Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = murine HCC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 588 KiB  
Review
Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights
by Luca Filippi, Viviana Frantellizzi, Luca Urso, Giuseppe De Vincentis and Nicoletta Urbano
Biomedicines 2025, 13(7), 1570; https://doi.org/10.3390/biomedicines13071570 - 26 Jun 2025
Viewed by 878
Abstract
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity [...] Read more.
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity and tumor uptake but suffering from prolonged circulation times and suboptimal signal-to-background ratios. To address these limitations, interest has shifted toward low-molecular-weight vectors—synthetic peptides and small antibody fragments—labeled with shorter-lived radionuclides (e.g., 68Ga and 18F) to enable rapid pharmacokinetics and same-day imaging protocols. Emerging platforms such as affibodies and aptamers offer further advantages in target affinity and reduced immunogenicity. However, clinical translation requires rigorous validation: larger, histologically confirmed cohorts, head-to-head comparison with CT/MRI, and correlation with hard clinical endpoints. Moreover, leveraging GPC3 expression as a biomarker could guarantee a deeper knowledge of tumor biology—differentiation grade and vascular invasion risk—and guide theranostic strategies. While β-emitters (90Y, 177Lu) have been explored for GPC3-directed therapy, their efficacy is influenced by oxygenation and cell-cycle status, whereas α-emitters (225Ac) may overcome these constraints, albeit with challenges in radionuclide selection and daughter nuclide management. Finally, dual-targeting probes combining GPC3 and prostate-specific membrane antigen (PSMA) have demonstrated superior uptake and retention in murine models, suggesting a versatile approach for future clinical diagnostics and therapy planning. Full article
Show Figures

Figure 1

14 pages, 10417 KiB  
Article
Mechanistic Insights into the Anti-Hepatocellular Carcinoma Effects of ACY-1215: p53 Acetylation and Ubiquitination Regulation
by Yi Yin, Yutong Du, Yiting Xu, Zhuan Zhu, Yu Hu, Lingling Xu, Kunming Yang, Tian Chen, Yuyang Shi, Chengcheng Wang and Yali Zhang
Curr. Issues Mol. Biol. 2025, 47(5), 338; https://doi.org/10.3390/cimb47050338 - 8 May 2025
Viewed by 629
Abstract
As a major global health challenge, hepatocellular carcinoma (HCC) still faces substantial limitations in its treatment options. This study investigates the anti-HCC potential of ACY-1215, a selective Histone deacetylase 6 (HDAC6) inhibitor, and its mechanism targeting p53 regulation. In vitro studies conducted with [...] Read more.
As a major global health challenge, hepatocellular carcinoma (HCC) still faces substantial limitations in its treatment options. This study investigates the anti-HCC potential of ACY-1215, a selective Histone deacetylase 6 (HDAC6) inhibitor, and its mechanism targeting p53 regulation. In vitro studies conducted with HepG2 and SMMC-7721 cells revealed that ACY-1215 markedly inhibited HCC cell proliferation, migratory capacity, and invasive potential, as evidenced by CCK-8, colony formation, and Transwell assays. Furthermore, ACY-1215 induced caspase-dependent apoptosis. Mechanistically, ACY-1215 enhanced p53 acetylation by disrupting HDAC6-p53 interaction, thereby stabilizing p53 protein levels. Concurrently, it inhibited Murine Double Minute 2 (MDM2)-mediated ubiquitination, blocking proteasomal degradation and prolonging p53 half-life. This dual modulation restored p53 transcriptional activity, leading to the upregulation of downstream effector molecules associated with cell cycle regulation and apoptosis. Collectively, our findings reveal that ACY-1215 exerts potent anti-HCC effects through coordinated regulation of p53 acetylation and ubiquitination, offering a novel dual-targeting strategy for HCC therapy. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 14523 KiB  
Article
Porcine Recombinant NK-Lysin Inhibits the Growth and Metastasis of Murine Hepatocellular Carcinoma In Vivo
by Kuohai Fan, Zhiwei Feng, Dahai Zhao, Xiaozhong Zheng, Wei Yin, Na Sun, Panpan Sun and Hongquan Li
Molecules 2025, 30(6), 1234; https://doi.org/10.3390/molecules30061234 - 10 Mar 2025
Viewed by 814
Abstract
Porcine recombinant NK-lysin (prNK-lysin) has been shown to inhibit the proliferation and metastasis of hepatocellular carcinoma (HCC) cells in vitro. However, its effects on the proliferation and metastasis of HCC cells in vivo remain unclear. In this study, an allograft murine model using [...] Read more.
Porcine recombinant NK-lysin (prNK-lysin) has been shown to inhibit the proliferation and metastasis of hepatocellular carcinoma (HCC) cells in vitro. However, its effects on the proliferation and metastasis of HCC cells in vivo remain unclear. In this study, an allograft murine model using the murine HCC cell line Hepa1-6 was employed to investigate the anticancer effects of prNK-lysin. Initially, the in vitro anticancer efficacy of prNK-lysin was evaluated in Hepa1-6 cells, demonstrating that prNK-lysin effectively inhibited both proliferation and metastasis. These effects were mediated through the induction of oncosis and suppression of Fascin-1, MMP-2, and MMP-9 protein expressions. Subsequently, the in vivo anticancer efficacy of prNK-lysin was assessed using a mouse liver orthotopic implantation model and a lung metastasis model of Hepa1-6 cells in BALB/cA-nu mice. The administration of 13 mg/kg of prNK-lysin could inhibit tumor growth in the liver and metastasis to the lungs. Our results demonstrate that prNK-lysin possesses strong anti-HCC effects both in vitro and in vivo, with the induction of oncosis and the inhibition of Fascin-1, MMP-2, and MMP-9 protein expressions as potential molecular mechanisms for its anticancer activity. Full article
Show Figures

