Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,788)

Search Parameters:
Keywords = multiple signalling pathways

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
62 pages, 1714 KB  
Review
FGFR Aberrations in Solid Tumors: Mechanistic Insights and Clinical Translation of Targeted Therapies
by Zijie He, Yizhen Chen, Genglin Li, Jintao Wang, Yuxin Wang, Pengjie Tu, Yangyun Huang, Lilan Zhao, Xiaojie Pan, Hengrui Liu and Wenshu Chen
Cancers 2026, 18(1), 89; https://doi.org/10.3390/cancers18010089 (registering DOI) - 27 Dec 2025
Abstract
Aberrations in fibroblast growth factor receptors (FGFRs) constitute a key oncogenic mechanism across multiple solid tumors, influencing tumor initiation, therapeutic response, and clinical outcomes. This review synthesizes current knowledge on the molecular biology, signaling networks, and tumor-specific distribution of FGFR alterations, including amplifications, [...] Read more.
Aberrations in fibroblast growth factor receptors (FGFRs) constitute a key oncogenic mechanism across multiple solid tumors, influencing tumor initiation, therapeutic response, and clinical outcomes. This review synthesizes current knowledge on the molecular biology, signaling networks, and tumor-specific distribution of FGFR alterations, including amplifications, point mutations, and gene fusions. The mechanistic basis of FGFR-driven tumor progression is discussed, including activation of downstream signaling pathways, crosstalk with other receptor tyrosine kinases, and regulation of the tumor microenvironment, angiogenesis, and immune escape. Recent development of selective FGFR inhibitors—such as pemigatinib, erdafitinib, and futibatinib—has translated mechanistic insights into measurable clinical benefits in genomically defined patient populations. However, acquired resistance remains a major challenge, driven by secondary mutations, activation of bypass pathways, and intratumoral heterogeneity. Integration of multi-omics profiling, liquid biopsy monitoring, and biomarker-guided patient selection is essential to optimize therapeutic efficacy and overcome resistance. This review also highlights emerging therapeutic modalities, such as antibody–drug conjugates and nanotechnology-based delivery systems, which may improve target specificity and prolong therapeutic durability. By integrating molecular, translational, and clinical evidence, this review aims to establish a comprehensive framework for precision oncology strategies targeting FGFR-driven malignancies. Full article
(This article belongs to the Special Issue Novel Therapeutic Approaches for Cancer Treatment)
17 pages, 2499 KB  
Article
Multiomics Profiling Unveils Key Genes and MetabolitesInvolved in the Salt Tolerance of Gossypium hirsutum
by Zheng Weng, Fan Wang, Xin Wei, Lianjia Zhao, Wei Wang and Jianfeng Lei
Genes 2026, 17(1), 22; https://doi.org/10.3390/genes17010022 (registering DOI) - 26 Dec 2025
Abstract
Background: Salt stress is a primary abiotic constraint on cotton growth, significantly impairing yield and fiber quality. Methods: To elucidate the regulatory mechanisms underlying salt stress responses in Gossypium hirsutum, we performed transcriptomic and metabolomic profiling at multiple time points following salt [...] Read more.
Background: Salt stress is a primary abiotic constraint on cotton growth, significantly impairing yield and fiber quality. Methods: To elucidate the regulatory mechanisms underlying salt stress responses in Gossypium hirsutum, we performed transcriptomic and metabolomic profiling at multiple time points following salt treatment. Results: We identified 33,975 differentially expressed genes (DEGs), with significant enrichment in pathways related to plant hormone signal transduction, amino acid metabolism, and starch and sucrose metabolism. K-means clustering grouped the DEGs into six expression modules corresponding to distinct response stages. Additionally, UPLC‒MS analysis identified 6292 metabolites—spanning lipids, carbohydrates, and amino acids—and revealed substantial metabolic reprogramming with increasing stress duration. An integrated multiomics analysis highlighted the ABC transporter and starch and sucrose metabolism pathways as key regulatory modules for salt tolerance and identified critical genes within them. Conclusions: Collectively, these findings provide a comprehensive view of the transcriptional and metabolic dynamics of G. hirsutum under salt stress, offering valuable insights for understanding the molecular mechanisms of salt tolerance. Full article
(This article belongs to the Special Issue Genetic Regulation of Plant Metabolism in Environmental Adaptation)
16 pages, 4321 KB  
Article
Correlated Expression of Notch2 and ADAM17 in Primary Sjögren’s Syndrome Salivary Glands
by Margherita Sisto, Sabrina Lisi, Roberto Tamma, Michelina De Giorgis, Giuseppe Ingravallo, Mario Della Mura, Joana Sorino, Eliano Cascardi and Domenico Ribatti
J. Clin. Med. 2026, 15(1), 182; https://doi.org/10.3390/jcm15010182 (registering DOI) - 26 Dec 2025
Abstract
Background/Objectives: The Notch–ADAM17 pathway is a fundamental signaling mechanism where ADAM17, a disintegrin and metalloprotease, cleaves the Notch receptor after the Notch receptor binds to a ligand. Crosstalk between Notch and ADAM17 is often altered in pathological situations. Alterations in Notch2 expression, [...] Read more.
Background/Objectives: The Notch–ADAM17 pathway is a fundamental signaling mechanism where ADAM17, a disintegrin and metalloprotease, cleaves the Notch receptor after the Notch receptor binds to a ligand. Crosstalk between Notch and ADAM17 is often altered in pathological situations. Alterations in Notch2 expression, in particular, appears to be correlated with the onset of various autoimmune diseases. In primary Sjögren’s disease (pSjD), an autoimmune disorder characterized by chronic inflammation, the role of ADAM17 has been extensively explored, but a correlation with Notch2 has not yet been evaluated. Methods: To analyze the gene and protein expression of Notch2 in pSjD and a possible correlation with ADAM17 expression and with the patient’s inflammatory grade, we employed an integrated co-detection protocol to analyze salivary gland tissue sections by combining in situ hybridization (ISH) with immunohistochemistry (IHC). Results: combined ISH/IHC allows us to demonstrate an increased expression of Notch2 mRNA and protein in pSjD salivary glands (SGs) biopsies, which appears correlated with an increased expression of ADAM17, both in acinar and duct cells and in infiltrating lymphocytes. Notch2/ADAM17 expression is higher in biopsies of pSjD SGs characterized by a high degree of inflammation. Conclusions: this work demonstrates the correlated expression in pSjD SGs of ADAM17, which plays multiple roles in the pathogenesis of SjD, and Notch2, widely considered a key player in various inflammatory mechanisms, offering a starting point for future therapeutic interventions to investigate. Full article
(This article belongs to the Special Issue Sjogren’s Syndrome: Clinical Advances and Insights)
Show Figures

