Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = multiscale fuzzy entropy (MFE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5107 KB  
Article
Linear Rolling Guide Surface Wear-State Identification Based on Multi-Scale Fuzzy Entropy and Random Forest
by Conghui Nie, Changguang Zhou, Tieqiang Wang, Xiaoyi Wang, Huaxi Zhou and Hutian Feng
Lubricants 2025, 13(8), 323; https://doi.org/10.3390/lubricants13080323 - 24 Jul 2025
Viewed by 751
Abstract
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, [...] Read more.
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, a hybrid approach combining multi-scale fuzzy entropy (MFE) with a gray wolf-optimized random forest (GWO-RF) algorithm was proposed to identify the surface wear state of the LRG. Preload degradation and vibration signals were collected at three surface wear stages throughout the LGR’s service life. The vibration signals were decomposed and reconstructed using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), followed by multi-scale fuzzy entropy analysis of the reconstructed signals. After dimensionality reduction via kernel principal component analysis (KPCA), the processed features were fed into the GWO-RF model for classification. Experimental results demonstrated a recognition accuracy of 97.9%. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

21 pages, 2609 KB  
Article
Assessing the Role of EEG Biosignal Preprocessing to Enhance Multiscale Fuzzy Entropy in Alzheimer’s Disease Detection
by Pasquale Arpaia, Maria Cacciapuoti, Andrea Cataldo, Sabatina Criscuolo, Egidio De Benedetto, Antonio Masciullo, Marisa Pesola and Raissa Schiavoni
Biosensors 2025, 15(6), 374; https://doi.org/10.3390/bios15060374 - 10 Jun 2025
Cited by 1 | Viewed by 1415
Abstract
Quantitative electroencephalography (QEEG) has emerged as a promising tool for detecting Alzheimer’s disease (AD). Among QEEG measures, Multiscale Fuzzy Entropy (MFE) shows great potential in identifying AD-related changes in EEG complexity. However, MFE is intrinsically linked to signal amplitude, which can vary substantially [...] Read more.
Quantitative electroencephalography (QEEG) has emerged as a promising tool for detecting Alzheimer’s disease (AD). Among QEEG measures, Multiscale Fuzzy Entropy (MFE) shows great potential in identifying AD-related changes in EEG complexity. However, MFE is intrinsically linked to signal amplitude, which can vary substantially among EEG systems, and this hinders the adoption of this metric for AD detection. To overcome this issue, this study investigates different preprocessing strategies to make the calculation of MFE less dependent on the specific amplitude characteristics of the EEG signals at hand. This contributes to generalizing and making more robust the adoption of MFE for AD detection. To demonstrate the robustness of the proposed preprocessing methods, binary classification tasks with Support Vector Machines (SVMs), Random Forest (RF), and K-Nearest Neighbor (KNN) classifiers are used. Performance metrics, such as classification accuracy and Matthews Correlation Coefficient (MCC), are employed to assess the results. The methodology is validated on two public EEG datasets. Results show that amplitude transformation, particularly normalization, significantly enhances AD detection, achieving mean classification accuracy values exceeding 80% with an uncertainty of 10% across all classifiers. These results highlight the importance of preprocessing in improving the accuracy and the reliability of EEG-based AD diagnostic tools, offering potential advancements in patient management and treatment planning. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