Graphical abstract

27 pages, 11245 KiB  
Article
The Proapoptotic Action of Pyrrolidinedione–Thiazolidinone Hybrids towards Human Breast Carcinoma Cells Does Not Depend on Their Genotype
by Nataliya Finiuk, Yuliia Kozak, Agnieszka Gornowicz, Robert Czarnomysy, Marlena Tynecka, Serhii Holota, Marcin Moniuszko, Rostyslav Stoika, Roman Lesyk, Krzysztof Bielawski and Anna Bielawska
Cancers 2024, 16(16), 2924; https://doi.org/10.3390/cancers16162924 - 22 Aug 2024
Viewed by 2136
Abstract
The development of new, effective agents for the treatment of breast cancer remains a high-priority task in oncology. A strategy of treatment for this pathology depends significantly on the genotype and phenotype of human breast cancer cells. We aimed to investigate the antitumor [...] Read more.
The development of new, effective agents for the treatment of breast cancer remains a high-priority task in oncology. A strategy of treatment for this pathology depends significantly on the genotype and phenotype of human breast cancer cells. We aimed to investigate the antitumor activity of new pyrrolidinedione–thiazolidinone hybrid molecules Les-6287, Les-6294, and Les-6328 towards different types of human breast cancer cells of MDA-MB-231, MCF-7, T-47D, and HCC1954 lines and murine breast cancer 4T1 cells by using the MTT, clonogenic and [3H]-Thymidine incorporation assays, flow cytometry, ELISA, and qPCR. The studied hybrids possessed toxicity towards the mentioned tumor cells, with the IC50 ranging from 1.37 to 21.85 µM. Simultaneously, these derivatives showed low toxicity towards the pseudonormal human breast epithelial cells of the MCF-10A line (IC50 > 93.01 µM). Les-6287 at 1 µM fully inhibited the formation of colonies of the MCF-7, MDA-MB-231, and HCC1954 cells, while Les-6294 and Les-6328 did that at 2.5 and 5 µM, respectively. Les-6287 suppressed DNA biosynthesis in the MCF-7, MDA-MB-231, and HCC1954 cells. At the same time, such an effect on the MCF-10A cells was significantly lower. Les-6287 induces apoptosis using extrinsic and intrinsic pathways via a decrease in the mitochondrial membrane potential, increasing the activity of caspases 3/7, 8, 9, and 10 in all immunohistochemically different human breast cancer cells. Les-6287 decreased the concentration of the metastasis- and invasion-related proteins MMP-2, MMP-9, and ICAM-1. It did not induce autophagy in treated cells. In conclusion, the results of our study suggest that the synthesized hybrid pyrrolidinedione–thiazolidinones might be promising agents for treating breast tumors of different types. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

