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Abstract: The fuzzy-entropy-based complexity metric approach has achieved fruitful results in
bearing fault diagnosis. However, traditional hierarchical fuzzy entropy (HFE) and multiscale
fuzzy entropy (MFE) only excavate bearing fault information on different levels or scales, but do
not consider bearing fault information on both multiple layers and multiple scales at the same
time, thus easily resulting in incomplete fault information extraction and low-rise identification
accuracy. Besides, the key parameters of most existing entropy-based complexity metric methods are
selected based on specialist experience, which indicates that they lack self-adaptation. To address
these problems, this paper proposes a new intelligent bearing fault diagnosis method based on self-
adaptive hierarchical multiscale fuzzy entropy. On the one hand, by integrating the merits of HFE
and MFE, a novel complexity metric method, named hierarchical multiscale fuzzy entropy (HMFE), is
presented to extract a multidimensional feature matrix of the original bearing vibration signal, where
the important parameters of HMFE are automatically determined by using the bird swarm algorithm
(BSA). On the other hand, a nonlinear feature matrix classifier with strong robustness, known
as support matrix machine (SMM), is introduced for learning the discriminant fault information
directly from the extracted multidimensional feature matrix and automatically identifying different
bearing health conditions. Two experimental results on bearing fault diagnosis show that the
proposed method can obtain average identification accuracies of 99.92% and 99.83%, respectively,
which are higher those of several representative entropies reported by this paper. Moreover, in
the two experiments, the standard deviations of identification accuracy of the proposed method
were, respectively, 0.1687 and 0.2705, which are also greater than those of the comparison methods
mentioned in this paper. The effectiveness and superiority of the proposed method are verified by
the experimental results.

Keywords: hierarchical multiscale fuzzy entropy; bird swarm algorithm; support matrix machine;
rolling element bearing; fault diagnosis

1. Introduction

The rolling-element bearing is one of the essential parts of rotating machinery; its
health condition directly affects the safe and steady operation of mechanical equipment [1].
When bearing failure occurs, it can easily cause economic losses for enterprises and even
catastrophic accidents. Besides, the properties of the fault-bearing vibration signal are
usually nonlinear and nonstationary, which indicates that it is difficult to obtain helpful
bearing fault information using traditional methods [2–4]. Therefore, exploring a new and
effective fault feature extraction method to ensure the normal running of rolling-element
bearings is of great significance.

Currently, many signal complexity metric methods have been proposed for describing
the complexity and irregularity of bearing vibration signals and extracting the correspond-
ing bearing fault feature information, including correlation dimension [5], Lempel–Ziv
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complexity [6], pattern spectrum entropy [7], approximate entropy [8], sample entropy
(SE) [9], permutation entropy (PE) [10], symbol dynamic entropy (SDE) [11], dispersion
entropy (DE) [12], fuzzy entropy (FE) [13], and so on. These methods have received great
attention in the field of bearing fault diagnosis and have obtained many achievements.
However, they only excavate bearing fault information on a single scale. Concerning
this problem, based on single-scale signal complexity metric methods, many multiscale
analysis methods (e.g., multiscale approximate entropy [14], multiscale sample entropy
(MSE) [15], multiscale permutation entropy (MPE) [16,17], multiscale symbol dynamic
entropy (MSDE) [18], multiscale dispersion entropy (MDE) [19], and multiscale fuzzy
entropy (MFE) [20]) are presented for bearing fault diagnosis. For instance, Han et al. [21]
adopted hierarchical Lempel–Ziv complexity to extract the fault information hidden in
both low-frequency and high-frequency components and achieve intelligent fault diagnosis
of rotating machinery. Yan et al. [22] used multiscale pattern gradient spectrum entropy
(MPGSE) to extract bearing fault information, then extreme learning machine (ELM) to
classify different bearing fault patterns. Gao et al. [23] combined the improved local mean
decomposition (LMD), multiscale permutation entropy (MPE), and hidden Markov model
(HMM) for identifying different fault types of rolling element bearings. Wu et al. [24]
utilized MPE to obtain bearing fault features, then used support vector machine (SVM)
to finish the fault identification of a rolling bearing. Gan et al. [25] presented a composite
multiscale fluctuation dispersion entropy (CMFDE) to extract multiscale fault information
of rolling bearings and realized a classification process for bearing fault types. Zheng
et al. [26] proposed a generalized composite multiscale permutation entropy (GCMPE)
to extract bearing fault information, and then used SVM to identify bearing fault types.
Wang et al. [27] adopted the generalized refined composite multiscale sample entropy
(GRCMSE) to extract bearing fault feature information, and then, the optimized support
vector machine was used to finish bearing fault diagnosis. Tang et al. [28] proposed a
hierarchical instantaneous energy density dispersion entropy (HIEDDE) to extract fault
features, then the extracted features were regarded as the input of dynamic time warping
(DTW) to automatically identify the fault types for a gearbox. Li et al. [29] proposed
hierarchical fuzzy entropy (HFE) to extract bearing fault features and adopted an improved
support-vector-machine-based binary tree to identify bearing fault patterns. Meanwhile,
Li et al. [30] combined the local mean decomposition (LMD) and improved multiscale
fuzzy entropy (IMFE) to complete intelligent fault diagnosis of a rolling bearing. How-
ever, there are two shortcomings in the above-reported methods. On the one hand, the
above-mentioned methods can only excavate bearing fault feature information on the
different scales or different levels of the original vibration signal, which indicates that
multiscale fault features of different levels or different frequency bands of the original
vibration signal are not taken into account simultaneously. In other words, the fault feature
information obtained by the above-mentioned methods is not very comprehensive and
rich. On the other hand, the above-mentioned methods rely on human experience to
select the important parameters of entropy, so they are not adaptive, and this can easily
affect the performance of fault feature extraction. Hence, to solve these issues, this paper
proposes a novel signal complexity metric method named hierarchical multiscale fuzzy
entropy (HMFE). Specifically, the proposed HMFE method consists of three modules (i.e.,
hierarchical decomposition, improved coarse-grained process, and fuzzy entropy calcu-
lation). Firstly, the hierarchical decomposition process of the collected original signal is
conducted to obtain a series of hierarchical components. Subsequently, the improved
coarse-grained process of each hierarchical component is carried out to effectively obtain
the improved coarse-grained time series of each hierarchical component at different scales.
Finally, the fuzzy entropy of each improved coarse-grained series is calculated to obtain the
final hierarchical multiscale fuzzy entropy (it is equivalent to a feature matrix at different
levels and scales). Besides, an effective intelligent optimizer named bird swarm algorithm
(BSA) is employed to self-adaptively determine the parameters of HMFE. In summary, the
contributions and novelties of this paper are summarized as follows:
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(1) A novel signal complexity metric method named hierarchical multiscale fuzzy en-
tropy (HMFE) is proposed via integrating hierarchic analysis into multiscale fuzzy
entropy, which can effectively obtain more comprehensive and richer bearing fault
feature information.

