Effects of TGFBR1 on Proliferation of Dermal Papilla Cells in Fine-Wool Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Tissue Samples
2.2. ScRNA-Seq Data Analysis
2.3. Isolation, Purification, and Immunofluorescence of DPCs
2.4. Construction of Overexpression and Interference Vectors
2.5. Real-Time Fluorescent Quantitative PCR (RT-qPCR)
2.6. Cell Proliferation and Viability Assays
2.7. Data Statistics and Analysis
3. Results
3.1. Differentially Expressed Genes from DPCs in Ultra-Fine Group and Fine Group of Fine-Wool Sheep
3.2. Isolation, Purification, and Identification of DPCs
3.3. TGFBR1 Inhibits Proliferation of DPCs
3.4. TGFBR1 Regulates Genes Associated with HF Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HFs | Hair follicles |
| DPCs | Dermal papilla cells |
| HFSCs | Hair follicle stem cells |
| TGFBR1 | Transforming growth factor β receptor 1 |
| ScRNA-seq | Single-cell transcriptomic sequencing |
| FD | Fiber diameter |
| MAPK | Mitogen-activated protein kinase |
| PI3K | Phosphatidylinositol-3-kinase |
| AKT | A serine/threonine kinase |
| ATRA | All-trans retinoic acid |
| Mxs | Matrix cells |
References
- Szatkowski, P. The Influence of Various Chemical Modifications of Sheep Wool Fibers on the Long-Term Mechanical Properties of Sheep Wool/PLA Biocomposites. Materials 2025, 18, 3056. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, B.; Yao, S.; Dai, Y.; Zhang, X.; Yang, N.; Bao, Z.; Cai, J.; Chen, Y.; Wu, X. Dermal Papilla Cell-Derived Exosomes Regulate Hair Follicle Stem Cell Proliferation via LEF1. Int. J. Mol. Sci. 2023, 24, 3961. [Google Scholar] [CrossRef] [PubMed]
- Chi, W.; Wu, E.; Morgan, B.A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 2013, 140, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Loboda, A.; Sobczak, M.; Jozkowicz, A.; Dulak, J. TGF-β1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediat. Inflamm. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Zieba, J.; Forlenza, K.N.; Khatra, J.S.; Sarukhanov, A.; Duran, I.; Rigueur, D.; Lyons, K.M.; Cohn, D.H.; Merrill, A.E.; Krakow, D. TGFβ and BMP Dependent Cell Fate Changes Due to Loss of Filamin B Produces Disc Degeneration and Progressive Vertebral Fusions. PLoS Genet. 2016, 12, e1005936. [Google Scholar] [CrossRef]
- Zimowska, M.; Duchesnay, A.; Dragun, P.; Oberbek, A.; Moraczewski, J.; Martelly, I. Immunoneutralization of TGFbeta1 Improves Skeletal Muscle Regeneration: Effects on Myoblast Differentiation and Glycosaminoglycan Content. Int. J. Cell Biol. 2009, 2009, 659372. [Google Scholar] [CrossRef]
- Mu, D.; Cambier, S.; Fjellbirkeland, L.; Baron, J.L.; Munger, J.S.; Kawakatsu, H.; Sheppard, D.; Broaddus, V.C.; Nishimura, S.L. The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP–dependent activation of TGF-β1. J. Cell Biol. 2002, 157, 493–507. [Google Scholar] [CrossRef]
- Vogelmann, R.; Nguyen-Tat, M.D.; Giehl, K.; Adler, G.; Wedlich, D.; Menke, A. TGF beta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J. Cell Sci. 2005, 118, 4901–4912. [Google Scholar] [CrossRef]