19 pages, 2655 KiB  
Article
Reprogramming of Glutamine Amino Acid Transporters Expression and Prognostic Significance in Hepatocellular Carcinoma
by Vincent Tambay, Valérie-Ann Raymond, Laure Voisin, Sylvain Meloche and Marc Bilodeau
Int. J. Mol. Sci. 2024, 25(14), 7558; https://doi.org/10.3390/ijms25147558 - 10 Jul 2024
Cited by 2 | Viewed by 2322
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy and is a major cause of cancer-related mortality in the world. This study aimed to characterize glutamine amino acid transporter expression profiles in HCC compared to those of normal liver cells. In vitro [...] Read more.
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy and is a major cause of cancer-related mortality in the world. This study aimed to characterize glutamine amino acid transporter expression profiles in HCC compared to those of normal liver cells. In vitro and in vivo models of HCC were studied using qPCR, whereas the prognostic significance of glutamine transporter expression levels within patient tumors was analyzed through RNAseq. Solute carrier (SLC) 1A5 and SLC38A2 were targeted through siRNA or gamma-p-nitroanilide (GPNA). HCC cells depended on exogenous glutamine for optimal survival and growth. Murine HCC cells showed superior glutamine uptake rate than normal hepatocytes (p < 0.0001). HCC manifested a global reprogramming of glutamine transporters compared to normal liver: SLC38A3 levels decreased, whereas SLC38A1, SLC7A6, and SLC1A5 levels increased. Also, decreased SLC6A14 and SLC38A3 levels or increased SLC38A1, SLC7A6, and SLC1A5 levels predicted worse survival outcomes (all p < 0.05). Knockdown of SLC1A5 and/or SLC38A2 expression in human Huh7 and Hep3B HCC cells, as well as GPNA-mediated inhibition, significantly decreased the uptake of glutamine; combined SLC1A5 and SLC38A2 targeting had the most considerable impact (all p < 0.05). This study revealed glutamine transporter reprogramming as a novel hallmark of HCC and that such expression profiles are clinically significant. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 4375 KiB  
Article
Induction of the Inflammasome Pathway by Tyrosine Kinase Inhibitors Provides an Actionable Therapeutic Target for Hepatocellular Carcinoma
by Anna Tutusaus, Marco Sanduzzi-Zamparelli, Loreto Boix, Patricia Rider, Silvia Subías, Pablo García de Frutos, Anna Colell, Montserrat Marí, María Reig and Albert Morales
Cancers 2024, 16(8), 1491; https://doi.org/10.3390/cancers16081491 - 13 Apr 2024
Cited by 5 | Viewed by 4305
Abstract
During the last decade, tyrosine kinase inhibitors (TKIs) sorafenib and regorafenib have been standard systemic treatments for advanced hepatocellular carcinoma (HCC). Previous data associated sorafenib with inflammasome activation. However, the role of the inflammasome in sorafenib and regorafenib signaling has not been described [...] Read more.
During the last decade, tyrosine kinase inhibitors (TKIs) sorafenib and regorafenib have been standard systemic treatments for advanced hepatocellular carcinoma (HCC). Previous data associated sorafenib with inflammasome activation. However, the role of the inflammasome in sorafenib and regorafenib signaling has not been described in liver cancer patients. For this purpose, we analyzed inflammasome-related transcriptomic changes in a murine HCC model. Our data confirmed inflammasome activation after both TKI treatments, sharing a similar pattern of increased gene expression. According to human database results, transcriptional increase of inflammasome genes is associated with poorer prognosis for male liver cancer patients, suggesting a sex-dependent role for inflammasome activation in HCC therapy. In biopsies of HCC and its surrounding tissue, we detected durable increases in the inflammasome activation pattern after sorafenib or regorafenib treatment in male patients. Further supporting its involvement in sorafenib action, inflammasome inhibition (MCC950) enhanced sorafenib anticancer activity in experimental HCC models, while no direct in vitro effect was observed in HCC cell lines. Moreover, activated human THP-1 macrophages released IL-1β after sorafenib administration, while 3D Hep3B spheres displayed increased tumor growth after IL-1β addition, pointing to the liver microenvironment as a key player in inflammasome action. In summary, our results unveil the inflammasome pathway as an actionable target in sorafenib or regorafenib therapy and associate an inflammasome signature in HCC and surrounding tissue with TKI administration. Therefore, targeting inflammasome activation, principally in male patients, could help to overcome sorafenib or regorafenib resistance and enhance the efficacy of TKI treatments in HCC. Full article
Show Figures

