Network Pharmacology-Based Characterization of Mecasin (KCHO-1) as a Multi-Target Modulator of Neuroinflammatory Pathways in Alzheimer’s Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Active Compounds from Mecasin
2.2. Identification of Compound-Associated Target Genes
2.3. Retrieval of AD-Associated Genes and Intersection with Mecasin Targets
2.4. Protein–Protein Interaction Network Construction and Core Gene Identification
2.5. Functional Enrichment and Network Construction
2.6. Co-Expression, Co-Regulation, and Molecular Docking Analysis of Core Targets
3. Results
3.1. Identification of Mecasin Bioactive Constituents and Predicted Targets
3.2. Intersection Between Mecasin-Associated Targets and Alzheimer’s Disease Gene Networks
3.3. Analysis of Key Genes and Networks Associated with Mecasin and Alzheimer’s Disease
3.4. Functional and Pathway Enrichment Analysis of Mecasin–AD Core Genes
3.5. D-H-C-T-P Network Analysis of Mechanisms of Mecasin in AD
3.6. Co-Expression, Co-Regulation, and Molecular Docking Analysis of Core Targets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seo, H.; Park, Y.; Kwon, I.; Kim, J.L. The long-term outcomes of Alzheimer’s disease patients treated with anti-dementia medications according to baseline dementia severity. J. Korean Soc. Biol. Ther. Psychiatry 2021, 3, 33–39. [Google Scholar]
- Brück, C.C.; Wolters, F.J.; Ikram, M.A.; de Kok, I.M. Projected prevalence and incidence of dementia accounting for secular trends and birth cohort effects: A population-based microsimulation study. Eur. J. Epidemiol. 2022, 37, 807–814. [Google Scholar] [CrossRef]
- Bianchetti, A.; Ranieri, P.; Margiotta, A.; Trabucchi, M. Pharmacological treatment of Alzheimer’s Disease. Aging Clin. Exp. Res. 2006, 18, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Karantzoulis, S.; Galvin, J.E. Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev. Neurother. 2011, 11, 1579–1591. [Google Scholar] [CrossRef]
- Kim, S.; Chun, H.; Kim, Y.; Kim, Y.; Park, U.; Chu, J.; Ryu, H. Astrocytic autophagy plasticity modulates Aβ clearance and cognitive function in Alzheimer’s disease. Mol. Neurodegener. 2024, 19, 55. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.; Choi, J.; Hwang, G.; Lee, H.; Lee, H.; Yim, J. Investigation of the Approaches to Optimal Exercise Interventions Based on Dementia Type: A Theoretical Review. Healthcare 2024, 12, 576. [Google Scholar] [CrossRef]
- Kim, S.Y. Past and future of drug treatments for Alzheimer’s disease. J. Korean Neuropsychiatr. Assoc. 2018, 57, 30–42. [Google Scholar] [CrossRef]
- Kim, S.; Yang, M.; Ku, B.; Cha, E.; Seo, W.; Son, I.; Kim, S. Efficacy of mecasin for treatment of amyotrophic lateral sclerosis: A phase IIa multicenter randomized double-blinded placebo-controlled trial. J. Ethnopharmacol. 2023, 315, 116670. [Google Scholar] [CrossRef]
- Hanna, L.; Poluyi, E.; Ikwuegbuenyi, C.; Morgan, E.; Imaguezegie, G. Peripheral inflammation and neurodegeneration; a potential for therapeutic intervention in Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Egypt. J. Neurosurg. 2022, 37, 15. [Google Scholar] [CrossRef]
- Wang, M.; Yin, F.; Kong, L.; Yang, L.; Sun, H.; Sun, Y.; Wang, X. Chinmedomics: A potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin. Med. 2024, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.I.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med. 2013, 11, 110–120. [Google Scholar]