- Mu, Y.; Gudey, S.K.; Landstr, M.M. Non-Smad signaling pathways. Cell Tissue Res. 2012, 347, 11–20. [Google Scholar] [CrossRef]
- Nan, W.; Li, G.; Si, H.; Lou, Y.; Wang, D.; Guo, R.; Zhang, H. All-trans-retinoic acid inhibits mink hair follicle growth via inhibiting proliferation and inducing apoptosis of dermal papilla cells through TGF-beta 2/Smad2/3 pathway. Acta Histochemica: Zeitschrift fur Histologische Topochemie 2020, 122, 151603. [Google Scholar] [CrossRef]
- Liu, D.; Black, B.L.; Derynck, R. TGF-β inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev. 2001, 15, 2950–2966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chang, A.; Li, Y.; Gao, Y.; Wang, H.; Ma, Z.; Li, X.; Wang, B. miR-140-5p regulates adipocyte differentiation by targeting transforming growth factor-β signaling. Sci. Rep. 2015, 5, 18118. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Chen, X.; Peng, R.; Liu, H.; Yin, P.; Peng, H.; Zhou, Y.; Sun, Y.; Wen, L.; Yi, H.; et al. Let7a suppresses cell proliferation via the TGFβ/SMAD signaling pathway in cervical cancer. Oncol. Rep. 2016, 36, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Levinsohn, J.; Linderman, G.; Chen, D.; Sun, T.Y.; Dong, D.; Taketo, M.M.; Bosenberg, M.; Kluger, Y.; Choate, K.; et al. Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis. Dev. Cell 2019, 48, 17–31.e6. [Google Scholar] [CrossRef]
- Li, C.; He, X.; Wu, Y.; Li, J.; Zhang, R.; An, X.; Yue, Y. Single-Cell Transcriptome Sequence Profiling on the Morphogenesis of Secondary Hair Follicles in Ordos Fine-Wool Sheep. Int. J. Mol. Sci. 2024, 25, 584. [Google Scholar] [CrossRef]
- Greco, V.; Chen, T.; Rendl, M.; Schober, M.; Pasolli, H.A.; Stokes, N.; dela Cruz-Racelis, J.; Fuchs, E. A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration. Cell Stem Cell 2009, 4, 155–169. [Google Scholar] [CrossRef]
- Rendl, M.; Lewis, L.; Fuchs, E. Molecular Dissection of Mesenchymal–Epithelial Interactions in the Hair Follicle. PLoS Biol. 2005, 3, e331. [Google Scholar] [CrossRef]
- Mayumi, I.; Zaixin, Y.; Thomas, A.; Cui, C.; Kim, N.; Millar, S.E.; Cotsarelis, G. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 2007, 447, 316–320. [Google Scholar] [CrossRef]
- Biggs, L.C.; Mikkola, M.L. Early inductive events in ectodermal appendage morphogenesis. Semin. Cell Dev. Biol. 2014, 25–26, 11–21. [Google Scholar] [CrossRef]
- Massagué, J.; Chen, Y.G. Controlling TGF-beta signaling. Genes Dev. 2000, 14, 627–644. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, Y.; Xing, Y.; Xu, W.; Guo, H.; Deng, F.; Ma, X.; Li, Y. Correction to: The balance of Bmp6 and Wnt10b regulates the telogen-anagen transition of hair follicles. Cell Commun. Signal. CCS 2020, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Woo, W.M.; Zhen, H.H.; Oro, A.E. Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev. 2012, 26, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Bach-Cuc, N.; Karine, L.; Anna, M.; Dario, A.; Vikram, D.; Giusy, D.G.; Maranke, I.K.; Zhang, Z.; Wang, J.; Alice, T.D.V.; et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006, 20, 1028–1042. [Google Scholar] [CrossRef] [PubMed]