Figure 1

28 pages, 1902 KB  
Review
Therapeutic Agents Targeting the Nrf2 Signaling Pathway to Combat Oxidative Stress and Intestinal Inflammation in Veterinary and Translational Medicine
by Muhammad Zahoor Khan, Shuhuan Li, Abd Ullah, Yan Li, Mohammed Abohashrh, Fuad M. Alzahrani, Khalid J. Alzahrani, Khalaf F. Alsharif, Changfa Wang and Qingshan Ma
Vet. Sci. 2026, 13(1), 25; https://doi.org/10.3390/vetsci13010025 - 25 Dec 2025
Abstract
This review synthesizes research on nuclear factor erythroid 2-related factor 2 (Nrf2) in intestinal health across human, livestock, and mouse models. The Nrf2 signaling pathway serves as a master regulator of cellular antioxidant defenses and a key therapeutic target for intestinal inflammatory disorders, [...] Read more.
This review synthesizes research on nuclear factor erythroid 2-related factor 2 (Nrf2) in intestinal health across human, livestock, and mouse models. The Nrf2 signaling pathway serves as a master regulator of cellular antioxidant defenses and a key therapeutic target for intestinal inflammatory disorders, including ulcerative colitis and Crohn’s disease. The interplay between oxidative stress, Nrf2 signaling, and NF-κB inflammatory cascades represents a critical axis in the pathogenesis and resolution of intestinal inflammation. Under normal physiological conditions, Nrf2 remains sequestered in the cytoplasm by Kelch-like ECH-associated protein 1 (Keap1), which facilitates its ubiquitination and proteasomal degradation. However, during oxidative stress, reactive oxygen species (ROS) and electrophilic compounds modify critical cysteine residues on Keap1, disrupting the Keap1-Nrf2 interaction and enabling Nrf2 nuclear translocation. Once in the nucleus, Nrf2 binds to antioxidant response elements (ARE) in the promoter regions of genes encoding phase II detoxifying enzymes and antioxidant proteins, including heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and glutamate-cysteine ligase. This comprehensive review synthesizes current evidence demonstrating that activation of Nrf2 signaling confers protection against intestinal inflammation through multiple interconnected mechanisms: suppression of NF-κB-mediated pro-inflammatory cascades, enhancement of cellular antioxidant capacity, restoration of intestinal barrier integrity, modulation of immune cell function, and favorable alteration of gut microbiota composition. We systematically examine a diverse array of therapeutic agents targeting Nrf2 signaling, including bioactive peptides, natural polyphenols, flavonoids, terpenoids, alkaloids, polysaccharides, probiotics, and synthetic compounds. The mechanistic insights and therapeutic evidence presented underscore the translational potential of Nrf2 pathway modulation as a multi-targeted strategy for managing intestinal inflammatory conditions and restoring mucosal homeostasis. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