16 pages, 6457 KB  
Article
Intelligent Fault Diagnosis for Rotating Mechanical Systems: An Improved Multiscale Fuzzy Entropy and Support Vector Machine Algorithm
by Yuxin Pan, Yinsheng Chen, Xihong Fei, Kang Wang, Tian Fang and Jing Wang
Algorithms 2024, 17(12), 588; https://doi.org/10.3390/a17120588 - 20 Dec 2024
Cited by 3 | Viewed by 1642
Abstract
Rotating mechanical systems (RMSs) are widely applied in various industrial fields. Intelligent fault diagnosis technology plays a significant role in improving the reliability and safety of industrial equipment. A new algorithm based on improved multiscale fuzzy entropy and support vector machine (IMFE-SVM) is [...] Read more.
Rotating mechanical systems (RMSs) are widely applied in various industrial fields. Intelligent fault diagnosis technology plays a significant role in improving the reliability and safety of industrial equipment. A new algorithm based on improved multiscale fuzzy entropy and support vector machine (IMFE-SVM) is proposed for the automatic diagnosis of various fault types in elevator rotating mechanical systems. First, the empirical mode decomposition (EMD) method is utilized to construct a decomposition model of the vibration data for the extraction of relevant parameters related to the fault feature. Secondly, the improved multiscale fuzzy entropy (IMFE) model is employed, where the scale factor of the multiscale fuzzy entropy (MFE) is extended to multiple subsequences to resolve the problem of insufficient coarse granularity in the traditional MFE. Subsequently, linear discriminant analysis (LDA) is applied to reduce the dimensionality of the extracted features in order to overcome the problem of feature redundancy. Finally, a support vector machine (SVM) model is utilized to construct the optimal hyperplane for the diagnosis of fault types. Experimental results indicate that the proposed method outperforms other state-of-the-art methods in the fault diagnosis of elevator systems. Full article
Show Figures

Figure 1

16 pages, 947 KB  
Article
A Novel Metric for Alzheimer’s Disease Detection Based on Brain Complexity Analysis via Multiscale Fuzzy Entropy
by Andrea Cataldo, Sabatina Criscuolo, Egidio De Benedetto, Antonio Masciullo, Marisa Pesola and Raissa Schiavoni
Bioengineering 2024, 11(4), 324; https://doi.org/10.3390/bioengineering11040324 - 27 Mar 2024
Cited by 6 | Viewed by 2677
Abstract
Alzheimer’s disease (AD) is a neurodegenerative brain disorder that affects cognitive functioning and memory. Current diagnostic tools, including neuroimaging techniques and cognitive questionnaires, present limitations such as invasiveness, high costs, and subjectivity. In recent years, interest has grown in using electroencephalography (EEG) for [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative brain disorder that affects cognitive functioning and memory. Current diagnostic tools, including neuroimaging techniques and cognitive questionnaires, present limitations such as invasiveness, high costs, and subjectivity. In recent years, interest has grown in using electroencephalography (EEG) for AD detection due to its non-invasiveness, low cost, and high temporal resolution. In this regard, this work introduces a novel metric for AD detection by using multiscale fuzzy entropy (MFE) to assess brain complexity, offering clinicians an objective, cost-effective diagnostic tool to aid early intervention and patient care. To this purpose, brain entropy patterns in different frequency bands for 35 healthy subjects (HS) and 35 AD patients were investigated. Then, based on the resulting MFE values, a specific detection algorithm, able to assess brain complexity abnormalities that are typical of AD, was developed and further validated on 24 EEG test recordings. This MFE-based method achieved an accuracy of 83% in differentiating between HS and AD, with a diagnostic odds ratio of 25, and a Matthews correlation coefficient of 0.67, indicating its viability for AD diagnosis. Furthermore, the algorithm showed potential for identifying anomalies in brain complexity when tested on a subject with mild cognitive impairment (MCI), warranting further investigation in future research. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Graphical abstract

14 pages, 2066 KB  
Article
Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet
by Madini O. Alassafi, Ishtiaq Rasool Khan, Rayed AlGhamdi, Wajid Aziz, Abdulrahman A. Alshdadi, Mohamed M. Dessouky, Adel Bahaddad, Ali Altalbe and Nabeel Albishry
Healthcare 2023, 11(16), 2280; https://doi.org/10.3390/healthcare11162280 - 13 Aug 2023
Cited by 1 | Viewed by 1910
Abstract
An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological [...] Read more.
An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification. In this work, we present a novel technique that used Haar wavelets to analyze the complexity of OSV signals of subjects during COVID-19 infection and after recovery. The data used to evaluate the performance of the proposed algorithms comprised recordings of OSV signals from 44 COVID-19 patients during illness and after recovery. The performance of the proposed technique was compared with four, scale-based entropy measures: multiscale entropy (MSE); multiscale permutation entropy (MPE); multiscale fuzzy entropy (MFE); multiscale amplitude-aware permutation entropy (MAMPE). Preliminary results of the pilot study revealed that the proposed algorithm outperformed MSE, MPE, MFE, and MMAPE in terms of better accuracy and time efficiency for separating during and after recovery the OSV signals of COVID-19 subjects. Further studies are needed to evaluate the potential of the proposed algorithm for large datasets and in the context of other biomedical signal classifications. Full article
Show Figures

