Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Dataset
3.2. Discrete Wavelet Transform
3.3. Proposed Method
3.4. Complete Proposed Algorithm
- Apply the Haar Transform to the OSV time series and convert it into two sub-signals, trend, and fluctuations. Apply this function iteratively five times to obtain the sub-signals up to stage 5.
- Discard the fluctuation sub-signals and perform analysis on the trend signals only, i.e., computed in the previous step.
- The mean value of each trend sub-signal is subtracted to eliminate biases and normalize all five sub-signals to zero-mean form, as given below:
- The next step is the measurement of variability in each of the zero-mean trend sub-signals using the method of counting zero-crossings mentioned earlier in Equation (5).
- Step 4 yields five values of the variability measure C computed using Equation (5). Their mean value is taken as the overall score of the structural fidelity of the signal.
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.D. Entropy for the complexity of physiological signal dynamics. Healthc. Big Data Manag. 2017, 1028, 39–53. [Google Scholar]
- Bouallegue, G.; Djemal, R.; Alshebeili, S.A.; Aldhalaan, H. A dynamic filtering DF-RNN deep-learning-based approach for EEG-based neurological disorders diagnosis. IEEE Access 2020, 8, 206992–207007. [Google Scholar] [CrossRef]
- Mandsager, K.T.; Robertson, D.; Diedrich, A. The function of the autonomic nervous system during spaceflight. Clin. Auton. Res. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, M.; Wu, W.; Zhang, Q.; Han, Y.; Kausar, T.; Chen, S.; Liu, M.; Wang, B. Entropy-based pattern learning based on singular spectrum analysis components for assessment of physiological signals. Complexity 2020, 2020, 4625218. [Google Scholar] [CrossRef]
- Naranjo, C.C.; Marras, C.; Visanji, N.P.; Cornforth, D.J.; Sanchez-Rodriguez, L.; Schüle, B.; Goldman, S.M.; Estévez, M.; Stein, P.K.; Lang, A.E.; et al. Increased markers of cardiac vagal activity in leucine-rich repeat kinase 2-associated Parkinson’s disease. Clin. Auton. Res. 2019, 29, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.; Jeon, S.; Ryu, W.S.; Kim, S. Comparative analysis of antiviral efficacy of FDA-approved drugs against SARS-CoV-2 in human lung cells. J. Med. Virol. 2021, 93, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Sklerov, M.; Dayan, E.; Browner, N. Functional neuroimaging of the central autonomic network: Recent developments and clinical implications. Clin. Auton. Res. 2019, 29, 555–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Wang, B.; Niu, Y.; Tan, Y.; Fan, C.; Zhang, N.; Xue, J.; Wei, J.; Xiang, J. Complexity analysis of EEG, MEG, and fMRI in mild cognitive impairment and Alzheimer’s disease: A review. Entropy 2020, 22, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chairina, G.; Yoshino, K.; Kiyono, K.; Watanabe, E. Ischemic stroke risk assessment by multiscale entropy analysis of heart rate variability in patients with persistent atrial fibrillation. Entropy 2021, 23, 918. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy maturity in premature infants Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [Green Version]
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [Green Version]
- Yentes, J.M.; Raffalt, P.C. Entropy analysis in gait research: Methodological considerations and recommendations. Ann. Biomed. Eng. 2021, 49, 979–990. [Google Scholar] [CrossRef]
- Bhogal, A.S.; Mani, A.R. Pattern analysis of oxygen saturation variability in healthy individuals: Entropy of pulse oximetry signals carries information about mean oxygen saturation. Front. Physiol. 2017, 8, 555. [Google Scholar] [CrossRef] [Green Version]
- Costello, J.T.; Bhogal, A.S.; Williams, T.B.; Bekoe, R.; Sabir, A.; Tipton, M.J.; Corbett, J.O.; Mani, J.O.A.R. Effects of normobaric hypoxia on oxygen saturation variability. High Alt. Med. Biol. 2020, 21, 76–83. [Google Scholar] [CrossRef]
- Jiang, Y.; Costello, J.T.; Williams, T.B.; Panyapiean, N.; Bhogal, A.S.; Tipton, M.J.; Corbett, J.; Mani, A.R. A network physiology approach to oxygen saturation variability during normobaric hypoxia. Exp. Physiol. 2021, 106, 151–159. [Google Scholar] [CrossRef]
- Al Rajeh, A.; Bhogal, A.S.; Zhang, Y.; Costello, J.T.; Hurst, J.R.; Mani, A.R. Application of oxygen saturation variability analysis for the detection of exacerbation in individuals with COPD: A proof-of-concept study. Physiol. Rep. 2021, 9, e15132. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, G.; Alshehri, F.; Karray, F.; El Saddik, A.; Alsulaiman, M.; Falk, T.H. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf. Fusion 2021, 76, 355–375. [Google Scholar] [CrossRef]