(2) The important parameters of HMFE are selected automatically by using the bird
swarm algorithm (BSA) method, which can effectively avoid the disadvantages of
manual selecting of the important parameters of the existing entropy.

(3) An intelligent bearing fault diagnosis method based on HMFE is presented, which
can improve the identification accuracy of different health conditions of rolling-
element bearings.

(4) Two experimental cases and comparative analysis are conducted to verify the effec-
tiveness and superiority of the proposed method.

The organization of the rest of this paper is as follows. Section 2 introduces the
self-adaptive hierarchical multiscale fuzzy entropy, including the basic theory, adaptive
parameter selection, and simulation analysis of HMFE. In Section 3, the concept of the
support matrix machine is summarized. Section 4 shows the flowchart of the proposed
method for bearing fault diagnosis. Section 5 validates the effectiveness and superiority of
the proposed method through two experimental examples and contrastive analysis. The
conclusions are drawn in Section 6.

2. Self-Adaptive Hierarchical Multiscale Fuzzy Entropy

In this section, self-adaptive hierarchical multiscale fuzzy entropy, which is mainly
composed of HMFE and its adaptive parameter selection, is introduced.

2.1. HMFE

In this section, based on the advantages of HFE and MFE, a novel signal complex-
ity metric method named hierarchical multi-scale fuzzy entropy (HMFE) is proposed.
Figure 1 shows the flowchart of the proposed HMFE method. For a given time series
{x(i), i = 1, 2, · · · , N}, the calculation process of HMFE is described in detail as follows:

Figure 1. Flowchart of the HMFE method.

(1) Firstly, the average and difference operator are respectively defined as follows:

Q0(x) =
x(2i) + x(2i + 1)

2
, i = 0, 1, 2, · · · , 2n−1 (1)
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Q1(x) =
x(2i)− x(2i + 1)

2
, i = 0, 1, 2, · · · , 2n−1 (2)

where n denotes the positive integer, 2n−1 represents the length of the two operators,
and Q0(x) and Q1(x) represent the low-frequency and high-frequency components
of the original time series in the first layer decomposition, respectively.

(2) Then, to implement the hierarchical analysis of a time series, when j = 0 or 1, the
matrix form of the k-th layer operator Qk

j is expressed as:

Qk
j =


1
2

(−1)j

2 0 0 · · · 0 0

0 0 1
2

(−1)j

2 · · · 0 0

0 0 0 0 · · · 1
2

(−1)j

2


2n−1×2n

(3)

(3) To obtain the hierarchical components Xk,e of each layer in the process of hierarchical
decomposition, here we define a one-dimensional vector as [γ1, γ2, · · · , γk] and an

integral value as e =
k
∑

p=1
2k−pγp, where

{
γp, p = 1, 2, · · · , k

}
∈ {0, 1} represents

the average or difference operator at the p-th layer. Accordingly, the hierarchical
component of the e-th node in the k-th layer can be expressed as:

Xk,e = Qk
γk
·Qk−1

γk−1
· · · · ·Q1

γ1
·x (4)

where x represents the given time series.
(4) Next, the improved coarse-grained time series y(τ)k,e =

{
y(τ)k,e,1, y(τ)k,e,2, · · ·

}
of each hier-

archical component at the τ scale factor can be calculated by

y(τ)k,e,j =
1
τ

j+τ−1

∑
i=j

Xi
k,e, 1 ≤ j ≤ N − τ + 1 (5)

where N represents the length of the given time series x.
(5) According to the definition of fuzzy entropy, calculate the fuzzy entropy of each

improved coarse-grained series y(τ)k,e , so the final hierarchical multiscale fuzzy entropy
can be obtained by the following:

HMFE(x, m, k, e, τ, r) = FE(y(τ)k,e , m, τ, r) (6)

where FE(·) represents the fuzzy entropy operation, m is the embedded dimension,
k is the decomposition level, e represents the hierarchical node, τ denotes the scale
factor, r = 0.15× SD is the similarity tolerance controlling the width of membership
function, and SD is the standard deviation of the original time series. In Figure 1, τm
represents the predefined largest scale factor.

2.2. Adaptive Parameter Selection of HMFE

The previous studies have shown that fault feature extraction performance of the
existing entropies (e.g., MSE, MPE, MFE, and HFE) is greatly affected by their parameter
settings. As with traditional entropies (e.g., MSE, MPE, MFE, and HFE), the parameters of
HMFE have a great impact on its performance, which indicates that it is necessary to adopt
an effective method to achieve adaptive selection of the parameters of HMFE. At present,
the intelligent swarm optimization algorithm has been proven to be effective in solving
parameter selection problems, including particle swarm optimization (PSO), ant colony
algorithm (ACO), bat algorithm (BA), and so on. Bird swarm algorithm (BSA) is a new
bionic optimization algorithm proposed by Meng et al. [31] in 2016. Compared with other
optimization algorithms, BSA has the advantages of high accuracy, strong stability, and
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fast convergence in the parameter optimization. Therefore, in this paper, BSA is adopted
to automatically select several important parameters (i.e., the embedding dimension m,
the decomposition level k and the scale factor τ) of HMFE. Figure 2 plots the flowchart of
parameter optimization of HMFE. The specific process of parameter optimization of HMFE
based on BSA method is summarized as follows:

Figure 2. Flowchart of parameter optimization of HMFE.

(1) Initialize the population and set the BSA parameters. When the number of iterations t
= 0, set the bird swarm size to N = 30 and the maximum iteration number to M = 50,
initialize the flight frequency FQ, foraging frequency P, and several constants (i.e., C,
S, FL, a1 and a2).

(2) Calculate and compare the fitness value. According to the fitness function shown in
Equation (7), the fitness value of bird swarm is calculated and compared to determine
the optimal position of the individual and whole bird swarm.

fitness(i) = 1− xi
xc + xi

(7)

where xi is the number of misclassified samples, xc is the number of samples correctly
classified, and fitness(i) is the current fitness value of the i-th bird. When fitness(i)
achieves the maximum value, pi,j is the corresponding optimal position of the indi-
vidual bird swarm, and gj is the corresponding optimal position of the whole bird
swarm.