Figure 1

18 pages, 7787 KB  
Article
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
by Qiang Yuan, Mingchen Lv, Ruiping Zhou, Hong Liu, Chongkun Liang and Lijiao Cheng
Entropy 2023, 25(7), 1049; https://doi.org/10.3390/e25071049 - 12 Jul 2023
Cited by 8 | Viewed by 2057
Abstract
The study focuses on the fault signals of rolling bearings, which are characterized by nonlinearity, periodic impact, and low signal-to-noise ratio. The advantages of entropy calculation in analyzing time series data were combined with the high calculation accuracy of Multiscale Fuzzy Entropy (MFE) [...] Read more.
The study focuses on the fault signals of rolling bearings, which are characterized by nonlinearity, periodic impact, and low signal-to-noise ratio. The advantages of entropy calculation in analyzing time series data were combined with the high calculation accuracy of Multiscale Fuzzy Entropy (MFE) and the strong noise resistance of Multiscale Permutation Entropy (MPE), a multivariate coarse-grained form was introduced, and the coarse-grained process was improved. The Composite Multivariate Multiscale Permutation Fuzzy Entropy (CMvMPFE) method was proposed to solve the problems of low accuracy, large entropy perturbation, and information loss in the calculation process of fault feature parameters. This method extracts the fault characteristics of rolling bearings more comprehensively and accurately. The CMvMPFE method was used to calculate the entropy value of the rolling bearing experimental fault data, and Support Vector Machine (SVM) was used for fault diagnosis analysis. By comparing with MPFE, the Composite Multiscale Permutation Fuzzy Entropy (CMPFE) and the Multivariate Multiscale Permutation Fuzzy Entropy (MvMPFE) methods, the results of the calculations show that the CMvMPFE method can extract rolling bearing fault characteristics more comprehensively and accurately, and it also has good robustness. Full article
(This article belongs to the Special Issue Entropy in Machine Learning Applications)
Show Figures

Figure 1

14 pages, 520 KB  
Perspective
Uncovering the Correlation between COVID-19 and Neurodegenerative Processes: Toward a New Approach Based on EEG Entropic Analysis
by Andrea Cataldo, Sabatina Criscuolo, Egidio De Benedetto, Antonio Masciullo, Marisa Pesola and Raissa Schiavoni
Bioengineering 2023, 10(4), 435; https://doi.org/10.3390/bioengineering10040435 - 29 Mar 2023
Cited by 9 | Viewed by 5334
Abstract
COVID-19 is an ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Although it primarily attacks the respiratory tract, inflammation can also affect the central nervous system (CNS), leading to chemo-sensory deficits such as anosmia and serious cognitive [...] Read more.
COVID-19 is an ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Although it primarily attacks the respiratory tract, inflammation can also affect the central nervous system (CNS), leading to chemo-sensory deficits such as anosmia and serious cognitive problems. Recent studies have shown a connection between COVID-19 and neurodegenerative diseases, particularly Alzheimer’s disease (AD). In fact, AD appears to exhibit neurological mechanisms of protein interactions similar to those that occur during COVID-19. Starting from these considerations, this perspective paper outlines a new approach based on the analysis of the complexity of brain signals to identify and quantify common features between COVID-19 and neurodegenerative disorders. Considering the relation between olfactory deficits, AD, and COVID-19, we present an experimental design involving olfactory tasks using multiscale fuzzy entropy (MFE) for electroencephalographic (EEG) signal analysis. Additionally, we present the open challenges and future perspectives. More specifically, the challenges are related to the lack of clinical standards regarding EEG signal entropy and public data that can be exploited in the experimental phase. Furthermore, the integration of EEG analysis with machine learning still requires further investigation. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