- Yea, S.J.; Jang, Y.; Seong, B.; Kim, C. Comparative analysis of web search trends between experts and public for medicinal herbs in Korea. J. Ethnopharmacol. 2015, 176, 463–468. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Lancet, D. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11. [Google Scholar] [CrossRef]
- Koschützki, D.; Schreiber, F. Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2008, 2, 193–201. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar]
- Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Ma’ayan, A. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- Liang, H.; Ruan, H.; Ouyang, Q.; Lai, L. Herb-target interaction network analysis helps to disclose molecular mechanism of traditional Chinese medicine. Sci. Rep. 2016, 6, 36767. [Google Scholar] [CrossRef]
- Kustatscher, G.; Grabowski, P.; Schrader, T.A.; Passmore, J.B.; Schrader, M.; Rappsilber, J. Co-regulation map of the human proteome enables identification of protein functions. Nat. Biotechnol. 2019, 37, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.X.; Cao, Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Rego, S.; Sanchez, G.; Da Mesquita, S. Current views on meningeal lymphatics and immunity in aging and Alzheimer’s disease. Mol. Neurodegener. 2023, 18, 55. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef]
- Joe, E.; Ringman, J.M. Cognitive symptoms of Alzheimer’s disease: Clinical management and prevention. BMJ 2019, 367, l6217. [Google Scholar] [CrossRef]
- Li, X.L.; Hu, N.; Tan, M.S.; Yu, J.T.; Tan, L. Behavioral and psychological symptoms in Alzheimer’s disease. BioMed Res. Int. 2014, 2014, 927804. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ko, W.; Shin, J.Y.; Choi, D.; Lee, D.S.; Kim, S. Comparison of anti-inflammatory effects of Mecasin and its constituents on lipopolysaccharide-stimulated BV2 cells. Exp. Ther. Med. 2021, 21, 591. [Google Scholar]
- Wang, T.; Lee, S.; Yang, M.; Cha, E.; Jang, J.; Kim, S. Analytical Method Validation of Gamijakyakgamchobuja-Tang (KCHO-1, Mecasin) Preparation. Evid.-Based Complement. Altern. Med. 2019, 2019, 7824146. [Google Scholar] [CrossRef]
- Lee, D.S.; Ko, W.; Song, B.K.; Son, I.; Kim, D.W.; Kang, D.G.; Kim, S. The herbal extract KCHO-1 exerts a neuroprotective effect by ameliorating oxidative stress via heme oxygenase-1 upregulation. Mol. Med. Rep. 2016, 13, 4911–4919. [Google Scholar] [CrossRef]
- Lee, S.J.; Jeong, H.H.; Lee, J.C.; Cha, E.H.; Park, M.Y.; Song, B.G.; Kim, S.C. A Study on Single Dose Toxicity of Intravenous Injection of Mecasin Herbal Acupuncture. J. Acupunct. Res. 2016, 33, 1–7. [Google Scholar]
- Cha, E.; Jeong, H.; Lee, J.; Lee, S.; Park, M.; Kim, S. A study on single dose toxicity of Mecasin pharmacopuncture injection in muscle. J. Korean Med. 2015, 36, 36–42. [Google Scholar] [CrossRef]
- Yang, M.; Lee, S.; Wang, T.; Cha, E.; Jang, J.; Kim, D.; Kim, S. 26-Week repeated dose oral toxicity study of KCHO-1 in sprague-dawley rats. J. Pharmacopunct. 2019, 22, 192. [Google Scholar] [CrossRef] [PubMed]
- Kook, M.G.; Choi, S.W.; Seo, Y.; Kim, D.W.; Song, B.K.; Son, I.; Kang, K.S. KCHO-1, a novel herbal anti-inflammatory compound, attenuates oxidative stress in an animal model of amyotrophic lateral sclerosis. J. Vet. Sci. 2017, 18, 487–497. [Google Scholar] [CrossRef]