(3) The iterative operation is performed repeatedly, and the position update formula is
determined by judging whether the operation t% × FQ has a remainder. Specific
rules are summarized as follows:

If there is a remainder for t% × FQ, a uniformly distributed number is randomly
generated. When the random number is less than the foraging frequency P, the foraging
behavior is performed, and Equation (8) is used to update the position. Otherwise, the
sentinel behavior is performed, and Equation (9) is used to update the position.

xt+1
i,j = xt

i,j + (pi,j − xt
i,j)× C× rand(0, 1)+

(gj − xt
i,j)× S× rand(0, 1)

(8)
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where rand(0,1) is a uniformly distributed random number between 0 and 1, pi,j is the
current best position of the i-th bird, gj is the current best position of bird swarm, and C
and S are two positive numbers, which are called the cognitive acceleration coefficient and
social acceleration coefficient, respectively.

xt+1
i,j = xt

i,j + A1(meanj − xt
i,j)× rand(0, 1)+

A2(pk,j − xt
i,j)× rand(−1, 1)

A1 = a1 × exp(− pfiti
sumfit+ε × N)

A2 = a2 × exp(
(

pfiti−pfitk
|pfitk−pfiti|+ε

)
N×pfitk
sumfit+ε )

(9)

where xt
i,j is the position of individual birds in the t-th iteration, xt+1

i,j is the position of
individual birds in the t + 1 iteration, a1 and a2 are the positive number between 0 and 2,
pfiti is the optimal fitness value of the i-th bird, sumfit is the sum of the optimal fitness
values of bird swarm, ε is the smallest constant that avoids dividing the denominator by
zero, k(k 6= i) is a positive integer between 1 and N, and meanj is the j-th element of the
average position of the entire bird swarm.

If there is no remainder for t%× FQ when individual birds are the producers, Equation
(10) is used to update the position. When individual birds are beggars, Equation (11) is
used to update the position.

xt+1
i,j = xt

i,j + randn(0, 1)× xt
i,j (10)

xt+1
i,j = xt

i,j + (xt
k,j − xt

i,j)× FL× randn(0, 1) (11)

where xt
i,j is the position of individual birds in the t-th iteration; xt+1

i,j is the position of
individual birds in the t + 1 iteration; randn(0,1) represents the random number of Gaussian
distribution with mean value 0 and standard deviation 1, k ∈ [1, 2, 3, · · · , N], k 6= i; and FL
denotes the integer between 0 and 2.

(4) Update the position of each bird swarm according to the rules in step (3). If the
individual of the current bird swarm is better than the individual of the previous
bird swarm, the current individual bird swarm is regarded as the optimal position.
Otherwise, the previous individual bird swarm is retained as the optimal position to
continue the update of bird swarm.

(5) Judge whether the stop condition is met. If the maximum number of iterations or
the minimum error rate is reached, the whole optimization process will be stopped,
and the optimal position of bird swarm (i.e., the optimal combination parameters
of HMFE) will be outputted. Otherwise, the iteration process will continue to be
conducted until the stop condition is satisfied.

2.3. Comparison Analysis Using Simulation Signal

To investigate the performance of the proposed HMFE method, according to the
literature [32], one bearing vibration signal xOR(t) (i.e., the simulation signal 1) containing
outer race fault and one bearing vibration signal xIR(t) (i.e., the simulation signal 2)
containing inner race fault are established by using Equations (12) and (13), respectively.

xOR(t) = f1(t) ∗ h1(t) + n(t)
f1(t) = ∑N−1

k=0 δ(t− kT1)
h1(t) = e−600πt cos(2π fnt)

(12)


xIR(t) = f2(t) ∗ h2(t) + n(t)

f2(t) = ∑N−1
k=0 cos(2π frt)δ(t− kT2)

h2(t) = e−800πt cos(2π f̂nt)
(13)
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where the asterisk * indicates the convolution operation; f1(t) and f2(t) are, respectively,
the cyclic impact signal caused by bearing outer race fault and inner race fault; n(t) is the
white Gaussian noise with a mean of 0 and standard deviation of 1; δ(·) indicates the Dirac
delta function, k = 0, 1, · · · , N − 1; N indicates the total number of impact impulses; and
T1 and T2 are the time intervals between two adjacent impulses under bearing outer race
fault and inner race fault, respectively. Bearing outer race fault frequency and inner race
fault frequency are fOR = 1/T1 = 50 Hz and f IR = 1/T2 = 90 Hz, respectively. fr = 25 Hz is
the rotation frequency of the driving shaft, h1(t) and h2(t) are, respectively, the impulse
response signal caused by the bearing outer race fault and that caused by the inner race
fault; and fn = 3000 Hz and f̂n = 5000 Hz are the natural frequencies of the excitation system
under bearing outer race fault and inner race fault, respectively. The sampling frequency
and data length of simulation signal are set as 16,384 Hz and 4096 points, respectively.

Figure 3 shows the time domain waveforms and their corresponding amplitude
spectra for two simulation signals. As can be seen from Figure 3, the periodic impact
impulses of two simulation signals are drowned in the random noise. That is, it is difficult
to identify bearing fault types by the direct observation of time domain waveform, which
means that an effective method is needed to extract the fault features of the two simulation
signals for distinguishing and recognizing them. Hence, the Euclidean distance (ED) of
three entropies (i.e., HMFE, HFE, and MFE) of two simulation signals are calculated to
compare their feature extraction ability. In the three methods (i.e., HMFE, HFE, and MFE),
the embedded dimension is m = 3 and the similarity tolerance r = 0.15 × SD, where
SD is the standard deviation of the simulation signal. Besides, for HMFE and HFE, the
decomposition level is k = 3. For HMFE and MFE, the scale factor is τ = 8. Figure 4a–d
shows the FE value obtained by the three methods (i.e., HMFE, HFE, and MFE) for two
simulation signals. Apparently, the FE value at different levels and scales can be extracted
by using HMFE, whereas HFE and MFE can only obtain the FE value of different levels
or scales. This indicates that HMFE can obtain more comprehensive feature information
compared to HFE and MFE. Table 1 lists the Euclidean distance (ED) and calculation time
of different methods. As shown in Table 1, the ED of the proposed HMFE is largest, which
shows that the feature information obtained by HMFE is more differentiated compared
with HFE and MFE. Besides, the calculation time of HMFE is significantly less than that of
MFE, but it is greater than that of HFE. This is mainly due to the hierarchical decomposition
and multiscale analysis process being integrated in the HMFE method, which increases the
computational burden of HMFE to some extent, but it is generally acceptable for practical
bearing vibration signal analysis.
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Entropy 2021, 23, 1128 8 of 24

Figure 4. FE value obtained by different methods for two simulation signals: (a) HMFE of simulation
signal 1, (b) HMFE of simulation signal 2, (c) HFE of simulation signal 1, (d) HFE of simulation signal
2, (e) MFE of simulation signal 1, and (f) MFE of simulation signal 2.