20 pages, 4411 KB  
Article
Which Multivariate Multi-Scale Entropy Algorithm Is More Suitable for Analyzing the EEG Characteristics of Mild Cognitive Impairment?
by Jing Liu, Huibin Lu, Xiuru Zhang, Xiaoli Li, Lei Wang, Shimin Yin and Dong Cui
Entropy 2023, 25(3), 396; https://doi.org/10.3390/e25030396 - 21 Feb 2023
Cited by 10 | Viewed by 3101
Abstract
So far, most articles using the multivariate multi-scale entropy algorithm mainly use algorithms to analyze the multivariable signal complexity without clearly describing what characteristics of signals these algorithms measure and what factors affect these algorithms. This paper analyzes six commonly used multivariate multi-scale [...] Read more.
So far, most articles using the multivariate multi-scale entropy algorithm mainly use algorithms to analyze the multivariable signal complexity without clearly describing what characteristics of signals these algorithms measure and what factors affect these algorithms. This paper analyzes six commonly used multivariate multi-scale entropy algorithms from a new perspective. It clarifies for the first time what characteristics of signals these algorithms measure and which factors affect them. It also studies which algorithm is more suitable for analyzing mild cognitive impairment (MCI) electroencephalograph (EEG) signals. The simulation results show that the multivariate multi-scale sample entropy (mvMSE), multivariate multi-scale fuzzy entropy (mvMFE), and refined composite multivariate multi-scale fuzzy entropy (RCmvMFE) algorithms can measure intra- and inter-channel correlation and multivariable signal complexity. In the joint analysis of coupling and complexity, they all decrease with the decrease in signal complexity and coupling strength, highlighting their advantages in processing related multi-channel signals, which is a discovery in the simulation. Among them, the RCmvMFE algorithm can better distinguish different complexity signals and correlations between channels. It also performs well in anti-noise and length analysis of multi-channel data simultaneously. Therefore, we use the RCmvMFE algorithm to analyze EEG signals from twenty subjects (eight control subjects and twelve MCI subjects). The results show that the MCI group had lower entropy than the control group on the short scale and the opposite on the long scale. Moreover, frontal entropy correlates significantly positively with the Montreal Cognitive Assessment score and Auditory Verbal Learning Test delayed recall score on the short scale. Full article
(This article belongs to the Section Entropy and Biology)
Show Figures

Figure 1

17 pages, 3668 KB  
Article
Sample, Fuzzy and Distribution Entropies of Heart Rate Variability: What Do They Tell Us on Cardiovascular Complexity?
by Paolo Castiglioni, Giampiero Merati, Gianfranco Parati and Andrea Faini
Entropy 2023, 25(2), 281; https://doi.org/10.3390/e25020281 - 2 Feb 2023
Cited by 19 | Viewed by 6411
Abstract
Distribution Entropy (DistEn) has been introduced as an alternative to Sample Entropy (SampEn) to assess the heart rate variability (HRV) on much shorter series without the arbitrary definition of distance thresholds. However, DistEn, considered a measure of cardiovascular complexity, differs substantially from SampEn [...] Read more.
Distribution Entropy (DistEn) has been introduced as an alternative to Sample Entropy (SampEn) to assess the heart rate variability (HRV) on much shorter series without the arbitrary definition of distance thresholds. However, DistEn, considered a measure of cardiovascular complexity, differs substantially from SampEn or Fuzzy Entropy (FuzzyEn), both measures of HRV randomness. This work aims to compare DistEn, SampEn, and FuzzyEn analyzing postural changes (expected to modify the HRV randomness through a sympatho/vagal shift without affecting the cardiovascular complexity) and low-level spinal cord injuries (SCI, whose impaired integrative regulation may alter the system complexity without affecting the HRV spectrum). We recorded RR intervals in able-bodied (AB) and SCI participants in supine and sitting postures, evaluating DistEn, SampEn, and FuzzyEn over 512 beats. The significance of “case” (AB vs. SCI) and “posture” (supine vs. sitting) was assessed by longitudinal analysis. Multiscale DistEn (mDE), SampEn (mSE), and FuzzyEn (mFE) compared postures and cases at each scale between 2 and 20 beats. Unlike SampEn and FuzzyEn, DistEn is affected by the spinal lesion but not by the postural sympatho/vagal shift. The multiscale approach shows differences between AB and SCI sitting participants at the largest mFE scales and between postures in AB participants at the shortest mSE scales. Thus, our results support the hypothesis that DistEn measures cardiovascular complexity while SampEn/FuzzyEn measure HRV randomness, highlighting that together these methods integrate the information each of them provides. Full article
Show Figures