21 pages, 4331 KB  
Article
Functional Characterization of a Root-Preferential and Stress-Inducible Promoter of Eca-miR482f in Eucalyptus camaldulensis
by Weihua Zhang, Qian Zhou, Xiaotong Wu, Shuyi Huang and Yuanzhen Lin
Plants 2026, 15(1), 67; https://doi.org/10.3390/plants15010067 - 25 Dec 2025
Viewed by 30
Abstract
MicroRNAs (miRNAs) act as pivotal post-transcriptional regulators of gene expression in plant stress responses. However, the transcriptional regulation mechanisms governing miRNA genes themselves remain insufficiently characterized. This study focuses on Eca-miR482f, a previously identified cold-responsive miRNA from Eucalyptus camaldulensis that targets EcaSIZ1—a [...] Read more.
MicroRNAs (miRNAs) act as pivotal post-transcriptional regulators of gene expression in plant stress responses. However, the transcriptional regulation mechanisms governing miRNA genes themselves remain insufficiently characterized. This study focuses on Eca-miR482f, a previously identified cold-responsive miRNA from Eucalyptus camaldulensis that targets EcaSIZ1—a key component of the ICE1–CBFs–CORs cold signaling pathway. We first investigated the expression pattern of Eca-miR482f and found it exhibited root-preferential accumulation in E. camaldulensis. Under cold stress, it displayed divergent organ-specific responses: strong induction in roots and suppression in aerial tissues. To elucidate its transcriptional regulation, we cloned a 1938 bp promoter sequence upstream of the Eca-miR482f precursor. Bioinformatics analysis revealed that this promoter was highly conserved within the Eucalyptus genus and enriched with multiple cis-acting elements associated with stress responses—including a low-temperature-responsive element (LTR)—as well as hormone signaling, such as abscisic acid (ABA) and methyl jasmonate (MeJA)-responsive motifs. A series of 5′-deletion fragments were generated to delineate the functional regions within the promoter. Through transgenic approaches in both tobacco and Arabidopsis, we demonstrated that this promoter drove strong, root-preferential expression. Furthermore, it exhibited significant inducibility under cold and MeJA treatments. Systematic truncation analysis delineated specific promoter regions essential for maintaining this organ specificity and stress responsiveness, thus identifying potential functional modules. Briefly, our findings provide crucial insights into the transcriptional regulation of Eca-miR482f and uncover a valuable genetic tool for future biotechnological engineering of stress-tolerant woody plants via precise spatiotemporal modulation of gene expression. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

19 pages, 9677 KB  
Article
Genome-Wide Identification of the OPR Gene Family in Soybean and Its Expression Pattern Under Salt Stress
by Zhongxu Han, Xiangchi Zhang, Yanyan Sun, Chunjing Lin, Xiaoyang Ding, Hao Yan, Yong Zhan and Chunbao Zhang
Biology 2026, 15(1), 32; https://doi.org/10.3390/biology15010032 - 25 Dec 2025
Viewed by 30
Abstract
12-oxo-phytodienoic acid reductase (OPR) is a core component of the jasmonic acid (JA) biosynthetic pathway and participates in JA synthesis by catalyzing the reduction in the precursor 12-oxo-phytodienoic acid (OPDA), as well as broadly regulating plant development, stress response, and hormone signaling networks. [...] Read more.
12-oxo-phytodienoic acid reductase (OPR) is a core component of the jasmonic acid (JA) biosynthetic pathway and participates in JA synthesis by catalyzing the reduction in the precursor 12-oxo-phytodienoic acid (OPDA), as well as broadly regulating plant development, stress response, and hormone signaling networks. This study analyzed the OPR gene family using 28 soybean genomes. A total of 15 OPR gene family members in soybean were identified, including 14 core genes and one variable gene. Analysis of gene duplication types showed that whole-genome duplication (WGD)/segmental duplication was the main mode of duplication in GmOPRs. The phylogenetic tree constructed from multiple species showed that the OPRs in subgroup VII were functionally important OPR genes and that the OPRs underwent Leguminosae and Cruciferae divergence, and large-scale duplication occurred in Leguminosae. Analysis of natural selection pressures on 28 soybean accessions indicated that the overall evolutionary pressures on GmOPRs were dominated by purifying selection, but there were also potential positive selection signals. Analysis of cis-acting elements revealed a large number of light- and hormone-responsive cis-acting elements in the GmOPRs. Some specific cis-acting elements were only present in a few genes or accessions. The protein interaction network consisted of 12 GmOPR proteins, 4 allene oxide synthase (AOS) proteins, and 6 allene oxide cyclase (AOC) proteins, where AOCs interact with GmOPRs and AOSs. Tissue transcriptome expression profiling showed that GmOPR3, GmOPR7, and GmOPR15 were specifically expressed in roots, whereas GmOPR2, GmOPR10, and GmOPR14 were specifically expressed in leaves, suggesting that these genes play an important role in the growth and development of the tissues. Moreover, GmOPRs usually responded to salt stress, and GmOPR3, GmOPR8, GmOPR9, GmOPR10, and GmOPR11 were significantly up-regulated in roots and leaves under salt stress. This suggests that these genes may be involved in biological processes such as osmoregulation, ion homeostasis, and scavenging of reactive oxygen species, thus helping soybeans to resist salt stress. This study comprehensively analyzed the OPR gene family in soybean based on the 28 soybean accessions and clarified the salt stress response pattern, which provides a new and more effective and reliable way to analyze the soybean gene family. Full article
(This article belongs to the Special Issue Research Progress on Salt Stress in Plants)
Show Figures