- Hauptmann, S.; Scherping, I.; Dröse, S.; Brandt, U.; Schulz, K.L.; Jendrach, M.; Müller, W.E. Mitochondrial dysfunction: An early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol. Aging 2009, 30, 1574–1586. [Google Scholar] [CrossRef]
- Long, H.Z.; Cheng, Y.; Zhou, Z.W.; Luo, H.Y.; Wen, D.D.; Gao, L.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front. Pharmacol. 2021, 12, 648636. [Google Scholar]
- Rusek, M.; Smith, J.; El-Khatib, K.; Aikins, K.; Czuczwar, S.J.; Pluta, R. The role of the JAK/STAT signaling pathway in the pathogenesis of Alzheimer’s disease: New potential treatment target. Int. J. Mol. Sci. 2023, 24, 864. [Google Scholar]
- Munoz, L.; Ammit, A.J. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology 2010, 58, 561–568. [Google Scholar] [PubMed]
- Griffin, R.J.; Moloney, A.; Kelliher, M.; Johnston, J.A.; Ravid, R.; Dockery, P.; O’Neill, C. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J. Neurochem. 2005, 93, 105–117. [Google Scholar] [CrossRef]
- Lee, H.K.; Kumar, P.; Fu, Q.; Rosen, K.M.; Querfurth, H.W. The insulin/Akt signaling pathway is targeted by intracellular β-amyloid. Mol. Biol. Cell 2009, 20, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Singh, K.; Das, D.; Gowaikar, R.; Shaw, E.; Ramachandran, A.; Ravindranath, V. Reactive oxygen species-mediated loss of synaptic Akt1 signaling leads to deficient activity-dependent protein translation early in Alzheimer’s disease. Antioxid. Redox Signal. 2017, 27, 1269–1280. [Google Scholar] [CrossRef]
- Alawdi, S.H.; El-Denshary, E.S.; Safar, M.M.; Eidi, H.; David, M.O.; Abdel-Wahhab, M.A. Neuroprotective effect of nanodiamond in Alzheimer’s disease rat model: A pivotal role for modulating NF-κB and STAT3 signaling. Mol. Neurobiol. 2017, 54, 1906–1918. [Google Scholar] [CrossRef]
- Mansour, H.M.; Fawzy, H.M.; El-Khatib, A.S.; Khattab, M.M. Repurposed anti-cancer epidermal growth factor receptor inhibitors: Mechanisms of neuroprotective effects in Alzheimer’s disease. Neural Regen. Res. 2022, 17, 1913–1918. [Google Scholar] [PubMed]
- Jain, M.; Singh, M.K.; Shyam, H.; Mishra, A.; Kumar, S.; Kumar, A.; Kushwaha, J. Role of JAK/STAT in the neuroinflammation and its association with neurological disorders. Ann. Neurosci. 2021, 28, 191–200. [Google Scholar] [CrossRef]
- Porel, P.; Bala, K.; Aran, K.R. Exploring the role of HIF-1α on pathogenesis in Alzheimer’s disease and potential therapeutic approaches. Inflammopharmacology 2025, 33, 669–678. [Google Scholar]
- Calderaro, A.; Patanè, G.T.; Tellone, E.; Barreca, D.; Ficarra, S.; Misiti, F.; Laganà, G. The neuroprotective potentiality of flavonoids on Alzheimer’s disease. Int. J. Mol. Sci. 2022, 23, 14835. [Google Scholar] [CrossRef]
- Mei, X.; Qiu, C.; Shi, L.; Li, X.; Yang, M.; Hu, J.; Zou, C. The effect of curcumin on Aβ, Akt, and GSK3β on the brain and retina of APP/PS1 mice and in the blood of Alzheimer’s patients with early-stage disease. Pharmacogn. Mag. 2022, 18, 679–684. [Google Scholar]
- Guo, R.; Li, L.; Su, J.; Li, S.; Duncan, S.E.; Liu, Z.; Fan, G. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Design Dev. Ther. 2020, 14, 4735–4748. [Google Scholar]