Table 1. Performance comparison among different methods.

Methods Euclidean Distance Calculation Time (s)

HMFE 0.3421 5.167
HFE 0.2048 2.163
MFE 0.0613 9.768

3. Support Matrix Machine

The intelligent fault identification step is required after the entropy-based fault feature
extraction. At present, many linear or nonlinear classification models have been proposed
for intelligent bearing fault identification, including linear discriminant analysis (LDA), BP
neural network (BPNN), K-nearest neighbor (KNN), extreme learning machine (ELM) [33],
partial least squares (PLS) [34], and support vector machine (SVM). However, these meth-
ods are only applicable to the classification of multidimensional feature vectors. When
the above-mentioned classification model is used for the processing of the multidimen-
sional feature matrix, their performance will be reduced. Hence, to solve this problem, a
new nonlinear classification model named support matrix machine (SMM) was recently
proposed by Luo et al. [35] in 2015, which can automatically learn the useful discriminant
information from the multidimensional feature matrix. In view of this, in this paper, our
plan is to adopt SMM to process the multidimensional feature matrix constructed by HMFE
and achieve intelligent fault identification of the rolling bearing. The basic theory of SMM
is described as follows:
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Suppose that {Xi, yi}n
i=1 is one given training set, where Xi ∈ Rd1×d2 is the i-th input

matrix, yi ∈ {1,−1} is the training label, and d1 and d2 represent the number of rows and
columns of the input matrix, respectively. Simply speaking, SMM implements the model
training and classification process through the hinge loss function and spectral elastic
network penalty function, as shown below.

argmin
W,b

1
2 tr(WTW) + λ‖W‖∗ + C∑n

i=1 ξi

s.t.yi[tr(WTXi) + b] ≥ 1− ξi, ∀i = 1, 2, . . . , n
(14)

where tr(WTW) = ‖W‖2
F is the squared F-norm [36], W ∈ Rd1×d2 is the regression coef-

ficient matrix, ‖W‖∗ is the kernel norm, λ and C are respectively kernel parameter and
penalty parameter, and b is the bias term. Spectral elastic network penalty function consists
of the squared F-norm and kernel norm. The squared F-norm can be used to control the
complexity of model and prevent the over-fitting phenomenon. The kernel norm can
approximately replace the rank of the regression coefficient matrix. Therefore, based on the
classification property of spectral elastic networks, SMM can effectively capture intrinsic
feature information and correlation in the input matrix. The alternating direction multiplier
method (ADMM) can be used to optimize SMM. In particular, after introducing auxiliary
variables Z ∈ Rd1×d2 , Equation (14) can be rewritten as:

argmin
W,b,Z

P(W, b) + Q(Z)

s.t. Z−W = 0
(15)

where P(W, b) and Q(Z) can be expressed as follows:

P(W, b) = 1
2 tr(WTW) + C∑n

i=1
{

1− yi[tr(WTXi) + b]
}
+

Q(Z) = τ‖Z‖∗
(16)

Specifically, Equation (14) can be solved by the augmented Lagrange multiplier
method [37], that is:

L(Z, W, b, M) = P(W, b) + Q(Z) + tr(MT(Z−W)) +
β

2
‖(Z−W)‖2

F (17)

where M ∈ Rd1×d2 is the Lagrange multiplier and β is a positive hyperparameter. The
updated equations of Z, W, B and the Lagrange multiplier M can be expressed as:

Zt+1 = argmin
Z

L(Z, Wt, bt, Mt)

(Wt+1, bt+1) = argmin
(W,b)

L(Zt+1, W, b, Mt)

Mt+1 = Mt − β(Wt+1 − Zt+1)

(18)

where t is the number of iterations. According to [35], the optimal solution of Equation (18)
can be written as: 

Ŵ = 1
β+1 (M + βZ + ∑n

i=1 α̂iyiXi)

b̂ = 1
n ∑n

i=1
{

yi − tr(ŴTXi)
}

Ẑ = 1
β Dτ(βW −M)

(19)

Finally, the decision function of SMM can be expressed as:

f (X) = sgn(tr(WTX) + b) (20)

where sgn(·) indicates the sign function and tr(·) indicates the trace of a matrix.
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4. Proposed Method

To obtain abundant fault information and improve bearing fault identification ac-
curacy, a new approach based on self-adaptive hierarchical multiscale fuzzy entropy is
proposed for intelligent fault diagnosis of rolling-element bearings. The proposed method
consists of three steps (i.e., bearing vibration data collection, hierarchical multiscale feature
extraction, and bearing health condition identification). Figure 5 shows the flowchart of
the proposed method, and its main steps are described below:

Figure 5. Flowchart of the proposed method for bearing fault identification.

Step1: Bearing vibration data collection. Bearing vibration data under different health
conditions are obtained by installing the accelerometer on the experimental equipment.

Step2: Hierarchical multiscale feature extraction. Using the HMFE method, the FE value
of bearing vibration signals at different levels and scales are calculated, where the important
parameters of the HMFE method are automatically determined by using the bird swarm
algorithm method. Meanwhile, the calculated HMFE of each bearing health condition is
adopted to construct a multidimensional feature matrix.

Step3: Bearing health condition identification. The constructed multidimensional feature
matrix is randomly divided into the training sample matrix and testing sample matrix,
where the training sample matrix is adopted to train the SMM classification model, and the
testing sample matrix is fed into the well-trained SMM classification model to automatically
identify different bearing health conditions.

5. Experimental Verification

In this section, two experiments about bearing fault diagnosis are conducted to show
the effectiveness of the proposed method. Furthermore, comparisons among the proposed
method and several representative entropies are adopted to highlight the superiority of the
proposed method. Finally, we discuss the future research direction.

