibacillus MG847589 (Lb. paracasei MG847589) and/or its bacteriocin; cheese with Lacticaseibacillus (CP), cheese with bacteriocin (CB), and [...] Read more.
Probiotics and their bacteriocins have increasingly attracted interest for their use as safe food preservatives. This study aimed to produce soft white cheese fortified with Lacticaseibacillus MG847589 (Lb. paracasei MG847589) and/or its bacteriocin; cheese with Lacticaseibacillus (CP), cheese with bacteriocin (CB), and cheese with both Lacticaseibacillus and bacteriocin (CPB) were compared to control cheese (CS) to evaluate their biopreservative and anti-mycotoxigenic potentials for prolonged shelf life and safe food applications. The effects of these fortifications on physiochemical, microbial, texture, microstructure, and sensory properties were studied. Fortification with Lacticaseibacillus (CP) increased acidity (0.61%) and microbial counts, which may make the microstructure porous, while CPB showed intact microstructure. The CPB showed the highest hardness value (3988.03 g), while the lowest was observed with CB (2525.73 g). Consequently, the sensory assessment reflected the panelists’ preference for CPB, which gained higher scores than the control (CS). Fortification with Lb. paracasei MG847589 and bacteriocin (CPB) showed inhibition effects against S. aureus from 6.52 log10 CFU/g at time zero to 2.10 log10 CFU/g at the end of storage, A. parasiticus (from 5.06 to 3.03 log10 CFU/g), and P. chrysogenum counts (from 5.11 to 2.86 log10 CFU/g). Additionally, CPB showed an anti-mycotoxigenic effect against aflatoxins AFB1 and AFM1, causing them to be decreased (69.63 ± 0.44% and 71.38 ± 0.75%, respectively). These potentials can extend shelf life and pave the way for more suggested food applications of safe food production by fortification with both Lb. paracasei MG847589 and its bacteriocin as biopreservatives and anti-mycotoxigenic. Full article
(This article belongs to the Special Issue Strategies to Prevent Mycotoxin Contamination of Food and Feed)
Show Figures

Figure 1

22 pages, 3553 KiB  
Article
Cytotoxic Effects of Major and Emerging Mycotoxins on HepaRG Cells and Transcriptomic Response after Exposure of Spheroids to Enniatins B and B1
by France Coulet, Monika Coton, Cristian Iperi, Marine Belinger Podevin, Emmanuel Coton and Nolwenn Hymery
Toxins 2024, 16(1), 54; https://doi.org/10.3390/toxins16010054 - 18 Jan 2024
Cited by 4 | Viewed by 2769
Abstract
Mycotoxins, produced by fungi, frequently occur at different stages in the food supply chain between pre- and postharvest. Globally produced cereal crops are known to be highly susceptible to contamination, thus constituting a major public health concern. Among the encountered mycotoxigenic fungi in [...] Read more.
Mycotoxins, produced by fungi, frequently occur at different stages in the food supply chain between pre- and postharvest. Globally produced cereal crops are known to be highly susceptible to contamination, thus constituting a major public health concern. Among the encountered mycotoxigenic fungi in cereals, Fusarium spp. are the most frequent and produce both regulated (i.e., T-2 toxin, deoxynivalenol -DON-, zearalenone -ZEA-) and emerging (i.e., enniatins -ENNs-, beauvericin -BEA-) mycotoxins. In this study, we investigated the in vitro cytotoxic effects of regulated and emerging fusariotoxins on HepaRG cells in 2D and 3D models using undifferentiated and differentiated cells. We also studied the impact of ENN B1 and ENN B exposure on gene expression of HepaRG spheroids. Gene expression profiling pinpointed the differentially expressed genes (DEGs) and overall similar pathways were involved in responses to mycotoxin exposure. Complement cascades, metabolism, steroid hormones, bile secretion, and cholesterol pathways were all negatively impacted by both ENNs. For cholesterol biosynthesis, 23/27 genes were significantly down-regulated and could be correlated to a 30% reduction in cholesterol levels. Our results show the impact of ENNs on the cholesterol biosynthesis pathway for the first time. This finding suggests a potential negative effect on human health due to the essential role this pathway plays. Full article
(This article belongs to the Special Issue Mycotoxin Health Exposure: Molecular Interactions and Cytotoxicity)
Show Figures

Graphical abstract

16 pages, 5874 KiB  
Article
Exploring the Biocontrol Capability of Non-Mycotoxigenic Strains of Penicillium expansum
by Belén Llobregat, Luis González-Candelas and Ana-Rosa Ballester
Toxins 2024, 16(1), 52; https://doi.org/10.3390/toxins16010052 - 17 Jan 2024
Cited by 5 | Viewed by 3082
Abstract
Penicillium expansum is one the major postharvest pathogens of pome fruit during postharvest handling and storage. This fungus also produces patulin, which is a highly toxic mycotoxin that can contaminate infected fruits and their derived products and whose levels are regulated in many [...] Read more.
Penicillium expansum is one the major postharvest pathogens of pome fruit during postharvest handling and storage. This fungus also produces patulin, which is a highly toxic mycotoxin that can contaminate infected fruits and their derived products and whose levels are regulated in many countries. In this study, we investigated the biocontrol potential of non-mycotoxigenic strains of Penicillium expansum against a mycotoxigenic strain. We analyzed the competitive behavior of two knockout mutants that were unable to produce patulin. The first mutant (∆patK) involved the deletion of the patK gene, which is the initial gene in patulin biosynthesis. The second mutant (∆veA) involved the deletion of veA, which is a global regulator of primary and secondary metabolism. At the phenotypic level, the ∆patK mutant exhibited similar phenotypic characteristics to the wild-type strain. In contrast, the ∆veA mutant displayed altered growth characteristics compared with the wild type, including reduced conidiation and abnormal conidiophores. Neither mutant produced patulin under the tested conditions. Under various stress conditions, the ∆veA mutants exhibited reduced growth and conidiation when exposed to stressors, including cell membrane stress, oxidative stress, osmotic stress, and different pH values. However, no significant changes were observed in the ∆patK mutant. In competitive growth experiments, the presence of non-mycotoxigenic strains reduced the population of the wild-type strain during in vitro growth. Furthermore, the addition of either of the non-mycotoxigenic strains resulted in a significant decrease in patulin levels. Overall, our results suggest the potential use of non-mycotoxigenic mutants, particularly ∆patK mutants, as biocontrol agents to reduce patulin contamination in food and feed. Full article
(This article belongs to the Special Issue Effect of Mycotoxin on Crop and Methods of Prevention and Degradation)
Show Figures

Figure 1

Back to TopTop