- Shadmehr, D.; Raphael, K. Notch signaling in bulge stem cells is not required for selection of hair follicle fate. Development 2009, 136, 891–896. [Google Scholar] [CrossRef]
- Niimori, D.; Kawano, R.; Felemban, A.; Niimori-Kita, K.; Tanaka, H.; Ihn, H.; Ohta, K. Tsukushi controls the hair cycle by regulating TGF-β1 signaling. Dev. Biol. 2012, 372, 81–87. [Google Scholar] [CrossRef]
- Pedro, S.; Andreia, S.; Carlos, C.A.; Verde, I. TGF-β1 in Vascular Wall Pathology: Unraveling Chronic Venous Insufficiency Pathophysiology. Int. J. Mol. Sci. 2017, 18, 2534. [Google Scholar] [CrossRef]
- Allen, R.E.; Boxhorn, L.K. Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J. Cell. Physiol. 2010, 133, 567. [Google Scholar] [CrossRef]
- Cheng, R.; Dang, R.; Zhou, Y.; Ding, M.; Hua, H. MicroRNA-98 inhibits TGF-β1-induced differentiation and collagen production of cardiac fibroblasts by targeting TGFBR1. Hum. Cell 2017, 30, 192–200. [Google Scholar] [CrossRef]
- Wang, M.; Wang, M.; Jiang, J.; Li, K.; Liang, H.; Wang, N.; Zou, Y.; Wang, D.; Zhou, S.; Tang, Y.; et al. THSD4 promotes hair growth by facilitating dermal papilla and hair matrix interactions. Theranostics 2025, 15, 3571. [Google Scholar] [CrossRef]
- Røst, L.M.; Ræder, S.B.; Olaisen, C.; Søgaard, C.K.; Sharma, A.; Bruheim, P.; Otterlei, M. PCNA regulates primary metabolism by scaffolding metabolic enzymes. Oncogene 2022, 42, 613–624. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, Y.; Song, Z.; Hao, F.; Yang, X. Identification of Wnt/β-catenin signaling pathway in dermal papilla cells of human scalp hair follicles: TCF4 regulates the proliferation and secretory activity of dermal papilla cell. J. Dermatol. 2014, 41, 84–91. [Google Scholar] [CrossRef]
- Yue, S.; Zhou, Y.; Petunia, M.; Liu, J.; Liu, C.; Sello, C.T.; Song, Y.; Feng, Z.; Li, S.; Yang, W.; et al. The role of CTNNB1 and LEF1 in feather follicles development of Anser cygnoides and Anser anser. Genes Genom. 2020, 42, 761–771. [Google Scholar] [CrossRef]
- Bong-Kyu, K.; Kim, Y.S. Expression of sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation. Ann. Dermatol. 2014, 26, 79–87. [Google Scholar]
- Genta, P.; Simone, E.; Florence, H.; Dusserre, Y.; Mermod, N.; Calabrese, A. Nuclear factor I-C regulates TGF-{beta}-dependent hair follicle cycling. J. Biol. Chem. 2010, 285, 34115–34125. [Google Scholar]
- María, C.J.; Maia, O.F.; José, L.G.; Balañá, M.E. Androgens downregulate BMP2 impairing the inductive role of dermal papilla cells on hair follicle stem cells differentiation. Mol. Cell. Endocrinol. 2021, 520, 111096. [Google Scholar] [CrossRef]