Graphical abstract

19 pages, 6210 KB  
Article
Intelligent Diagnosis Method for Mechanical Faults of High-Voltage Shunt Reactors Based on Vibration Measurements
by Pengfei Hou, Hongzhong Ma and Ping Ju
Machines 2022, 10(8), 627; https://doi.org/10.3390/machines10080627 - 29 Jul 2022
Cited by 9 | Viewed by 2470
Abstract
Aiming at the difficulty of accurately identifying latent mechanical faults inside high-voltage shunt reactors (HVSRs), this paper proposes a new method for HVSR state feature extraction and intelligent diagnosis. The method integrates a modified complementary ensemble empirical mode decomposition (CEEMD)–permutation entropy–CEEMD (MCPCEEMD) method, [...] Read more.
Aiming at the difficulty of accurately identifying latent mechanical faults inside high-voltage shunt reactors (HVSRs), this paper proposes a new method for HVSR state feature extraction and intelligent diagnosis. The method integrates a modified complementary ensemble empirical mode decomposition (CEEMD)–permutation entropy–CEEMD (MCPCEEMD) method, mutual information theory (MI), multiscale fuzzy entropy (MFE), and an improved grasshopper optimization algorithm to optimize the probabilistic neural network (IGOA-PNN) model. First, we introduce MCPCEEMD for suppressing modal aliasing to decompose the HVSR raw vibration signals. Then, the correlation degree between the obtained intrinsic mode function (IMF) components and the HVSR original vibration signals is judged through MI, and the IMF with the highest correlation is selected for feature extraction. Furthermore, this study uses MFE to quantify the selected IMF. Finally, we employ piecewise inertial weights to improve GOA to select the best smoothing factor for PNN, and use the optimized IGOA-PNN model to identify feature subsets. The experimental results show that the proposed method can successfully diagnose different types and degrees of HVSR mechanical faults, and the identification accuracy rate reaches more than 98%. The high recognition accuracy of the proposed method is helpful for the state detection and field application of HVSRs. Full article
Show Figures

Figure 1

15 pages, 4328 KB  
Article
Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy
by Zhongliang Lv, Senping Han, Linhao Peng, Lin Yang and Yujiang Cao
Sensors 2022, 22(12), 4504; https://doi.org/10.3390/s22124504 - 14 Jun 2022
Cited by 10 | Viewed by 2783
Abstract
The working environment of rotating machines is complex, and their key components are prone to failure. The early fault diagnosis of rolling bearings is of great significance; however, extracting the single scale fault feature of the early weak fault of rolling bearings is [...] Read more.
The working environment of rotating machines is complex, and their key components are prone to failure. The early fault diagnosis of rolling bearings is of great significance; however, extracting the single scale fault feature of the early weak fault of rolling bearings is not enough to fully characterize the fault feature information of a weak signal. Therefore, aiming at the problem that the early fault feature information of rolling bearings in a complex environment is weak and the important parameters of Variational Modal Decomposition (VMD) depend on engineering experience, a fault feature extraction method based on the combination of Adaptive Variational Modal Decomposition (AVMD) and optimized Multiscale Fuzzy Entropy (MFE) is proposed in this study. Firstly, the correlation coefficient is used to calculate the correlation between the modal components decomposed by VMD and the original signal, and the threshold of the correlation coefficient is set to optimize the selection of the modal number K. Secondly, taking Skewness (Ske) as the objective function, the parameters of MFE embedding dimension M, scale factor S and time delay T are optimized by the Particle Swarm Optimization (PSO) algorithm. Using optimized MFE to calculate the modal components obtained by AVMD, the MFE feature vector of each frequency band is obtained, and the MFE feature set is constructed. Finally, the simulation signals are used to verify the effectiveness of the Adaptive Variational Modal Decomposition, and the Drivetrain Dynamics Simulator (DDS) are used to complete the comparison test between the proposed method and the traditional method. The experimental results show that this method can effectively extract the fault features of rolling bearings in multiple frequency bands, characterize more weak fault information, and has higher fault diagnosis accuracy. Full article
(This article belongs to the Special Issue Machinery Testing and Intelligent Fault Diagnosis)
Show Figures