- Habtemariam, S. Molecular pharmacology of rosmarinic and salvianolic acids: Potential seeds for Alzheimer’s and vascular dementia drugs. Int. J. Mol. Sci. 2018, 19, 458. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.X.; Hu, L.M.; Gao, X.M.; Guo, H.; Fan, G.W. Anti-inflammatory activity of salvianolic acid B in microglia contributes to its neuroprotective effect. Neurochem. Res. 2010, 35, 1029–1037. [Google Scholar] [CrossRef]
- Dumont, M.; Beal, M.F. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med. 2011, 51, 1014–1026. [Google Scholar] [CrossRef]
- Mostafa, M.; Disouky, A.; Lazarov, O. Therapeutic modulation of neurogenesis to improve hippocampal plasticity and cognition in aging and Alzheimer’s disease. Neurotherapeutics 2025, 22, e00580. [Google Scholar] [CrossRef]
- Jiang, M.; Vanan, S.; Tu, H.T.; Zhang, W.; Zhang, Z.W.; Chia, S.Y.; Zeng, L. Amyloid precursor protein intracellular domain-dependent regulation of FOXO3a inhibits adult hippocampal neurogenesis. Neurobiol. Aging 2020, 95, 250–263. [Google Scholar] [CrossRef]
- Lazarov, O.; Marr, R.A. Neurogenesis and Alzheimer’s disease: At the crossroads. Exp. Neurol. 2010, 223, 267–281. [Google Scholar] [PubMed]
- Lee, H.C.; Tan, K.L.; Cheah, P.S.; Ling, K.H. Potential role of JAK-STAT signaling pathway in the neurogenic-to-gliogenic shift in down syndrome brain. Neural Plast. 2016, 2016, 7434191. [Google Scholar] [CrossRef]
- Ashok, B.S.; Ajith, T.A.; Sivanesan, S. Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease. Clin. Exp. Pharmacol. Physiol. 2017, 44, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Bai, F.; Zhang, Z. Inflammatory cytokines and Alzheimer’s disease: A review from the perspective of genetic polymorphisms. Neurosci. Bull. 2016, 32, 469–480. [Google Scholar] [CrossRef]
- Ng, A.; Tam, W.W.; Zhang, M.W.; Ho, C.S.; Husain, S.F.; McIntyre, R.S.; Ho, R.C. IL-1β, IL-6, TNF-α and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis. Sci. Rep. 2018, 8, 12050. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhou, A.; Xu, L.; Zhang, X. The role of TLR4-mediated PTEN/PI3K/AKT/NF-κB signaling pathway in neuroinflammation in hippocampal neurons. Neuroscience 2014, 269, 93–101. [Google Scholar] [CrossRef] [PubMed]







| Compound | Pubchem ID | Origin |
|---|---|---|
| Ar-turmerone | 160512 | Curcumae Longa |
| bisacurone | 14287397 | Curcumae Longa |
| curcumin | 969516 | Curcumae Longa |
| curzerene | 12305301 | Curcumae Longa |
| α-curcumene | 442360 | Curcumae Longa |
| α-turmerone | 14632996 | Curcumae Longa |
| 3,4-dimethoxycinnamic acid | 717531 | Polygala tenuifolia |
| glomeratose A | 11972358 | Polygala tenuifolia |
| lancerin | 5281645 | Polygala tenuifolia |
| N-acetyl-D-glucosamine | 439174 | Polygala tenuifolia |
| senegin III | 21669942 | Polygala tenuifolia |
| sibiricose A5 | 102004867 | Polygala tenuifolia |
| sibiricose A6 | 6326021 | Polygala tenuifolia |
| tenuifoliside A | 46933844 | Polygala tenuifolia |
| tenuifoliside B | 10055215 | Polygala tenuifolia |
| tenuifoliside C | 11968391 | Polygala tenuifolia |
| 1-(3,4-dimethoxyphenyl) ethan-1-one | 14328 | Polygala tenuifolia |
| 2-hydroxybenzoic acid | 338 | Polygala tenuifolia |
| 3,4,5-trimethoxycinnamic acid | 735755 | Polygala tenuifolia |
| 3,6′-di-O-sinapoyl sucrose | 11968389 | Polygala tenuifolia |
| gentisin | 5281636 | Polygala tenuifolia |
| mangiferin | 5281647 | Polygala tenuifolia |
| onjisaponin F | 10701737 | Polygala tenuifolia |
| propyl benzoate | 16846 | Polygala tenuifolia |
| sucrose | 5988 | Polygala tenuifolia |