Figure 1

18 pages, 6691 KiB  
Article
The Upregulation of Leucine-Rich Repeat Containing 1 Expression Activates Hepatic Stellate Cells and Promotes Liver Fibrosis by Stabilizing Phosphorylated Smad2/3
by Yake Wang, Xiaolong Li, Xiaowen Guan, Zhe Song, Huanfei Liu, Zhenzhen Guan, Jianwei Wang, Lina Zhu, Di Zhang, Liang Zhao, Peitong Xie, Xiaoyi Wei, Ning Shang, Ying Liu, Zhongzhen Jin, Zhili Ji and Guifu Dai
Int. J. Mol. Sci. 2024, 25(5), 2735; https://doi.org/10.3390/ijms25052735 - 27 Feb 2024
Cited by 3 | Viewed by 2048
Abstract
Liver fibrosis poses a significant global health risk due to its association with hepatocellular carcinoma (HCC) and the lack of effective treatments. Thus, the need to discover additional novel therapeutic targets to attenuate liver diseases is urgent. Leucine-rich repeat containing 1 (LRRC1) reportedly [...] Read more.
Liver fibrosis poses a significant global health risk due to its association with hepatocellular carcinoma (HCC) and the lack of effective treatments. Thus, the need to discover additional novel therapeutic targets to attenuate liver diseases is urgent. Leucine-rich repeat containing 1 (LRRC1) reportedly promotes HCC development. Previously, we found that LRRC1 was significantly upregulated in rat fibrotic liver according to the transcriptome sequencing data. Herein, in the current work, we aimed to explore the role of LRRC1 in liver fibrosis and the underlying mechanisms involved. LRRC1 expression was positively correlated with liver fibrosis severity and significantly elevated in both human and murine fibrotic liver tissues. LRRC1 knockdown or overexpression inhibited or enhanced the proliferation, migration, and expression of fibrogenic genes in the human hepatic stellate cell line LX-2. More importantly, LRRC1 inhibition in vivo significantly alleviated CCl4-induced liver fibrosis by reducing collagen accumulation and hepatic stellate cells’ (HSCs) activation in mice. Mechanistically, LRRC1 promoted HSC activation and liver fibrogenesis by preventing the ubiquitin-mediated degradation of phosphorylated mothers against decapentaplegic homolog (Smad) 2/3 (p-Smad2/3), thereby activating the TGF-β1/Smad pathway. Collectively, these results clarify a novel role for LRRC1 as a regulator of liver fibrosis and indicate that LRRC1 is a promising target for antifibrotic therapies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

24 pages, 10914 KiB  
Article
The Tumor Suppressor SOCS1 Diminishes Tolerance to Oxidative Stress in Hepatocellular Carcinoma
by Akhil Shukla, Md Gulam Musawwir Khan, Anny Armas Cayarga, Mozhdeh Namvarpour, Mohammad Mobarak H. Chowdhury, Dominique Levesque, Jean-François Lucier, François-Michel Boisvert, Sheela Ramanathan and Subburaj Ilangumaran
Cancers 2024, 16(2), 292; https://doi.org/10.3390/cancers16020292 - 10 Jan 2024
Cited by 3 | Viewed by 2315
Abstract
SOCS1 is a tumor suppressor in hepatocellular carcinoma (HCC). Recently, we showed that a loss of SOCS1 in hepatocytes promotes NRF2 activation. Here, we investigated how SOCS1 expression in HCC cells affected oxidative stress response and modulated the cellular proteome. Murine Hepa1-6 cells [...] Read more.
SOCS1 is a tumor suppressor in hepatocellular carcinoma (HCC). Recently, we showed that a loss of SOCS1 in hepatocytes promotes NRF2 activation. Here, we investigated how SOCS1 expression in HCC cells affected oxidative stress response and modulated the cellular proteome. Murine Hepa1-6 cells expressing SOCS1 (Hepa-SOCS1) or control vector (Hepa-Vector) were treated with cisplatin or tert-butyl hydroperoxide (t-BHP). The induction of NRF2 and its target genes, oxidative stress, lipid peroxidation, cell survival and cellular proteome profiles were evaluated. NRF2 induction was significantly reduced in Hepa-SOCS1 cells. The gene and protein expression of NRF2 targets were differentially induced in Hepa-Vector cells but markedly suppressed in Hepa-SOCS1 cells. Hepa-SOCS1 cells displayed an increased induction of reactive oxygen species but reduced lipid peroxidation. Nonetheless, Hepa-SOCS1 cells treated with cisplatin or t-BHP showed reduced survival. GCLC, poorly induced in Hepa-SOCS1 cells, showed a strong positive correlation with NFE2L2 and an inverse correlation with SOCS1 in the TCGA-LIHC transcriptomic data. A proteomic analysis of Hepa-Vector and Hepa-SOCS1 cells revealed that SOCS1 differentially modulated many proteins involved in diverse molecular pathways, including mitochondrial ROS generation and ROS detoxification, through peroxiredoxin and thioredoxin systems. Our findings indicate that maintaining sensitivity to oxidative stress is an important tumor suppression mechanism of SOCS1 in HCC. Full article
(This article belongs to the Special Issue Cell Signaling in Cancer and Cancer Therapy)
Show Figures