5.1. Case 1: Bearing Benchmark Data from CWRU

Bearing benchmark data from Case Western Reserve University (CWRU) is applied
to validate the effectiveness of the proposed method. Figure 6 shows the experimental
platform and its schematic diagram, which are mainly composed of induction motor, testing
bearing, torque transducer, and load motor. Table 2 lists the specifications of the test bearing.
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In the experiment process, the sampling frequency is set as 12 kHz and the motor speed is
set as 1797 rpm. Besides, nine single-point faults (i.e., inner race slight fault (IRSF), inner
race medium fault (IRMF), inner race heavy fault (IRHF), outer race slight fault (ORSF),
outer race medium fault (ORMF), outer race heavy fault (ORHF), ball slight fault (BSF), ball
medium fault (BMF), and ball heavy fault (BHF)) are manufactured on normal bearings
by using electric discharging machining technique [38]. One accelerometer is mounted on
the bearing block of the drive-end of the induction motor to collect, respectively, bearing
vibration data containing the ten health conditions (i.e., normal, IRSF, IRMF, IRHF, ORSF,
ORMF, ORHF, BSF, BMF, and BHF). For each bearing health conditions, 50 data samples
with a length of 2048 points are intercepted by using a non-overlapping sliding window.
That is, a total of 500 data samples are obtained for the whole health conditions, where
25 data samples of each bearing health condition are randomly selected as the training
set and the remaining 25 data samples are treated as the testing set. Table 3 presents a
detailed description of bearing vibration data under ten health conditions. Figure 7 shows
the time domain waveform of bearing vibration data under different health conditions in
case 1. Seen from Figure 7, due to the measured bearing vibration data containing some
background noises and having nonlinear non-stationary characteristics, it is difficult to
accurately distinguish different health states of bearings by directly observing the time
domain waveforms.

Figure 6. (a) The experimental platform and (b) its schematic diagram.

Table 2. The specification of test bearing.

Bearing Type Roller Diameter
(mm)

Pitch Diameter
(mm)

Number of the
Roller

Contact Angle
(◦)

SKF6205-2RS 7.94 39.04 9 0

Table 3. The detailed description of experimental dataset in case 1.

Bearing Health
Conditions Abbreviation Fault Size (inches) Number of

Training Samples
Number of

Testing Samples Class Label

Normal NORM 0 25 25 1
Inner race slight fault IRSF 0.007 25 25 2

Inner race medium fault IRMF 0.014 25 25 3
Inner race heavy fault IRHF 0.021 25 25 4
Outer race slight fault ORSF 0.007 25 25 5

Outer race medium fault ORMF 0.014 25 25 6
Outer race heavy fault ORHF 0.021 25 25 7

Ball slight fault BSF 0.007 25 25 8
Ball medium fault BMF 0.014 25 25 9

Ball heavy fault BHF 0.021 25 25 10
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Figure 7. Time domain waveforms of bearing vibration data under different health conditions in case 1.

In order to effectively extract bearing fault features and improve the identification
accuracy, the proposed method is adopted to analyze the experimental data listed in
Table 3. Firstly, the BSA method is used to automatically determine the optimal parameters
of HMFE at the embedded dimension m = 3, the decomposition level k = 3, and the scale
factor τ = 8. Subsequently, the HMFE method with the optimal parameters is conducted to
calculate the FE value of different bearing health conditions at different levels and scales.
Meanwhile, the calculated HMFE of each bearing health condition is adopted to build the
multidimensional feature matrix with a size of 8 × 8 × 500. Figure 8 shows the calculation
results of HMFE of bearing vibration data under different health conditions. It can be seen
from Figure 8 that the FE value of different bearing health conditions is different at some
levels or scales due to the proper integration of hierarchical decomposition and multiscale
coarse-grained analysis, which helps for the subsequent identification of bearing health
conditions. Finally, the constructed multidimensional feature matrix is randomly divided
into the training sample matrix with a size of 8 × 8 × 250 and the testing sample matrix
with a size of 8 × 8 × 250. Besides, the SMM classification model is trained by the training
sample matrix, and the testing sample matrix is fed into the well-trained SMM model to
identify different bearing health conditions and automatically report the fault diagnosis
results. Figure 9 shows the identification results of the proposed method in the first trial.
Seen from Figure 9, the proposed method can achieve identification accuracy of 100%,
which means that the proposed method is effective in identifying different fault categories
and severities of rolling-element bearings.
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Figure 8. HMFE of bearing vibration data under different health conditions in case 1.

Figure 9. Classification results of the proposed method in case 1.

To show the effectiveness of the parameter optimization process used in the proposed
HMFE, the fault identification accuracy of the proposed method containing different
parameters of HMFE is calculated, and the results are shown in Table 4. Seen from
Table 4, when the BSA method is used to select the optimal parameters (i.e., the embedded
dimension m = 3, the decomposition level k = 3, and the scale factor τ = 8) of HMFE, the
proposed method with the parameter optimization process can obtain a high identification
accuracy. This means that the BSA-parameter optimization process in the proposed HMFE
is very useful for bearing fault identification. Besides, as shown in Table 4, the identification
accuracy is greater than 95% only when the scale factor τ is higher than or equal to 7. For
the phenomenon of the lower accuracy at low scale factor τ, here an explanation is given.
Concretely, in the HMFE method, when the embedded dimension m and decomposition
level k stay constant, if the scale factor τ is set as smaller, the feature matrix with a smaller
dimension will be extracted, which indicates that the feature information obtained by
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HMFE is relatively less and the identification accuracy of the proposed method is reduced.
Theoretically, the larger scale factor τ has more feature information and higher identification
accuracy. However, the bigger the scale factor τ is, the longer the calculation time of the
proposed method is, and the extracted features will contain some redundant information.
Hence, regarding the scale factor τ, bigger is not necessarily better, and it needs to be
selected appropriately.

Table 4. The identification results of the proposed method with different parameters in case 1.

Parameter Setting of HMFE
Identification Accuracy (%)

The Embedded Dimension m The Decomposition Level k The Scale Factor τ

1 2 4 87.60
2 2 6 93.20
2 3 7 96.80
3 3 7 98.80
3 3 8 100
4 3 8 99.20
4 4 12 98.40
5 4 16 98.80

Due to the number of training and testing samples having a great influence on the iden-
tification performance of the proposed method, the identification results of the proposed
method are further investigated at different percentages of training samples. Specifically,
identification results of the proposed method are calculated with the number of training
samples set at, respectively, 50, 100, 150, 200, 250, 300, 350, 400, and 450. Identification
accuracy and training time of the proposed method are shown in Figure 10 for when the
percentage of training samples in the whole dataset is, respectively, 10% (50/500), 20%
(100/500), 30% (150/500), 40% (200/500), 50% (250/500), 60% (300/500), 70% (350/500),
80% (400/500), and 90% (450/500). As can be seen from Figure 10, when the percentage of
training samples is equal to or greater than 0.5 (i.e., 50%), the proposed method achieves an
identification accuracy of 100%. However, as the percentage of training samples increases,
the training time of the proposed method has an upward trend. In other words, the higher
the number of training samples, the better trained the SMM model is, but the training time
of the proposed method will be longer. Therefore, to strike a balance between identification
accuracy and training time, the number of training and testing samples is set to the same
percentages used in this paper.