- Lee, B.; Tarng, Y.S. Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current. Int. J. Adv. Manuf. Technol. 1999, 15, 238–243. [Google Scholar] [CrossRef]
- Aziz, W.; Arif, M. Multiscale permutation entropy of physiological time series. In Proceedings of the 9th Inter Multitopic Conference, Karachi, Pakistan, 24–25 December 2005. [Google Scholar]
- Li, Y.; Xu, M.; Wang, R.; Huang, W. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J. Sound Vib. 2016, 360, 277–299. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, T.; Zhao, W.; Luo, Z.; Sun, K. Fault Diagnosis of Rolling Bearing Using Multiscale Amplitude-Aware Permutation Entropy and Random Forest. Algorithms 2019, 12, 184. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, P.C.; Rosenblum, M.G.; Peng, C.-K.; Mietus, J.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 1996, 383, 323–327. [Google Scholar] [CrossRef]
- Ivanov, P.; Rosenblum, M.; Peng, C.-K.; Mietus, J.; Havlin, S.; Stanley, H.; Goldberger, A. Scaling and universality in heart rate variability distributions. Phys. A Stat. Mech. Its Appl. 1998, 249, 587–593. [Google Scholar] [CrossRef]
- Goldberger, A.L. Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside. Lancet 1996, 347, 1312–1314. [Google Scholar] [CrossRef]
- Azami, H.; Escudero, J. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput. Methods Programs Biomed. 2016, 128, 40–51. [Google Scholar] [CrossRef]
- Aziz, W.; Arif, M. Complexity analysis of stride interval time series by threshold dependent symbolic entropy. Eur. J. Appl. Physiol. 2006, 98, 30–40. [Google Scholar] [CrossRef]
- Porta, A.; Guzzetti, S.; Montano, N.; Furlan, R.; Pagani, M.; Malliani, A.; Cerutti, S. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Transation Biomed. Eng. 2001, 48, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.E.; Moorman, J.R. Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H319–H325. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.A.; Levy, J.; Almog, R.; Reiner-Benaim, A.; Miller, A.; Behar, D.E.J.A. Descriptive characteristics of continuous oximetry measurement in moderate to severe COVID-19 patients. Sci. Rep. 2023, 13, 442. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, C.; Zhang, D.; Tseng, M.-L.; Wei, J. An Intelligent Classification Diagnosis Based on Blood Oxygen Saturation Signals for Medical Data Security Including COVID-19 in Industry 5.0. IEEE Trans. Ind. Inform. 2023, 19, 3310–3320. [Google Scholar] [CrossRef]
- Samaranayake, C.B.; Warren, C.; Rhamie, S.; Haji, G.; Wort, S.J.; Price, L.C.; McCabe, C.; Hul, J.H. Chaotic breathing in post-COVID-19 breathlessness: A key feature of dysfunctional breathing can be characterised objectively by approximate entropy. ERJ Open Res. 2023, 9, 117–2023. [Google Scholar] [CrossRef] [PubMed]
- Aliani, C.; Rossi, E.; Luchini, M.; Calamai, I.; Deodati, R.; Spina, R.; Lanata, A.; Bocchi, L. Cardiovascular Dynamics in COVID-19: A Heart Rate Variability Investigation. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 2278–2281. [Google Scholar] [CrossRef]
- Beurer PO 80 Pulse Oximeter. Available online: https://www.beurer.com/web/gb/products/medical/pulse-oximeter/po-80.php (accessed on 3 March 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alassafi, M.O.; Khan, I.R.; AlGhamdi, R.; Aziz, W.; Alshdadi, A.A.; Dessouky, M.M.; Bahaddad, A.; Altalbe, A.; Albishry, N. Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet. Healthcare 2023, 11, 2280. https://doi.org/10.3390/healthcare11162280
Alassafi MO, Khan IR, AlGhamdi R, Aziz W, Alshdadi AA, Dessouky MM, Bahaddad A, Altalbe A, Albishry N. Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet. Healthcare. 2023; 11(16):2280. https://doi.org/10.3390/healthcare11162280
Chicago/Turabian StyleAlassafi, Madini O., Ishtiaq Rasool Khan, Rayed AlGhamdi, Wajid Aziz, Abdulrahman A. Alshdadi, Mohamed M. Dessouky, Adel Bahaddad, Ali Altalbe, and Nabeel Albishry. 2023. "Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet" Healthcare 11, no. 16: 2280. https://doi.org/10.3390/healthcare11162280
APA StyleAlassafi, M. O., Khan, I. R., AlGhamdi, R., Aziz, W., Alshdadi, A. A., Dessouky, M. M., Bahaddad, A., Altalbe, A., & Albishry, N. (2023). Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet. Healthcare, 11(16), 2280. https://doi.org/10.3390/healthcare11162280