Graphical abstract

14 pages, 2067 KiB  
Article
Optimized Liposomal Delivery of Bortezomib for Advancing Treatment of Multiple Myeloma
by Chi Zhang, Jimmy Chun-Tien Kuo, Yirui Huang, Yingwen Hu, Lan Deng, Bryant C. Yung, Xiaobin Zhao, Zhongkun Zhang, Junjie Pan, Yifan Ma and Robert J. Lee
Pharmaceutics 2023, 15(12), 2674; https://doi.org/10.3390/pharmaceutics15122674 - 25 Nov 2023
Cited by 6 | Viewed by 1894
Abstract
Bortezomib (BTZ), a boronic acid-derived proteasome inhibitor, is commonly employed in treating multiple myeloma (MM). However, the applications of BTZ are limited due to its poor stability and low bioavailability. Herein, we develop an optimized liposomal formulation of BTZ (L-BTZ) by employing a [...] Read more.
Bortezomib (BTZ), a boronic acid-derived proteasome inhibitor, is commonly employed in treating multiple myeloma (MM). However, the applications of BTZ are limited due to its poor stability and low bioavailability. Herein, we develop an optimized liposomal formulation of BTZ (L-BTZ) by employing a remote-loading strategy. This formulation uses Tiron, a divalent anionic catechol derivative, as the internal complexing agent. Compared to earlier BTZ-related formulations, this alternative formulation showed significantly greater stability due to the Tiron–BTZ complex’s higher pH stability and negative charges, compared to the meglumine–BTZ complex. Significantly, the plasma AUC of L-BTZ was found to be 30 times greater than that of free BTZ, suggesting an extended blood circulation duration. In subsequent therapeutic evaluations using two murine xenograft tumor models of MM, the NCI-H929 and OPM2 models showed tumor growth inhibition (TGI) values of 37% and 57%, respectively. In contrast, free BTZ demonstrated TGI values of 17% and 11% in these models. Further, L-BTZ presented enhanced antitumor efficacy in the Hepa1-6 HCC syngeneic model, indicating its potential broader applicability as an antineoplastic agent. These findings suggest that the optimized L-BTZ formulation offers a significant advancement in BTZ delivery, holding substantial promise for clinical investigation in not merely MM, but other cancer types. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