Figure 10. The identification results of the proposed method under different percentages of training
samples in case 1.

To further show the effectiveness of the SMM classification model used in the proposed
method, the proposed HMFE is combined with four classification models (i.e., SMM, SVM,
ELM, and BPNN) to identify bearing fault patterns. The parameters of these classification
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models are set based on the previous work [39]. Specifically, in the SMM and SVM classifier,
the kernel parameter λ =1/n and the penalty parameter C = 1, where n represents the
dimensions of the extracted feature matrix. In the ELM classifier, the activation function
uses a Sigmoid function, and the number of hidden nodes is N = 20. In the BPNN classifier,
the number of hidden nodes is N = 20, the maximum training number is I = 500, and the
learning rate is σ = 0.1. Each method is conducted for 5 trials to compare the results objec-
tively. Table 5 lists the identification results of combining HMFE and different classification
models (i.e., SMM, SVM, ELM, and BPNN). It can be clearly seen from Table 5 that the
average recognition accuracy of the proposed method (i.e., the combination of HMFE and
SMM) is significantly higher than the other combination methods, which indicates that the
validity of using SMM classification model in the proposed method is verified.

Table 5. The identification results of combining HMFE and different classifiers in case 1.

Classifier
Identification Accuracy Obtained by Combining HMFE and Different Classifier Methods in 5 Trials Average

Accuracy (%)1 2 3 4 5

SMM 100 99.60 100 100 100 99.92
SVM 97.60 98.00 97.60 97.60 97.20 97.60
ELM 98.40 98.80 98.40 98.00 98.40 98.40

BPNN 96.40 96.80 96.40 97.20 96.80 96.72

To show the superiority of the proposed method, comparisons are made between the
proposed method and six existing representative entropies (i.e., GCMPE [26], GRCMSE [27],
HFE [29], MFE [30], refined composite multiscale dispersion entropy (RCMDE) [40], and
hierarchical sample entropy (HSE) [41]). To avoid the randomness and occasionality of
the recognition results of different methods, 10 trials of each method are conducted to
observe and compare the identification results. Besides, to ensure a fair comparison, the
important parameters of all methods are selected by the BSA method, and the classification
process is completed by the SMM model. Table 6 lists the setting of the optimal parameters
of different methods. Figure 11 shows the identification results of different methods in
10 trials. Besides, Table 7 gives the final fault diagnosis results of the different methods
for 10 trials, including the maximum accuracy, minimum accuracy, average accuracy, and
standard deviation. As shown in Figure 11 and Table 7, the average identification accuracy
of the proposed method is 99.92%, which is higher than that of the six comparative methods
(i.e., HFE, MFE, RCMDE, GCMPE, GRCMSE, and HSE), which are 97.08%, 95.44%, 97.72%,
96.20%, 94.28%, and 91.92%, respectively. This indicates that the identification ability of the
proposed method for bearing health condition is better than the other methods. Moreover,
the standard deviation of the proposed method is 0.1687, which is smaller than that of the
six comparative methods (i.e., HFE, MFE, RCMDE, GCMPE, GRCMSE and HSE), which
are 0.2700, 0.3373, 0.2700, 0.2828, 0.3293, and 0.2530, respectively. That is, compared with
the six comparative methods (i.e., HFE, MFE, RCMDE, GCMPE, GRCMSE, and HSE), the
proposed method has a better stability in identifying bearing fault category and severity.
Hence, the effectiveness and advantages of the proposed method have been verified in the
comparative analysis of case 1.

Table 6. Parameter settings for different methods in case 1.

Methods The Optimal Parameter Setting

HMFE The embedded dimension m = 3, the decomposition level k = 3, and the scale factor τ = 8, the similarity tolerance
r = 0.15× SD, where SD is the standard deviation of the original signal.

HFE The embedded dimension m = 3, the decomposition level k = 3, the similarity tolerance r = 0.15× SD, where SD is the
standard deviation of the original signal.

MFE The embedded dimension m = 3, the scale factor τ = 10, the similarity tolerance r = 0.15× SD, where SD is the standard
deviation of the original signal.

RCMDE The embedded dimension m = 3, time delay d = 1, the number of classes c = 5, the scale factor τ = 10.
GCMPE The embedded dimension m = 3, time delay d = 1, the scale factor τ = 12.

GRCMSE The embedded dimension m = 3, the scale factor τ = 10, the similarity tolerance r = 0.15× SD, where SD is the standard
deviation of the original signal.

HSE The embedded dimension m = 3, the decomposition level k = 3, the similarity tolerance r = 0.15× SD, where SD is the
standard deviation of the original signal.



Entropy 2021, 23, 1128 16 of 24

Figure 11. The identification results of 10 trials of different methods in case 1.

Table 7. Comparison results of different methods in case 1.

Methods Maximum
Accuracy (%)

Minimum
Accuracy (%)

Average
Accuracy (%)

Standard
Deviation

HMFE 100 99.60 99.92 0.1687
HFE 97.60 96.80 97.08 0.2700
MFE 96.00 95.20 95.44 0.3373

RCMDE 98.00 97.20 97.72 0.2700
GCMPE 96.80 96.00 96.20 0.2828

GRCMSE 94.80 94.00 94.28 0.3293
HSE 92.40 91.60 91.92 0.2530

5.2. Case 2: Bearing Vibration Data from Laboratory

In this section, bearing vibration data collected from an ABLT-1A experimental device
is used to verify the effectiveness of the proposed method in identifying bearing fault
patterns. Figure 12a,b show, respectively, the bearing accelerated life test bench and its
corresponding structure diagram, which is mainly composed of motor, drive belt, bearing
test module, and coupling. The bearing test module is installed with four bearings. Type
and size of testing bearings are listed in Table 8. Five bearing health conditions (i.e., outer
race fault (ORF), inner race fault (IRF), ball fault (BF), outer and inner race compound
fault (OIRCF), outer race and ball compound fault (ORBCF)) on the normal bearing 1 are
generated by using wire electrical discharge machining. Figure 13 shows the photos of
different faulty bearings. In this experiment, the sampling frequency is set as 10,240 Hz,
and motor speed is stable at 1050 rpm. In order to simulate the weak bearing fault signal
brought by the long transmission path, one accelerometer is mounted on a position away
from faulty bearing 1 to collect bearing vibration data of different health conditions. For
each bearing health condition, 60 data samples with a length of 2048 points are obtained via
the sliding window, where 30 data samples of each bearing health condition are randomly
selected as the training set, and the other 30 data samples are regarded as the testing set.
That is to say, the training set and the testing set each have 180 samples. Table 9 provides the
detailed description of the experimental dataset. Figure 14 plots time domain waveforms of
bearing vibration data under different health conditions in case 2. As shown in Figure 14,
due to the environmental noise and transmission path interference, it is difficult to identify
different bearing fault patterns by directly observing the time domain waveforms of bearing
vibration signals, which means that it is urgent to adopt an effective method to identify
different health conditions of rolling bearings.
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Figure 12. (a) Bearing accelerated life test bench and (b) its corresponding schematic structure drawing.