Figure 1

18 pages, 700 KB  
Review
Targeting the MAPK Pathway in Cancer
by Sultan F. Kadasah
Int. J. Mol. Sci. 2026, 27(1), 214; https://doi.org/10.3390/ijms27010214 - 24 Dec 2025
Viewed by 98
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade is fundamental in regulating cellular proliferation and differentiation, cell survival and cell death via apoptosis. Disruption of the MAPK signaling cascade at any point can lead to the evasion of apoptosis and unchecked cell growth and [...] Read more.
The mitogen-activated protein kinase (MAPK) signaling cascade is fundamental in regulating cellular proliferation and differentiation, cell survival and cell death via apoptosis. Disruption of the MAPK signaling cascade at any point can lead to the evasion of apoptosis and unchecked cell growth and proliferation, leading to oncogenesis. This narrative review describes MAPK pathway dysregulation, its therapeutic targets, and resistance mechanisms. The therapeutic targeting of the MAPK pathway is complex due to the dual context-dependent roles of several kinases in the signaling cascade. Despite the therapeutic effectiveness of MAPK inhibitors, cancer cells develop chemoresistance that needs to be targeted via bypassing (c-Jun N-terminal kinases) JNK, protein kinase AKT and (mammalian target of rapamycin) mTOR signaling cascades, pairing MAPK inhibitors with multiple immune agents and targeting the MAPK pathway downstream of (extracellular signal-regulated kinase) ERK to prevent its reactivation mechanisms using combination therapies, downstream signaling regulators and (Proteolysis Targeting Chimeras) PROTACs. Additionally, MAPK-mediated regulation of ferroptosis is a novel oncological therapeutic targeting strategy for controlling tumor progression. The inhibition of the RAF/MAPK pathway results in alteration of several key regulators of ferroptosis, including SLCA11, GSH, GPX4 and NCO4A, hence affecting lipid cellular iron concentration and lipid peroxidation. Emerging therapies targeting the MAPK pathway should be designed considering crosstalk, compensatory signaling mechanism activation, the role of ferroptosis and the impact of the tumor microenvironment. Full article
51 pages, 2000 KB  
Review
Leptin as a Potential Modifier of Neuroinflammation: Contrasting Roles in Alzheimer’s Disease and Multiple Sclerosis
by Naghmeh Abbasi Kasbi, Barbara Elena Stopschinski, Alanna Gabrielle Polyak, Agastya Reddy Malladi, Navid Manouchehri, Philipp E. Scherer and Olaf Stuve
Int. J. Mol. Sci. 2026, 27(1), 168; https://doi.org/10.3390/ijms27010168 - 23 Dec 2025
Viewed by 164
Abstract
The neuroendocrine and immune systems interact bidirectionally through shared ligands and receptors during inflammation, thereby regulating immune responses. Leptin, primarily known for its role in energy metabolism and appetite regulation, also modulates neuroinflammatory pathways. Its receptors are widely expressed on immune cells and [...] Read more.
The neuroendocrine and immune systems interact bidirectionally through shared ligands and receptors during inflammation, thereby regulating immune responses. Leptin, primarily known for its role in energy metabolism and appetite regulation, also modulates neuroinflammatory pathways. Its receptors are widely expressed on immune cells and contribute to immune mechanisms implicated in the pathogenesis of neuroinflammatory disorders such as multiple sclerosis (MS) and Alzheimer’s disease (AD). This review highlights recent advances in understanding leptin’s role in immune regulation, with a focus on its impact on MS and AD. A comprehensive literature review was conducted until October 2025, using PubMed, Google Scholar, and Scopus to identify studies investigating leptin in neuroinflammatory conditions, particularly MS and AD. Leptin exerts broad immunomodulatory effects by activating T cells, dendritic cells, and microglia, and promoting their proliferation and phagocytosis. Its elevation enhances Th1 and Th17 responses, drives pro-inflammatory macrophage phenotype polarization, and suppresses regulatory T cell and Th2 responses, immune pathways involved in MS. Peripheral leptin levels are increased in MS, especially during disease exacerbations. In contrast, in AD, they are typically reduced, particularly in patients with normal body mass index (BMI), where their decline contributes to amyloid-β and tau pathology. These divergent patterns position leptin as a bidirectional regulator at the intersection of immunity and neurodegeneration. Additionally, its protective or detrimental effects likely depend on whether it acts under physiological conditions or in the context of obesity-induced leptin resistance. Elevated leptin levels in obesity exacerbate inflammation and diminish its neuroprotective effects. In conclusion, leptin is elevated in MS patients but downregulated in AD, reflecting its bidirectional effects. In leptin resistance, peripheral proinflammatory signaling is maintained while central leptin signaling is restricted, thereby potentially promoting autoimmunity in MS and limiting neuroprotection in AD. Further mechanistic and longitudinal studies are needed to clarify the relationship between leptin dysregulation, leptin resistance, neuroinflammatory and neurodegenerative diseases. Full article
(This article belongs to the Special Issue Molecular Research and Treatment in Multiple Sclerosis)
Show Figures