Figure 1

16 pages, 4132 KB  
Article
Adaptive Local Mean Decomposition and Multiscale-Fuzzy Entropy-Based Algorithms for the Detection of DC Series Arc Faults in PV Systems
by Lina Wang, Ehtisham Lodhi, Pu Yang, Hongcheng Qiu, Waheed Ur Rehman, Zeeshan Lodhi, Tariku Sinshaw Tamir and M. Adil Khan
Energies 2022, 15(10), 3608; https://doi.org/10.3390/en15103608 - 15 May 2022
Cited by 22 | Viewed by 3480
Abstract
DC series arc fault detection is essential for improving the productivity of photovoltaic (PV) stations. The DC series arc fault also poses severe fire hazards to the solar equipment and surrounding building. DC series arc faults must be detected early to provide reliable [...] Read more.
DC series arc fault detection is essential for improving the productivity of photovoltaic (PV) stations. The DC series arc fault also poses severe fire hazards to the solar equipment and surrounding building. DC series arc faults must be detected early to provide reliable and safe power delivery while preventing fire hazards. However, it is challenging to detect DC series arc faults using conventional overcurrent and current differential methods because these faults produce only minor current variations. Furthermore, it is hard to define their characteristics for detection due to the randomness of DC arc faults and other arc-like transients. This paper focuses on investigating a novel method to extract arc characteristics for reliably detecting DC series arc faults in PV systems. This methodology first uses an adaptive local mean decomposition (ALMD) algorithm to decompose the current samples into production functions (PFs) representing information from different frequency bands, then selects the PFs that best characterize the arc fault, and then calculates its multiscale fuzzy entropies (MFEs). Eventually, MFE values are inputted to the trained SVM algorithm to identify the series arc fault accurately. Furthermore, the proposed technique is compared to the logistic regression algorithm and naive Bayes algorithm in terms of several metrics assessing algorithms’ validity for detecting arc faults in PV systems. Arc fault data acquired from a PV arc-generating experiment platform are utilized to authenticate the effectiveness and feasibility of the proposed method. The experimental results indicated that the proposed technique could efficiently classify the arc fault data and normal data and detect the DC series arc faults in less than 1 ms with an accuracy rate of 98.75%. Full article
(This article belongs to the Topic Solar Thermal Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

15 pages, 5108 KB  
Article
Multiscale Entropy Analysis of Short Signals: The Robustness of Fuzzy Entropy-Based Variants Compared to Full-Length Long Signals
by Airton Monte Serrat Borin, Anne Humeau-Heurtier, Luiz Eduardo Virgílio Silva and Luiz Otávio Murta
Entropy 2021, 23(12), 1620; https://doi.org/10.3390/e23121620 - 1 Dec 2021
Cited by 15 | Viewed by 2588
Abstract
Multiscale entropy (MSE) analysis is a fundamental approach to access the complexity of a time series by estimating its information creation over a range of temporal scales. However, MSE may not be accurate or valid for short time series. This is why previous [...] Read more.
Multiscale entropy (MSE) analysis is a fundamental approach to access the complexity of a time series by estimating its information creation over a range of temporal scales. However, MSE may not be accurate or valid for short time series. This is why previous studies applied different kinds of algorithm derivations to short-term time series. However, no study has systematically analyzed and compared their reliabilities. This study compares the MSE algorithm variations adapted to short time series on both human and rat heart rate variability (HRV) time series using long-term MSE as reference. The most used variations of MSE are studied: composite MSE (CMSE), refined composite MSE (RCMSE), modified MSE (MMSE), and their fuzzy versions. We also analyze the errors in MSE estimations for a range of incorporated fuzzy exponents. The results show that fuzzy MSE versions—as a function of time series length—present minimal errors compared to the non-fuzzy algorithms. The traditional multiscale entropy algorithm with fuzzy counting (MFE) has similar accuracy to alternative algorithms with better computing performance. For the best accuracy, the findings suggest different fuzzy exponents according to the time series length. Full article
(This article belongs to the Special Issue Multiscale Entropy Approaches and Their Applications II)
Show Figures