16 pages, 3673 KiB  
Article
Treatment with a Cholecystokinin Receptor Antagonist, Proglumide, Improves Efficacy of Immune Checkpoint Antibodies in Hepatocellular Carcinoma
by Narayan Shivapurkar, Martha D. Gay, Aiwu (Ruth) He, Wenqiang Chen, Shermineh Golnazar, Hong Cao, Tetyana Duka, Bhaskar Kallakury, Sona Vasudevan and Jill P. Smith
Int. J. Mol. Sci. 2023, 24(4), 3625; https://doi.org/10.3390/ijms24043625 - 11 Feb 2023
Cited by 4 | Viewed by 3137
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated deaths worldwide. Treatment with immune checkpoint antibodies has shown promise in advanced HCC, but the response is only 15–20%. We discovered a potential target for the treatment of HCC, the cholecystokinin-B receptor (CCK-BR). [...] Read more.
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated deaths worldwide. Treatment with immune checkpoint antibodies has shown promise in advanced HCC, but the response is only 15–20%. We discovered a potential target for the treatment of HCC, the cholecystokinin-B receptor (CCK-BR). This receptor is overexpressed in murine and human HCC and not in normal liver tissue. Mice bearing syngeneic RIL-175 HCC tumors were treated with phosphate buffer saline (PBS; control), proglumide (a CCK-receptor antagonist), an antibody to programmed cell death protein 1 (PD-1Ab), or the combination of proglumide and the PD-1Ab. In vitro, RNA was extracted from untreated or proglumide-treated murine Dt81Hepa1-6 HCC cells and analyzed for expression of fibrosis-associated genes. RNA was also extracted from human HepG2 HCC cells or HepG2 cells treated with proglumide and subjected to RNA sequencing. Results showed that proglumide decreased fibrosis in the tumor microenvironment and increased the number of intratumoral CD8+ T cells in RIL-175 tumors. When proglumide was given in combination with the PD-1Ab, there was a further significant increase in intratumoral CD8+ T cells, improved survival, and alterations in genes regulating tumoral fibrosis and epithelial-to-mesenchymal transition. RNAseq results from human HepG2 HCC cells treated with proglumide showed significant changes in differentially expressed genes involved in tumorigenesis, fibrosis, and the tumor microenvironment. The use of the CCK receptor antagonist may improve efficacy of immune checkpoint antibodies and survival in those with advanced HCC. Full article
Show Figures

Figure 1

16 pages, 10683 KiB  
Article
Effect of Proton Therapy on Tumor Cell Killing and Immune Microenvironment for Hepatocellular Carcinoma
by Miao-Fen Chen, Ping-Tsung Chen, Ching-Chuan Hsieh and Chih-Chi Wang
Cells 2023, 12(2), 332; https://doi.org/10.3390/cells12020332 - 15 Jan 2023
Cited by 14 | Viewed by 3866
Abstract
Radiotherapy with proton therapy (PT) has dosimetric advantages over photon therapy, which helps to enlarge the therapeutic window of radiotherapy for hepatocellular carcinoma (HCC). We evaluated the response of HCC to PT and examined the underlying mechanisms. The human liver cancer cell lines [...] Read more.
Radiotherapy with proton therapy (PT) has dosimetric advantages over photon therapy, which helps to enlarge the therapeutic window of radiotherapy for hepatocellular carcinoma (HCC). We evaluated the response of HCC to PT and examined the underlying mechanisms. The human liver cancer cell lines HepG2 and HuH7 and the murine liver cancer cell line Hepa1–6 were selected for cell and animal experiments to examine the response induced by PT irradiation. Biological changes and the immunological response following PT irradiation were examined. In vitro experiments showed no significant difference in cell survival following PT compared with photon radiotherapy. In a murine tumor model, the tumors were obviously smaller in size 12 days after PT irradiation. The underlying changes included increased DNA damage, upregulated IL-6 levels, and a regulated immune tumor microenvironment. Protein analysis in vitro and in vivo showed that PT increased the level of programmed cell death ligand 1 (PD-L1) expressed in tumor cells and recruited myeloid-derived suppressor cells (MDSCs). The increase in PD-L1 was positively correlated with the irradiation dose. In Hepa1–6 syngeneic mouse models, the combination of PT with anti-PD-L1 increased tumor growth delay compared with PT alone, which was associated with increased tumor-infiltrating T cells and attenuated MDSC recruitment in the microenvironment. Furthermore, when PT was applied to the primary HCC tumor, anti-PD-L1 antibody-treated mice showed smaller synchronous unirradiated tumors. In conclusion, the response of HCC to PT was determined by tumor cell killing and the immunological response in the tumor microenvironment. The combination with the anti-PD-L1 antibody to enhance antitumor immunity was responsible for the therapeutic synergism for HCC treated with PT. Based on our results, we suggest that PT combined with anti-PD-L1 may be a promising therapeutic policy for HCC. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