- Cai, B.; Zheng, Y.; Yan, J.; Wang, J.; Liu, X.; Yin, G. BMP2-mediated PTEN enhancement promotes differentiation of hair follicle stem cells by inducing autophagy. Exp. Cell Res. 2019, 385, 111647. [Google Scholar] [CrossRef]
- Owens, P.; Bazzi, H.; Engelking, E.; Han, G.; Christiano, A.M.; Wang, X.J. Smad4-dependent desmoglein-4 expression contributes to hair follicle integrity. Dev. Biol. 2008, 322, 156–166. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Yang, X. Disruption of Smad4 in mouse epidermis leads to depletion of follicle stem cells. Mol. Biol. Cell 2009, 20, 882–890. [Google Scholar] [CrossRef]
- Fu, J.; Wang, D.; Liu, W.; Qi, Y.; Zhang, C.; Li, H.; Cai, J.; Ji, S.; Zhang, L.; Sun, F. miR-370-3p Inhibited the Proliferation of Sheep Dermal Papilla Cells by Inhibiting the Expression of SMAD4. Cells 2025, 14, 714. [Google Scholar] [CrossRef]
- Zhou, B.; Lin, W.; Long, Y.; Yang, Y.; Zhang, H.; Wu, K.; Chu, Q. Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct. Target. Ther. 2022, 7, 95. [Google Scholar] [CrossRef]




| Gene Name | Sequence (5′-3′) |
|---|---|
| siRNA-TGFBR1-1344 | GUUGCCUUAUUAUGAUCUUTT |
| AAGAUCAUAAUAAGGCAACTT | |
| siRNA-TGFBR1-1149 | GGCCACAGAUACAAUUGACTT |
| GUCAAUUGUAUCUGUGGCCTT | |
| siRNA-TGFBR1-745 | GGAGAAGAAGUUGCUGUUATT |
| UAACAGCAACUUCUUCUCCTT | |
| siRNA-TGFBR1-874 | GACAAUGGCACAUGGACUCTT |
| GAGUCCAUGUGCCAUUGUCTT | |
| siRNA-NC | UUCUCCGAACGUGUCACGUTT |
| ACGUGACACGUUCGGAGAATT |
| Gene Name | Forward Primer Sequence | Reverse Primer Sequence |
|---|---|---|
| SFRP2 | GACAACGACCTTTGCATCCC | ATACCTTCGGAGCTTCCTCG |
| CTNNB1 | AAGACATCACTGAGCCTGCC | GTCCGTAGTGAAGGCGAACA |
| BMP2 | CACACCCTACCCGAGATTGG | CTGAGTCCCCAGTAATCCGC |
| PCNA | CGTGAACCTCACCAGCATGTC | GTGTCCGCATTATCTTCAGCC |
| β-actin | CAGTCGGTTGGATGGAGCAT | AGGCAGGGACTTCCTGTAAC |
| TGFBR1 | TCCAACTGTCGGAAAGCCG | TGGTGAATGACAGTGCGGTT |
| CCND1 | GCACGACTTCATCGAGCACT | ATGAACTTCACGTCTGTGGC |
| SAMD4 | GTCAGTGTCACCGCCAGATG | AGCAGCTGACAAACTGATGGC |
| NOTCH3 | CTTGGGTCCTGTGGTGAGTC | AGCAGGAGGAGTGAGAGAGG |
| TGFB1 | ACACACAGTACAGCAAGGTCC | CACGTAGTACACGATGGGCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xiao, T.; Luo, Y.; Yuan, C.; Song, Y.; Tang, J.; Lu, Z.; Liu, J.; Guo, T. Effects of TGFBR1 on Proliferation of Dermal Papilla Cells in Fine-Wool Sheep. Animals 2026, 16, 36. https://doi.org/10.3390/ani16010036
Xiao T, Luo Y, Yuan C, Song Y, Tang J, Lu Z, Liu J, Guo T. Effects of TGFBR1 on Proliferation of Dermal Papilla Cells in Fine-Wool Sheep. Animals. 2026; 16(1):36. https://doi.org/10.3390/ani16010036
Chicago/Turabian StyleXiao, Tong, Yu Luo, Chao Yuan, Yufang Song, Jianxiang Tang, Zengkui Lu, Jianbin Liu, and Tingting Guo. 2026. "Effects of TGFBR1 on Proliferation of Dermal Papilla Cells in Fine-Wool Sheep" Animals 16, no. 1: 36. https://doi.org/10.3390/ani16010036
APA StyleXiao, T., Luo, Y., Yuan, C., Song, Y., Tang, J., Lu, Z., Liu, J., & Guo, T. (2026). Effects of TGFBR1 on Proliferation of Dermal Papilla Cells in Fine-Wool Sheep. Animals, 16(1), 36. https://doi.org/10.3390/ani16010036