Figure 1

24 pages, 35290 KB  
Article
Intelligent Fault Diagnosis of Rolling-Element Bearings Using a Self-Adaptive Hierarchical Multiscale Fuzzy Entropy
by Xiaoan Yan, Yadong Xu and Minping Jia
Entropy 2021, 23(9), 1128; https://doi.org/10.3390/e23091128 - 30 Aug 2021
Cited by 20 | Viewed by 2986
Abstract
The fuzzy-entropy-based complexity metric approach has achieved fruitful results in bearing fault diagnosis. However, traditional hierarchical fuzzy entropy (HFE) and multiscale fuzzy entropy (MFE) only excavate bearing fault information on different levels or scales, but do not consider bearing fault information on both [...] Read more.
The fuzzy-entropy-based complexity metric approach has achieved fruitful results in bearing fault diagnosis. However, traditional hierarchical fuzzy entropy (HFE) and multiscale fuzzy entropy (MFE) only excavate bearing fault information on different levels or scales, but do not consider bearing fault information on both multiple layers and multiple scales at the same time, thus easily resulting in incomplete fault information extraction and low-rise identification accuracy. Besides, the key parameters of most existing entropy-based complexity metric methods are selected based on specialist experience, which indicates that they lack self-adaptation. To address these problems, this paper proposes a new intelligent bearing fault diagnosis method based on self-adaptive hierarchical multiscale fuzzy entropy. On the one hand, by integrating the merits of HFE and MFE, a novel complexity metric method, named hierarchical multiscale fuzzy entropy (HMFE), is presented to extract a multidimensional feature matrix of the original bearing vibration signal, where the important parameters of HMFE are automatically determined by using the bird swarm algorithm (BSA). On the other hand, a nonlinear feature matrix classifier with strong robustness, known as support matrix machine (SMM), is introduced for learning the discriminant fault information directly from the extracted multidimensional feature matrix and automatically identifying different bearing health conditions. Two experimental results on bearing fault diagnosis show that the proposed method can obtain average identification accuracies of 99.92% and 99.83%, respectively, which are higher those of several representative entropies reported by this paper. Moreover, in the two experiments, the standard deviations of identification accuracy of the proposed method were, respectively, 0.1687 and 0.2705, which are also greater than those of the comparison methods mentioned in this paper. The effectiveness and superiority of the proposed method are verified by the experimental results. Full article
Show Figures

Figure 1

23 pages, 7126 KB  
Article
Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM
by Maoyou Ye, Xiaoan Yan and Minping Jia
Entropy 2021, 23(6), 762; https://doi.org/10.3390/e23060762 - 16 Jun 2021
Cited by 83 | Viewed by 5792
Abstract
The goal of the paper is to present a solution to improve the fault detection accuracy of rolling bearings. The method is based on variational mode decomposition (VMD), multiscale permutation entropy (MPE) and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, the [...] Read more.
The goal of the paper is to present a solution to improve the fault detection accuracy of rolling bearings. The method is based on variational mode decomposition (VMD), multiscale permutation entropy (MPE) and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, the original bearing vibration signal is decomposed into several intrinsic mode functions (IMF) by using the VMD method, and the feature energy ratio (FER) criterion is introduced to reconstruct the bearing vibration signal. Secondly, the multiscale permutation entropy of the reconstructed signal is calculated to construct multidimensional feature vectors. Finally, the constructed multidimensional feature vector is fed into the PSO-SVM classification model for automatic identification of different fault patterns of the rolling bearing. Two experimental cases are adopted to validate the effectiveness of the proposed method. Experimental results show that the proposed method can achieve a higher identification accuracy compared with some similar available methods (e.g., variational mode decomposition-based multiscale sample entropy (VMD-MSE), variational mode decomposition-based multiscale fuzzy entropy (VMD-MFE), empirical mode decomposition-based multiscale permutation entropy (EMD-MPE) and wavelet transform-based multiscale permutation entropy (WT-MPE)). Full article
Show Figures

Figure 1

Back to TopTop