Table 8. Parameters of rolling-element bearing.

Bearing Type Ball Diameter
(mm)

Pitch Diameter
(mm)

Number of
Balls

Contact Angle
(◦)

HRB6205 7.94 39.04 9 0

Figure 13. Photo of the faulty bearing: (a) ORF, (b) IRF, (c) OIRCF, and (d) BF.

Table 9. Detailed description of the experimental dataset in case 2.

Bearing Health Conditions Abbreviation Number of
Training Samples

Number of
Testing Samples Class Labels

Normal NORM 30 30 1
Outer race fault ORF 30 30 2
Inner race fault IRF 30 30 3

Ball fault BF 30 30 4
Outer and inner race compound fault OIRCF 30 30 5
Outer race and ball compound fault ORBCF 30 30 6

Figure 14. Time domain waveforms of bearing vibration data under different health conditions in
case 2.
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Firstly, to verify the effectiveness of the proposed method, the proposed method is
utilized to analyze the experimental data listed in Table 9. According to the flowchart
of the proposed method, the important parameters of HMFE are selected adaptively by
using the BSA method. Concretely, in the HMFE method, the embedded dimension m = 4,
the decomposition level k = 3, and the scale factor τ = 8 are used. Then, for each bearing
health condition, the proposed HMFE method with the optimized parameters is conducted
to obtain a multidimensional feature matrix with a size of 8 × 8 × 360. Figure 15 plots
the calculation results of HMFE of one data sample of different bearing health conditions.
Obviously, as seen from Figure 15, a comprehensive and recognizable feature matrix can
be obtained by calculating HMFE. Finally, according to the sample percentage of 1:1, the
obtained multidimensional feature matrix is randomly and averagely divided into the
training sample matrix and testing sample matrix. The training sample matrix is adopted
for the training of the SMM model, and the testing sample matrix is entered into the
well-trained SMM model for identifying different bearing health conditions. Figure 16
gives the identification results of the proposed method in the first trial. It can be seen from
Figure 16 that six bearing health conditions (i.e., Normal, ORF, IRF, BF, OIRCF, ORBCF) are
all correctly identified by using the proposed method, which implies that the efficacy of
the proposed method in bearing fault identification is preliminarily proven.

Figure 15. HMFE of bearing vibration data under different health conditions in case 2.

Figure 16. Classification results of the proposed method in case 2.
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As with in case 1, to illustrate the validity and necessity of the parameter optimization
process of the proposed method, we analyzed the identification results of the proposed
method under different parameter settings, as listed in Table 10. Seen from Table 10,
when the raw bearing vibration data are analyzed by the HMFE method with the optimal
parameters (i.e., the embedded dimension m = 4, the decomposition level k = 3, and the
scale factor τ = 8), the highest identification accuracy (100%) can be obtained, which means
that the parameter selection of HMFE has a great influence on its diagnosis performance.
Meanwhile, this also indicates that it is very useful for bearing fault identification by using
BAS to select the important parameters of HMFE.

Table 10. The identification results of the proposed method with different parameters in case 2.

Parameter Setting of HMFE
Identification
Accuracy (%)The Embedded

Dimension m
The Decomposition

Level k The Scale Factor τ

1 2 4 89.44
2 2 6 93.33
2 3 7 97.22
3 3 7 98.33
3 3 8 99.44
4 3 8 100
4 4 12 98.33
5 4 16 98.89

Similarly, to show the influence of the number of training samples on the proposed
method, the identification results of the proposed method at different percentage of training
samples are considered. The identification accuracy and training time of the proposed
method are calculated, and the calculation results are plotted in Figure 17, for when the
percentage of the training samples compared to all samples is, respectively, 10% (36/360),
20% (72/360), 30% (108/360), 40% (144/360), 50% (180/360), 60% (216/360), 70% (252/360),
80% (288/360), and 90% (324/360). Seen from Figure 17, the identification accuracy and
training time of the proposed method are increased with the increase of the percentage of
the training samples. Therefore, in this paper, the percentage of training samples is set as
50% (i.e., the number of training and testing samples is the same) to achieve a compromise
between the identification accuracy and training time, which is relatively reasonable.

Figure 17. The identification results of the proposed method under different percentages of training
samples in case 2.
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To further verify the effectiveness of the SMM model used in the proposed method,
the identification results of combining HMFE and different classifiers (i.e., SMM, SVM,
ELM, and BPNN) are calculated, and the results are listed in Table 11. Note that the model
parameters of different classifiers are set the same as case 1. It can be seen from Table 11
that the proposed method (i.e., the combination of HMFE and SMM) can achieve a higher
identification accuracy compared with other combination methods. This further validates
the effectiveness of using the SMM model in the proposed method.

Table 11. The identification results of combining HMFE and different classifiers in case 2.

Classifier

Identification Accuracy Obtained by Combining HMFE and Different Classifier
Methods in 5 Trials Average

Accuracy (%)
1 2 3 4 5

SMM 100 100 99.44 100 99.44 99.77
SVM 97.22 96.67 97.22 96.67 96.11 96.78
ELM 98.33 97.78 98.33 97.22 98.33 97.99

BPNN 95.55 96.11 95.55 96.11 95.00 95.66

As in case 1, to further prove superiority of the proposed method, the proposed
method and six entropies (i.e., HFE, MFE, RCMDE, GCMPE, GRCMSE, and HSE) are
used to analyze the same experimental data. Again, 10 trials are performed to avoid
the contingency of the diagnosis results, and the BSA method is used to determine the
important parameters of all methods to ensure the fairness of the comparison. Table 12
gives the parameter settings of different methods. Figure 18 plots the identification accuracy
of different methods over 10 trials. Moreover, Table 13 gives the specific comparison results
of the identification accuracy of the different methods. Seen from Figure 18 and Table 13,
compared with the other six representative methods (i.e., HFE, MFE, RCMDE, GCMPE,
GRCMSE, and HSE), the proposed method can obtain the highest average identification
accuracy (i.e., 99.83%), which further demonstrates the superiority of the proposed method
for bearing health condition identification. Besides, it can be also found from Table 13 that
the proposed method can obtain a smaller standard deviation (0.2705) than the other six
representative methods (i.e., HFE, MFE, RCMDE, GCMPE, GRCMSE, and HSE), which
implies that the proposed method has a more stable fault identification performance than
the other six representative methods. Therefore, by the experiment and the comparative
analysis, the superiority and efficacy of the proposed method in identifying bearing fault
patterns are highlighted.