16 pages, 1554 KiB  
Systematic Review
In Vivo Oncolytic Virotherapy in Murine Models of Hepatocellular Carcinoma: A Systematic Review
by Muhammad Joan Ailia and So Young Yoo
Vaccines 2022, 10(9), 1541; https://doi.org/10.3390/vaccines10091541 - 16 Sep 2022
Cited by 6 | Viewed by 2798
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current therapies often provide marginal survival benefits at the expense of undesirable side effects. Oncolytic viruses represent a novel strategy for the treatment of HCC due to their inherent ability to [...] Read more.
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current therapies often provide marginal survival benefits at the expense of undesirable side effects. Oncolytic viruses represent a novel strategy for the treatment of HCC due to their inherent ability to cause direct tumor cell lysis while sparing normal tissue and their capacity to stimulate potent immune responses directed against uninfected tumor cells and distant metastases. Oncolytic virotherapy (OVT) is a promising cancer treatment, but before it can become a standard option in practice, several challenges—systemic viral delivery optimization/enhancement, inter-tumoral virus dispersion, anti-cancer immunity cross-priming, and lack of artificial model systems—need to be addressed. Addressing these will require an in vivo model that accurately mimics the tumor microenvironment and allows the scientific community to design a more precise and accurate OVT. Due to their close physiologic resemblance to humans, murine cancer models are the likely preferred candidates. To provide an accurate assessment of the current state of in vivo OVT in HCC, we have reviewed a comprehensively searched body of work using murine in vivo HCC models for OVT. Full article
(This article belongs to the Special Issue Cancer Vaccines 3.0)
Show Figures

Figure 1

24 pages, 5054 KiB  
Article
Murine Falcor/LL35 lncRNA Contributes to Glucose and Lipid Metabolism In Vitro and In Vivo
by Evgeniya Shcherbinina, Tatiana Abakumova, Daniil Bobrovskiy, Ilia Kurochkin, Ksenia Deinichenko, Elena Stekolshchikova, Nickolay Anikanov, Rustam Ziganshin, Pavel Melnikov, Ekaterina Khrameeva, Maria Logacheva, Timofei Zatsepin and Olga Sergeeva
Biomedicines 2022, 10(6), 1397; https://doi.org/10.3390/biomedicines10061397 - 13 Jun 2022
Viewed by 4495
Abstract
Glucose and lipid metabolism are crucial functional systems in eukaryotes. A large number of experimental studies both in animal models and humans have shown that long non-coding RNAs (lncRNAs) play an important role in glucose and lipid metabolism. Previously, human lncRNA DEANR1/linc00261 was [...] Read more.
Glucose and lipid metabolism are crucial functional systems in eukaryotes. A large number of experimental studies both in animal models and humans have shown that long non-coding RNAs (lncRNAs) play an important role in glucose and lipid metabolism. Previously, human lncRNA DEANR1/linc00261 was described as a tumor suppressor that regulates a variety of biological processes such as cell proliferation, apoptosis, glucose metabolism and tumorigenesis. Here we report that murine lncRNA Falcor/LL35, a proposed functional analog of human DEANR1/linc00261, is predominantly expressed in murine normal hepatocytes and downregulated in HCC and after partial hepatectomy. The application of high-throughput approaches such as RNA-seq, LC-MS proteomics, lipidomics and metabolomics analysis allowed changes to be found in the transcriptome, proteome, lipidome and metabolome of hepatocytes after LL35 depletion. We revealed that LL35 is involved in the regulation of glycolysis and lipid biosynthesis in vitro and in vivo. Moreover, LL35 affects Notch and NF-κB signaling pathways in normal hepatocytes. All observed changes result in the decrease in the proliferation and migration of hepatocytes. We demonstrated similar phenotype changes between murine LL35 and human linc00261 depletion in vitro and in vivo that opens the opportunity to translate results for LL35 from a liver murine model to possible functions of human lncRNA linc00261. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