Figure 1

12 pages, 2548 KB  
Article
Effects of TGFBR1 on Proliferation of Dermal Papilla Cells in Fine-Wool Sheep
by Tong Xiao, Yu Luo, Chao Yuan, Yufang Song, Jianxiang Tang, Zengkui Lu, Jianbin Liu and Tingting Guo
Animals 2026, 16(1), 36; https://doi.org/10.3390/ani16010036 - 23 Dec 2025
Viewed by 134
Abstract
Dermal papilla cells (DPCs) serve as the signaling hub regulating hair follicle (HF) development and cyclical growth. This study aims to investigate the biological function and molecular mechanisms of TGFBR1 (transforming growth factor β receptor 1), a differentially expressed gene identified through single-cell [...] Read more.
Dermal papilla cells (DPCs) serve as the signaling hub regulating hair follicle (HF) development and cyclical growth. This study aims to investigate the biological function and molecular mechanisms of TGFBR1 (transforming growth factor β receptor 1), a differentially expressed gene identified through single-cell transcriptomic sequencing (scRNA-seq) in the DPCs from fine-wool sheep. Primary DPCs were isolated and purified using a combination of enzymatic digestion and mechanical dissociation, followed by immunofluorescence identification (α-SMA and SOX2-positive). Following successful transfection with constructed TGFBR1 overexpression plasmids and siRNA interference vectors, cell proliferation was assessed via EDU staining and CCK-8 assays. mRNA expression of key genes in Wnt/β-catenin, BMP, and Notch signaling pathways (PCNA, CCND1, CTNNB1, SFRP2, BMP2, NOTCH3, SMAD4, etc.) was validated by RT-qPCR. Single-cell transcriptomics revealed significant downregulation of TGFBR1 in DPCs from fine-wool sheep. Functional validation demonstrated that TGFBR1 overexpression markedly suppressed DPC proliferation, whereas knockdown of TGFBR1 expression promoted DPC proliferation. Molecular mechanism studies showed that TGFBR1 overexpression significantly downregulated PCNA, CCND1, CTNNB1, NOTCH3, and SMAD4 while upregulating SFRP2, BMP2, and TGFB1 expression. These findings demonstrate that TGFBR1 acts as a negative regulator of DPCs proliferation by modulating the activity of multiple signaling pathways, including Wnt/β-catenin, BMP, and Notch, thereby suppressing the proliferative capacity of DPCs. This study not only provides new theoretical support for elucidating the role of the TGF-β signaling pathway in H development but also offers theoretical reference for in-depth research on molecular breeding in ultra -fine-wool sheep and the molecular mechanisms underlying HF development. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