| tenuifolin | 21588226 | Polygala tenuifolia |
| vanillin | 1183 | Gastrodia elata |
| 4-hydroxy-3-methoxybenzoic acid | 8468 | Gastrodia elata |
| benzyl alcohol | 244 | Gastrodia elata |
| hydroxybenzaldehyde | 126 | Gastrodia elata |
| vanillyl alcohol | 62348 | Gastrodia elata |
| Protocatechualdehyde | 8768 | Salvia miltiorrhiza |
| Tanshinone I | 114917 | Salvia miltiorrhiza |
| tanshindiol C | 126072 | Salvia miltiorrhiza |
| Miltirone | 160142 | Salvia miltiorrhiza |
| cryptotanshinone | 160254 | Salvia miltiorrhiza |
| Tanshinone IIA | 164676 | Salvia miltiorrhiza |
| danshenol A | 3083514 | Salvia miltiorrhiza |
| Rosmarinic acid | 5281792 | Salvia miltiorrhiza |
| Salvianolic Acid B | 6451084 | Salvia miltiorrhiza |
| salviolone | 10355691 | Salvia miltiorrhiza |
| arucadiol | 11011966 | Salvia miltiorrhiza |
| Danshensu | 11600642 | Salvia miltiorrhiza |
| deoxyneocryptotanshinone | 15690458 | Salvia miltiorrhiza |
| Dihydrotanshinone | 5316743 | Salvia miltiorrhiza |
| sugiol | 94162 | Salvia miltiorrhiza |
| Caffeic acid | 689043 | Salvia miltiorrhiza |
| Salvianic acid A | 5281793 | Salvia miltiorrhiza |
| Benzoic acid | 243 | Paeonia lactiflora |
| Carnitine | 288 | Paeonia lactiflora |
| Coumarin | 323 | Paeonia lactiflora |
| Gallic acid | 370 | Paeonia lactiflora |
| Glycyrrhizin | 3495 | Paeonia lactiflora |
| Protoporphyrin IX | 4971 | Paeonia lactiflora |
| L-Tryptophan | 6305 | Paeonia lactiflora |
| L(D)-Agrginin | 6322 | Paeonia lactiflora |
| Taurocholic acid | 6675 | Paeonia lactiflora |
| Methyl gallate | 7428 | Paeonia lactiflora |
| 2-Phenylacetamide | 7680 | Paeonia lactiflora |
| Catechin | 9064 | Paeonia lactiflora |
| Glycocholic acid | 10140 | Paeonia lactiflora |
| Paeonol | 11092 | Paeonia lactiflora |
| Glycochenodeoxycholic acid | 12544 | Paeonia lactiflora |
| Glycyrrhizic acid | 14982 | Paeonia lactiflora |
| PGG | 65238 | Paeonia lactiflora |
| Catechin hydrate | 107957 | Paeonia lactiflora |
| Liquiritigenin | 114829 | Paeonia lactiflora |
| Paeoniflorin | 425990 | Paeonia lactiflora |
| Ononin | 442813 | Paeonia lactiflora |
| Cinnamic acid | 444539 | Paeonia lactiflora |
| Liquiritin | 503737 | Paeonia lactiflora |
| Cinnamaldehyde | 637511 | Paeonia lactiflora |
| 2-methoxy cinnamaldehyde | 641298 | Paeonia lactiflora |
| Cinnamyl alcohol | 5315892 | Paeonia lactiflora |
| Isoliquiritin | 5318591 | Paeonia lactiflora |
| L-Palmitoylcarnitine | 11953816 | Paeonia lactiflora |
| 6′-O-actylpaeoniflorin | 21575212 | Paeonia lactiflora |
| Mudanpioside C | 21631098 | Paeonia lactiflora |
| Oxypaeoniflorin | 21631105 | Paeonia lactiflora |
| Benzoylpaeoniflorin | 21631106 | Paeonia lactiflora |
| Albiflorin | 24868421 | Paeonia lactiflora |
| Galloyloxypaeoniflorin | 71455849 | Paeonia lactiflora |
| Glycyrrhetic acid | 3230 | Glycyrrhiza uralensis |
| 18β-Glycyrrhetinic acid | 10114 | Glycyrrhiza uralensis |
| Glycyrrhizin | 14982 | Glycyrrhiza uralensis |
| Daidzin | 107971 | Glycyrrhiza uralensis |
| liquiritigenin | 114829 | Glycyrrhiza uralensis |
| licopyranocoumarin | 122851 | Glycyrrhiza uralensis |
| glabranin | 124049 | Glycyrrhiza uralensis |
| isoglycyrol | 124050 | Glycyrrhiza uralensis |
| galbridin | 124052 | Glycyrrhiza uralensis |
| uralsaponin B | 163744 | Glycyrrhiza uralensis |
| licoisoflavanone | 392443 | Glycyrrhiza uralensis |