10 pages, 2345 KiB  
Brief Report
Augmented Efficacy of Uttroside B over Sorafenib in a Murine Model of Human Hepatocellular Carcinoma
by Mundanattu Swetha, Chenicheri K. Keerthana, Tennyson P. Rayginia, Lekshmi R. Nath, Nair Hariprasad Haritha, Anwar Shabna, Kalishwaralal Kalimuthu, Arun K. Thangarasu, Sreekumar U. Aiswarya, Somaraj Jannet, Sreekumar Pillai, Kuzhuvelil B. Harikumar, Sankar Sundaram, Nikhil Ponnoor Anto, Dee H. Wu, Ravi S. Lankalapalli, Rheal Towner, Noah Isakov, Sathyaseelan S. Deepa and Ruby John Anto
Pharmaceuticals 2022, 15(5), 636; https://doi.org/10.3390/ph15050636 - 22 May 2022
Cited by 7 | Viewed by 4628
Abstract
We previously reported the remarkable potency of uttroside B (Utt-B), saponin-isolated and characterized in our lab from Solanum nigrum Linn, against HCC. Recently, the U.S. FDA approved Utt-B as an ‘orphan drug’ against HCC. The current study validates the superior anti-HCC efficacy of [...] Read more.
We previously reported the remarkable potency of uttroside B (Utt-B), saponin-isolated and characterized in our lab from Solanum nigrum Linn, against HCC. Recently, the U.S. FDA approved Utt-B as an ‘orphan drug’ against HCC. The current study validates the superior anti-HCC efficacy of Utt-B over sorafenib, the first-line treatment option against HCC. The therapeutic efficacies of Utt-B vs. sorafenib against HCC were compared in vitro, using various liver cancer cell lines and in vivo, utilizing NOD.CB17-Prkdcscid/J mice bearing human HCC xenografts. Our data indicate that Utt-B holds an augmented anti-HCC efficacy over sorafenib. Our previous report demonstrated the pharmacological safety of Utt-B in Chang Liver, the normal immortalized hepatocytes, and in the acute and chronic toxicity murine models even at elevated Utt-B concentrations. Here, we show that higher concentrations of sorafenib induce severe toxicity, in Chang Liver, as well as in acute and chronic in vivo models, indicating that, apart from the superior therapeutic benefit over sorafenib, Utt-B is a pharmacologically safer molecule, and the drug-induced undesirable effects can, thus, be substantially alleviated in the context of HCC chemotherapy. Clinical studies in HCC patients utilizing Utt-B, is a contiguous key step to promote this drug to the clinic. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

14 pages, 2659 KiB  
Article
Efficacy of Nanofiber Sheets Incorporating Lenvatinib in a Hepatocellular Carcinoma Xenograft Model
by Terufumi Yoshida, Masaki Kaibori, Nanami Fujisawa, Mariko Ishizuka, Fusao Sumiyama, Masahiko Hatta, Hisashi Kosaka, Kosuke Matsui, Kensuke Suzuki, Tomoya O. Akama, Tayo Katano, Kengo Yoshii, Mitsuhiro Ebara and Mitsugu Sekimoto
Nanomaterials 2022, 12(8), 1364; https://doi.org/10.3390/nano12081364 - 15 Apr 2022
Cited by 7 | Viewed by 3824
Abstract
Lenvatinib has a high response rate in unresectable advanced hepatocellular carcinoma (HCC). In this study, we investigated whether lenvatinib-incorporating poly(ε-caprolactone) sheets (lenvatinib sheets) as a drug delivery system (DDS) exerted antitumor effects in a murine HCC model. The lenvatinib sheets were designed for [...] Read more.
Lenvatinib has a high response rate in unresectable advanced hepatocellular carcinoma (HCC). In this study, we investigated whether lenvatinib-incorporating poly(ε-caprolactone) sheets (lenvatinib sheets) as a drug delivery system (DDS) exerted antitumor effects in a murine HCC model. The lenvatinib sheets were designed for sustained release of approximately 1 mg lenvatinib for 14 days. For 14 days, 1 mg lenvatinib was orally administered to mice. Then, we compared the antitumor effects of lenvatinib sheets with those of oral lenvatinib. The tumor volume, body weight, and serum lenvatinib level were measured for 14 days. A peritoneal dissemination model was established to examine the survival prolongation effect of the lenvatinib sheets. Tumor growth was significantly inhibited in the lenvatinib sheet group compared with that in the no treatment and oral groups. The antitumor effect was significantly higher in the lenvatinib sheet group. Regardless of the insertion site, the serum lenvatinib levels were maintained and showed similar antitumor effects. The mitotic index was significantly inhibited in the lenvatinib sheet group compared with that in the control group. Furthermore, lenvatinib sheets improved the 30-day survival. Lenvatinib sheets showed sufficient antitumor effects and may serve as an effective novel DDS for advanced HCC. Full article
(This article belongs to the Topic Advanced Functional Materials for Regenerative Medicine)
Show Figures

Figure 1

Back to TopTop