29 pages, 1131 KB  
Review
Bisphenol F and Steatotic Liver Disease: Resolving the PXR Paradox Through Stress Pathway Mechanisms
by Enwar Abdalkarim AbdalHussin, Zariyantey Abd Hamid, Muhd Hanis Md Idris, Maizatul Hasyima Omar and Izatus Shima Taib
Biomedicines 2026, 14(1), 30; https://doi.org/10.3390/biomedicines14010030 - 22 Dec 2025
Viewed by 299
Abstract
Steatotic liver disease (SLD) represents a major global health burden, with environmental toxicants emerging as critical contributors alongside metabolic dysfunction. Bisphenol F (BPF), an increasingly prevalent replacement for bisphenol A, is widely detected in human biological samples and environment, yet its hepatotoxic mechanisms [...] Read more.
Steatotic liver disease (SLD) represents a major global health burden, with environmental toxicants emerging as critical contributors alongside metabolic dysfunction. Bisphenol F (BPF), an increasingly prevalent replacement for bisphenol A, is widely detected in human biological samples and environment, yet its hepatotoxic mechanisms remain incompletely characterized. This review synthesizes current evidence on BPF-induced SLD, with a particular focus on resolving the “pregnane X receptor (PXR) paradox”, the mismatch between BPF’s weak direct activation of PXR and the PXR-like metabolic effects observed in vivo. Comprehensive analysis of mechanistic pathways reveals that BPF-induced SLD develops predominantly through PXR-independent mechanisms involving oxidative stress, endoplasmic reticulum dysfunction, Drp1-mediated mitochondrial fission, NLRP3/NF-κB-driven inflammation, dysregulated post-translational modifications, and epigenetic remodelling. These converging pathways collectively disrupt hepatic lipid metabolism, promote triglyceride accumulation, and establish a self-perpetuating cycle of metabolic dysfunction. Notably, weak indirect PXR modulation via oxidative stress represents a secondary, non-causal mechanism unsupported by functional validation. This framework distinguishes toxicant-induced steatosis from metabolic dysfunction-associated steatotic liver disease while highlighting critical evidence gaps—particularly the absence of causal PXR validation studies and human epidemiological data. Therapeutic opportunities exist at validated convergence points including mitochondrial dynamics (Drp1), inflammatory signalling (NLRP3/NF-κB), and energy metabolism (AMPK-mTOR), though combination strategies targeting multiple pathways will likely be required for durable disease reversal. These findings necessitate the expansion of regulatory screening paradigms to incorporate cellular stress pathway biomarkers alongside traditional nuclear receptor endpoints, ensuring comprehensive hepatotoxic risk assessment of emerging BPA substitutes. Full article
(This article belongs to the Special Issue Advanced Research in Metabolic Syndrome (2nd Edition))
Show Figures

Graphical abstract

20 pages, 4121 KB  
Article
Targeting Growth Hormone Receptor to Overcome Therapy Resistance in Non-Small Cell Lung Cancer
by Arshad Ahmad, Reetobrata Basu, Caden Fyffe, Reece Geiger, Christopher Walsh, Delany Minto, Edward Brenya, Amrutha Varshini Alur, Sebastian J. C. M. M. Neggers and John J. Kopchick
Int. J. Mol. Sci. 2026, 27(1), 115; https://doi.org/10.3390/ijms27010115 - 22 Dec 2025
Viewed by 196
Abstract
Lung cancer (LC) remains the leading cause of cancer-related death in the United States despite advances in therapy. Growth hormone (GH) action has been implicated in tumor progression and therapy resistance across multiple cancers, but its role in LC, particularly non-small cell lung [...] Read more.
Lung cancer (LC) remains the leading cause of cancer-related death in the United States despite advances in therapy. Growth hormone (GH) action has been implicated in tumor progression and therapy resistance across multiple cancers, but its role in LC, particularly non-small cell lung cancer (NSCLC), remains poorly defined. In cancer cells, GH promotes chemoresistance through upregulation of drug-efflux pumps, induction of epithelial-to-mesenchymal transition (EMT), and inhibition of apoptosis. Notably, GH receptor (GHR) expression is significantly elevated in NSCLC compared to normal lung tissue, suggesting a potential therapeutic opportunity. In this study, we investigated the impact of GH action on therapy resistance and tumor progression using integrated transcriptomic analyses and in vitro experiments. Analyses of transcriptomic data from NSCLC patients revealed that high tumoral GHR expression correlates with reduced overall survival, and with upregulation of genes involved in distinct therapy refractory pathways. Our in vitro studies demonstrated that GH promotes chemoresistance in NSCLC cell lines through activation of ABC transporters and EMT pathways, whereas GHR antagonism with the GH receptor antagonist, pegvisomant, effectively counteracts these effects and improves chemotherapy efficacy significantly. Together, our findings identify GHR signaling as a contributor to aggressive and therapy-resistant phenotypes in NSCLC in vitro and suggest that GHR antagonism may enhance chemotherapy sensitivity. These results provide a rationale for further in vivo and mechanistic studies to evaluate the therapeutic potential of targeting GHR in NSCLC. Full article
Show Figures