| 7-O-methyllutenone | 441251 | Glycyrrhiza uralensis |
| Schaftoside | 442658 | Glycyrrhiza uralensis |
| Vicenin-2 | 442664 | Glycyrrhiza uralensis |
| Ononin | 442813 | Glycyrrhiza uralensis |
| dehydroglyasperin C | 480775 | Glycyrrhiza uralensis |
| gancaonin I | 480777 | Glycyrrhiza uralensis |
| 6,8-Diprenylgenistein | 480783 | Glycyrrhiza uralensis |
| glycyrin | 480787 | Glycyrrhiza uralensis |
| Glyasperin C | 480859 | Glycyrrhiza uralensis |
| Liquiritin | 503737 | Glycyrrhiza uralensis |
| isoliquirigenin | 638278 | Glycyrrhiza uralensis |
| Isoschaftoside | 3084995 | Glycyrrhiza uralensis |
| Biochanin A | 5280373 | Glycyrrhiza uralensis |
| Formononetin | 5280378 | Glycyrrhiza uralensis |
| Kaempferol 3-O-methyl ether | 5280862 | Glycyrrhiza uralensis |
| kaempferol | 5280863 | Glycyrrhiza uralensis |
| genistein | 5280961 | Glycyrrhiza uralensis |
| Genkwanin | 5281617 | Glycyrrhiza uralensis |
| daidzein | 5281708 | Glycyrrhiza uralensis |
| Licoisoflavone A | 5281789 | Glycyrrhiza uralensis |
| luteone | 5281797 | Glycyrrhiza uralensis |
| pratensein | 5281803 | Glycyrrhiza uralensis |
| wighteone | 5281814 | Glycyrrhiza uralensis |
| Uralenol | 5315126 | Glycyrrhiza uralensis |
| Lupiwighteone | 5317480 | Glycyrrhiza uralensis |
| glabrone | 5317652 | Glycyrrhiza uralensis |
| Glycocoumarin | 5317756 | Glycyrrhiza uralensis |
| glycyrrhisoflavone | 5317764 | Glycyrrhiza uralensis |
| Isolicoflavonol | 5318585 | Glycyrrhiza uralensis |
| isoliquiritin | 5318591 | Glycyrrhiza uralensis |
| Kumatakenin | 5318869 | Glycyrrhiza uralensis |
| Licochalcone A | 5318998 | Glycyrrhiza uralensis |
| Licochalcone B | 5318999 | Glycyrrhiza uralensis |
| Licoricone | 5319013 | Glycyrrhiza uralensis |
| 4′-O-methylgalbridin | 5319664 | Glycyrrhiza uralensis |
| glycyrol | 5320083 | Glycyrrhiza uralensis |
| licoisoflavone B | 5481234 | Glycyrrhiza uralensis |
| semilicoisoflavone B | 5481948 | Glycyrrhiza uralensis |
| gancaonin H | 5481949 | Glycyrrhiza uralensis |
| Licoflavonol | 5481964 | Glycyrrhiza uralensis |
| 2′,4′,2-Trihydroxychalcone | 5811533 | Glycyrrhiza uralensis |
| homobutein | 6438092 | Glycyrrhiza uralensis |
| isoliquiritin apioside | 6442433 | Glycyrrhiza uralensis |
| echinatin | 6442675 | Glycyrrhiza uralensis |
| Licochalcone C | 9840805 | Glycyrrhiza uralensis |
| Kanzonol Y | 10001604 | Glycyrrhiza uralensis |
| liquiritin apioside | 10076238 | Glycyrrhiza uralensis |
| Licoarylcoumarin | 10090416 | Glycyrrhiza uralensis |
| 2′,4′,2,4-Tetrahydroxychalcone | 10107266 | Glycyrrhiza uralensis |
| dehydroglyasperin D | 10109594 | Glycyrrhiza uralensis |
| glicoricone | 10361658 | Glycyrrhiza uralensis |
| Allolicoisoflavone B | 10383349 | Glycyrrhiza uralensis |
| Licochalcone D | 10473311 | Glycyrrhiza uralensis |
| licoleafol | 11111496 | Glycyrrhiza uralensis |
| Licoflavone B | 11349817 | Glycyrrhiza uralensis |
| Glabrol | 11596309 | Glycyrrhiza uralensis |
| 11-Deoxoglycyrrhetinic acid | 12305517 | Glycyrrhiza uralensis |
| Licorice saponin A3 | 14187172 | Glycyrrhiza uralensis |
| isoglycycoumarin | 14187587 | Glycyrrhiza uralensis |
| licoflavanone | 14218028 | Glycyrrhiza uralensis |
| 2ʹ-hydroxyisolupalbigenin | 14237659 | Glycyrrhiza uralensis |
| isoderrone | 14237660 | Glycyrrhiza uralensis |
| licuraside | 14282455 | Glycyrrhiza uralensis |