Table 12. Parameter settings for different methods in case 2.

Methods The Optimal Parameter Setting

HMFE The embedded dimension m = 4, the decomposition level k = 3, and the scale factor τ = 8, the similarity tolerance
r = 0.15× SD, where SD is the standard deviation of the original signal.

HFE The embedded dimension m = 4, the decomposition level k = 3, the similarity tolerance r = 0.15× SD, where SD is
the standard deviation of the original signal.

MFE The embedded dimension m = 3, the scale factor τ = 12, the similarity tolerance r = 0.15× SD, where SD is the
standard deviation of the original signal.

RCMDE The embedded dimension m = 3, time delay d = 1, the number of classes c = 6, the scale factor τ = 12.
GCMPE The embedded dimension m = 3, time delay d = 1, the scale factor τ = 15.

GRCMSE The embedded dimension m = 4, the scale factor τ = 10, the similarity tolerance r = 0.15× SD, where SD is the
standard deviation of the original signal.

HSE The embedded dimension m = 3, the decomposition level k = 3, the similarity tolerance r = 0.15× SD, where SD is
the standard deviation of the original signal.
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Figure 18. The identification results of 10 trials of different methods in case 2.

Table 13. Comparison results of different methods in case 2.

Methods Maximum
Accuracy (%)

Minimum
Accuracy (%)

Average
Accuracy (%)

Standard
Deviation

HMFE 100 99.44 99.83 0.2705
HFE 96.67 95.55 96.27 0.3780
MFE 94.44 93.33 94.16 0.3913

RCMDE 96.67 95.55 96.16 0.4132
GCMPE 95.55 94.44 94.83 0.3758

GRCMSE 92.77 91.67 92.22 0.3667
HSE 90.55 89.40 90.04 0.4226

5.3. Further Discussion

Although the effectiveness and superiority of the proposed method in bearing health
condition identification is verified by the above two experiments, some limitations and
future works related to the proposed method are still left to discuss. These future works
and limitations are summarized as follows:

(1) In the proposed method, the key parameters of HMFE are determined by the bird
swarm algorithm (BSA) method, which is helpful for bearing fault feature extraction.
We all know that some other advanced optimizer (e.g., Grey wolf optimization (GWO),
Whale optimization algorithm (WOA), Grasshopper optimization algorithm (GOA))
can also be introduced to automatically determine the key parameters of HMFE.
Therefore, in our future work, the parameter selection problem of HMFE will continue
to be studied by adopting other advanced optimizers instead of the BSA method.

(2) In the final step of the proposed method, although the support matrix machine (SMM)
is employed to achieve the automatic identification of fault patterns of rolling-element
bearing and obtain a good diagnosis result, there are many other advanced classifica-
tion models in the previously reported literature, including the improved versions
(e.g., the non-parallel least squares support matrix machine [42], nonlinear kernel
support matrix machine) of SMM and deep learning models (e.g., convolutional
neural network [43], deep regularized variational autoencoder [44], deep belief net-
work [45], and other deep learning methods [46]). Hence, in our future work, SMM
of the proposed method will be replaced by these advanced classification models to
automatically obtain the identification results of bearing fault patterns.

(3) The proposed method is proven to be effective for identifying the bearing health
condition at constant speed, but it is unknown for bearing fault identification under
variable speed. Hence, the proposed method will be extended to solve the problem
of bearing fault identification under variable speed, which is regarded as our future
focus. Besides this, in our future work, other faults (e.g., gear, rotor, and blade) of
rotating machinery will also be diagnosed by applying the proposed method.
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(4) In this paper, the proposed HMFE is only applied for single-channel sensor data
analysis of rolling-element bearings. For bearing vibration data analysis of multi-
channel sensors, with the help of the idea of multichannel data processing used in the
existing multivariate multiscale entropy, a new multichannel data processing method
named multivariate hierarchical multiscale fuzzy entropy (MHMFE) will be designed
to solve the problem of multivariate fault diagnosis in our future work.

(5) Due to the addition of the parameter optimization algorithm, the biggest limitation of
the proposed method lies in the large calculation time. Therefore, to solve this issue
and improve the computational efficiency of the proposed method, in our future work,
some sensitive indicators (e.g., Chebychev distance and Mahalanobis distance) can be
used to instead of the complex optimizer to automatically select the key parameters of
HMFE. Besides, in the running of the algorithm, graphic processing units (GPU) can
be adopted instead of the central processing unit (CPU) to accelerate the calculation
process of the proposed method.

6. Conclusions

This paper proposes a new intelligent bearing fault diagnosis method based on self-
adaptive hierarchical multiscale fuzzy entropy, which can not only solve the disadvantages
of artificial selection of important parameters of most existing entropies, but also obtain
richer and more comprehensive bearing fault feature information. Two experimental
cases validate the effectiveness of the proposed method in bearing fault identification.
Furthermore, compared with some reported entropy methods, the superiority of the
proposed method in bearing fault identification is verified. Some specific conclusions and
contributions are summarized as follows:

(1) A new signal complexity metric method named hierarchical multiscale fuzzy entropy
is developed by integrating the hierarchical decomposition into multiscale fuzzy
entropy, which is aimed at improving fault feature extraction performance.

(2) An effective parameter optimizer called bird swarm algorithm is introduced to au-
tomatically choose several important parameters of hierarchical multiscale fuzzy
entropy, which can avoid the dependence of parameter selection of the existing
entropy on specialist experience.

(3) The effectiveness of the proposed method in the identification of bearing fault types
and fault severity is verified by experimental and contrastive analysis. The experimen-
tal results show that compared with some existing representative multiscale entropies
or hierarchical entropies, the proposed method can achieve broader and richer fault
feature information and its identification accuracy has been greatly improved, which
indicates that the proposed method has a certain competitiveness in bearing health
condition identification. This study provides a new perspective for intelligent fault
diagnosis for rolling-element bearings.
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