Figure 1

31 pages, 2913 KB  
Review
Hinokiflavone as a Potential Antitumor Agent: From Pharmacology to Pharmaceutics
by Fengrui Liu, Ranyi Li, Xiaolei Zhou and Xiaoyu Li
Cells 2026, 15(1), 17; https://doi.org/10.3390/cells15010017 - 22 Dec 2025
Viewed by 226
Abstract
Hinokiflavone (HF), a natural C-O-C-linked biflavonoid originally isolated from Chamaecyparis obtusa, is a promising multifunctional antitumor agent. Despite challenges posed by multidrug resistance and tumor heterogeneity, HF demonstrates notable therapeutic potential through a multifaceted pharmacological profile. HF exerts broad-spectrum anticancer effects by [...] Read more.
Hinokiflavone (HF), a natural C-O-C-linked biflavonoid originally isolated from Chamaecyparis obtusa, is a promising multifunctional antitumor agent. Despite challenges posed by multidrug resistance and tumor heterogeneity, HF demonstrates notable therapeutic potential through a multifaceted pharmacological profile. HF exerts broad-spectrum anticancer effects by targeting multiple oncogenic pathways, including the MDM2-p53 axis, MAPK/JNK/NF-κB signaling, ROS/JNK-mediated apoptosis, and Bcl-2/Bax-regulated mitochondrial pathways. These actions are further complemented by inhibition of cell proliferation through cell cycle arrest and suppression of metastasis via downregulation of matrix metalloproteinases and reversal of epithelial–mesenchymal transition. Additionally, HF displays antioxidant, anti-inflammatory, and antimicrobial activities, enhancing treatment efficacy. However, its clinical translation remains limited by poor aqueous solubility, low oral bioavailability, and incomplete pharmacokinetic characterization. Recent advances in nanotechnology-based formulation strategies, such as polymeric micelles and metal–organic frameworks, have enhanced HF’s bioavailability and in vivo antitumor efficacy. This review comprehensively delineates HF’s molecular mechanisms of anticancer action, evaluates its pharmacokinetics and bioformulation developments, and highlights challenges and prospects for clinical application. Integration of tumor microenvironment-responsive delivery systems with synergistic therapeutic strategies is essential to fully realize HF’s therapeutic potential, positioning it as a valuable scaffold for novel anticancer drug development. Full article
Show Figures

Graphical abstract

24 pages, 5356 KB  
Article
Effects of Dietary Supplementation with Dihydromyricetin on Hindgut Microbiota and Metabolite Profiles in Dairy Cows
by Jie Yu, Yingnan Ao, Hongbo Chen, Chenhui Liu, Tinxian Deng, Dingfa Wang, Min Xiang, Pingmin Wan and Lei Cheng
Microorganisms 2026, 14(1), 20; https://doi.org/10.3390/microorganisms14010020 - 21 Dec 2025
Viewed by 143
Abstract
High-yielding dairy cows suffer from a high metabolic load and oxidative stress, which lead to systemic inflammation and metabolic disorders, increasing the susceptibility of these cows to various production diseases. Dihydromyricetin (DMY) has demonstrated potent antioxidant and anti-inflammatory physiological functions; however, research into [...] Read more.
High-yielding dairy cows suffer from a high metabolic load and oxidative stress, which lead to systemic inflammation and metabolic disorders, increasing the susceptibility of these cows to various production diseases. Dihydromyricetin (DMY) has demonstrated potent antioxidant and anti-inflammatory physiological functions; however, research into its application in ruminants remains limited. This study investigated whether DMY supplementation is associated with the maintenance of metabolic homeostasis through the regulation of gut microbiota and metabolite profiles. A total of 14 mid-lactation Holstein dairy cows were randomly divided into two groups (n = 7 per group) and supplemented with DMY at 0 or 0.05% in their basal diet for 60 consecutive days. The effects of DMY on the blood biochemical indicators and the antioxidant capacity of the dairy cows were then determined. Alterations to the gut microbiome and the fecal and plasma metabolome were analyzed through 16S rDNA sequencing and untargeted metabolomics. The results showed that DMY significantly improved the activity of serum glutathione peroxidase (GSH-Px) and presented a trend of increasing the total antioxidant capacity (T-AOC). The abundance of multiple fiber-degrading and beneficial commensal bacteria in the gut, including Fibrobacter_succinogenes, Ruminococcus_albus, and Turicibacter, was significantly elevated by the DMY intervention, accompanied by the upregulation of 8,11,14-eicosatrienoic acid, myricetin, dihydro-3-coumaric acid, PGE1, L-leucine, nicotinuric acid, pantothenic acid, and pyruvate in the feces and plasma. Moreover, DMY supplementation notably reduced the abundance of potential pathogenic microbes, such as Chloroflexi, Deltaproteobacteria, RFP12, and Succinivibrio, and downregulated the levels of 12-hydroxydodecanoic acid, 12,13-DHOME (12,13-dihydroxy-9Z-octadecenoic acid), 16-hydroxyhexadecanoic acid, niacin, and glycerol 3-phosphate. These differential metabolites were principally enriched in the mTOR signaling pathway; pantothenate, nicotinate, and thiamine metabolism; glutathione metabolism; and glycolysis/gluconeogenesis. In summary, dietary supplementation with DMY increased the abundance of intestinal fiber-degrading bacteria and multiple metabolites with known anti-inflammatory and antioxidant properties in the feces and plasma, and was associated with alterations in metabolic pathways involving B-vitamins, amino acids, and glutathione. This suggests a potential role for DMY in supporting metabolic homeostasis in dairy cows. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