| gancaonin L | 14604077 | Glycyrrhiza uralensis |
| Licorice saponin G2 | 14891565 | Glycyrrhiza uralensis |
| Angustone A | 15664151 | Glycyrrhiza uralensis |
| Glyurallin A | 15818598 | Glycyrrhiza uralensis |
| isoangustone A | 21591148 | Glycyrrhiza uralensis |
| neoisoliquiritin | 22524410 | Glycyrrhiza uralensis |
| isolupalbigenin | 26238934 | Glycyrrhiza uralensis |
| Liquiritigenin 7,4′-di-O-glucopyranoside | 46869260 | Glycyrrhiza uralensis |
| Neoliquiritin | 51666248 | Glycyrrhiza uralensis |
| protocatechuic acid | 72 | Pseudocydonia sinensis |
| gallic acid | 370 | Pseudocydonia sinensis |
| vanillic acid | 8468 | Pseudocydonia sinensis |
| catechin | 9064 | Pseudocydonia sinensis |
| oleanolic acid | 10494 | Pseudocydonia sinensis |
| syringic acid | 10742 | Pseudocydonia sinensis |
| ursolic acid | 64945 | Pseudocydonia sinensis |
| betulinic acid | 64971 | Pseudocydonia sinensis |
| epicatechin | 72276 | Pseudocydonia sinensis |
| betulin | 72326 | Pseudocydonia sinensis |
| erythodiol | 101761 | Pseudocydonia sinensis |
| Procyanidin B2 | 122738 | Pseudocydonia sinensis |
| pomolic acid | 382831 | Pseudocydonia sinensis |
| p-coumaric acid | 637542 | Pseudocydonia sinensis |
| chlorogenic acid | 1794427 | Pseudocydonia sinensis |
| acetyl ursolic acid | 6475119 | Pseudocydonia sinensis |
| procyanidin B1 | 11250133 | Pseudocydonia sinensis |
| aconitine | 2012 | Aconitum carmichaeli |
| hypaconitine | 441737 | Aconitum carmichaeli |
| mesaconitine | 441747 | Aconitum carmichaeli |
| deoxyaconitine | 21598997 | Aconitum carmichaeli |
| benzoylmesaconine (BMA) | 24832659 | Aconitum carmichaeli |
| Glc (glucose) | 5793 | Atractylodes japonica |
| ATO-III (atractylenolideIII) | 155948 | Atractylodes japonica |
| Fru (fructose) | 445557 | Atractylodes japonica |
| atractylodin | 5321047 | Atractylodes japonica |
| atractylodinol | 10012964 | Atractylodes japonica |
| Target | Degree Centrality | Betweenness Centrality | Closeness Centrality |
|---|---|---|---|
| AKT1 | 36 | 0.013430632 | 0.928571429 |
| STAT3 | 36 | 0.013961168 | 0.928571429 |
| IL6 | 39 | 0.020930957 | 1.000000000 |
| TNF | 35 | 0.014525668 | 0.906976744 |
| EGFR | 35 | 0.013914223 | 0.906976744 |
| IL1B | 36 | 0.016267201 | 0.928571429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jo, H.; Shin, J.; Lee, H.; Bae, G.-S.; Kim, S. Network Pharmacology-Based Characterization of Mecasin (KCHO-1) as a Multi-Target Modulator of Neuroinflammatory Pathways in Alzheimer’s Disease. Nutrients 2026, 18, 8. https://doi.org/10.3390/nu18010008
Jo H, Shin J, Lee H, Bae G-S, Kim S. Network Pharmacology-Based Characterization of Mecasin (KCHO-1) as a Multi-Target Modulator of Neuroinflammatory Pathways in Alzheimer’s Disease. Nutrients. 2026; 18(1):8. https://doi.org/10.3390/nu18010008
Chicago/Turabian StyleJo, Hyein, Joonyoung Shin, Hyorin Lee, Gi-Sang Bae, and Sungchul Kim. 2026. "Network Pharmacology-Based Characterization of Mecasin (KCHO-1) as a Multi-Target Modulator of Neuroinflammatory Pathways in Alzheimer’s Disease" Nutrients 18, no. 1: 8. https://doi.org/10.3390/nu18010008
APA StyleJo, H., Shin, J., Lee, H., Bae, G.-S., & Kim, S. (2026). Network Pharmacology-Based Characterization of Mecasin (KCHO-1) as a Multi-Target Modulator of Neuroinflammatory Pathways in Alzheimer’s Disease. Nutrients, 18(1), 8. https://doi.org/10.3390/nu18010008