14 pages, 10829 KB  
Article
LpMAX2 Is a Strigolactone/Karrikin Signaling Component in Perennial Ryegrass (Lolium perenne L.)
by Haiyang Yu, Fang Qiu, Yuehua Wang, Ruifeng Yao, Meng Zhang and Li Chen
Int. J. Mol. Sci. 2026, 27(1), 31; https://doi.org/10.3390/ijms27010031 - 19 Dec 2025
Viewed by 146
Abstract
Perennial ryegrass is a widely cultivated cool-season forage and turf grass species whose growth and development are limited by drought and high temperature. MAX2 is an F-box leucine-rich repeat (LRR) protein, which serves as a central component of strigolactone (SL) and karrikin (KAR) [...] Read more.
Perennial ryegrass is a widely cultivated cool-season forage and turf grass species whose growth and development are limited by drought and high temperature. MAX2 is an F-box leucine-rich repeat (LRR) protein, which serves as a central component of strigolactone (SL) and karrikin (KAR) signaling pathways, involved in multiple growth and developmental processes as well as stress response. Here, we identified LpMAX2, a perennial ryegrass (Lolium perenne L.) homolog of Arabidopsis MAX2 (AtMAX2) and rice D3. LpMAX2 can interact with AtD14 and LpD14 in an SL-dependent manner, implying functional conservation with AtMAX2. Overexpression of LpMAX2 in the Arabidopsis max2-3 mutant partially rescued leaf morphology, hypocotyl elongation, and branching phenotypes, while fully restoring drought tolerance, highlighting the evolutionarily conserved roles of MAX2 in plant growth and drought resistance. In conclusion, LpMAX2 is evolutionarily conserved in SL/KAR signaling pathways, highlighting its potential function in drought adaptation. In addition to elucidating the biological function of LpMAX2, this study identifies a promising genetic target for enhancing stress resilience in forage grasses through biotechnological approaches. Full article
(This article belongs to the Special Issue Emerging Insights into Phytohormone Signaling in Plants)
Show Figures

Figure 1

20 pages, 21546 KB  
Article
Network Pharmacology-Based Characterization of Mecasin (KCHO-1) as a Multi-Target Modulator of Neuroinflammatory Pathways in Alzheimer’s Disease
by Hyein Jo, Joonyoung Shin, Hyorin Lee, Gi-Sang Bae and Sungchul Kim
Nutrients 2026, 18(1), 8; https://doi.org/10.3390/nu18010008 - 19 Dec 2025
Viewed by 250
Abstract
Background/Objectives: Mecasin (KCHO-1) is a standardized multi-herb formulation containing diverse bioactive compounds predicted to engage multiple molecular targets. This study applied an integrative network pharmacology approach to explore how Mecasin may interact with Alzheimer’s disease (AD)-related molecular networks. Methods: Bioactive constituents [...] Read more.
Background/Objectives: Mecasin (KCHO-1) is a standardized multi-herb formulation containing diverse bioactive compounds predicted to engage multiple molecular targets. This study applied an integrative network pharmacology approach to explore how Mecasin may interact with Alzheimer’s disease (AD)-related molecular networks. Methods: Bioactive constituents from 9 herbs were screened through OASIS and PubChem, and their predicted targets were cross-referenced with 8886 AD-associated genes from GeneCards. Overlapping genes were analyzed using protein–protein interaction mapping, Gene Ontology, and KEGG to identify potential Mecasin–AD core nodes and pathways. Co-expression, co-regulation, and molecular docking analyses were performed to further characterize mechanistic relevance. Results: Network integration identified 6 core genes—AKT1, STAT3, IL6, TNF, EGFR, and IL1B—positioned within signaling pathways related to neuronal survival, inflammatory regulation, and cellular stress responses, including FoxO, JAK–STAT, MAPK, and TNF pathways. Molecular docking suggested that several Mecasin compounds may interact with targets such as AKT1 and TNF. Conclusions: These in silico findings indicate that Mecasin, a multi-component formulation containing numerous phytochemicals that generate broad compound–target associations, may interface with interconnected neuroimmune pathways relevant to AD. While exploratory, the results highlight potential multi-target mechanisms that merit further investigation and provide a systems-level framework to inform future experimental validation. Full article
Show Figures

Figure 1

Back to TopTop