Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = multifunctional photodetector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2570 KiB  
Article
Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
by Shuaicheng Liu, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang and Xiaomin Ren
Micromachines 2025, 16(8), 897; https://doi.org/10.3390/mi16080897 (registering DOI) - 31 Jul 2025
Abstract
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip [...] Read more.
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip remains challenging due to material compatibility issues and mode field mismatch problems. In this work, we have demonstrated monolithic integration of an InAs quantum dot microdisk light emitter, waveguide, and photodetector on a silicon platform using a shared epitaxial structure. The photodetector successfully monitored variations in light emitter output power, experimentally proving the feasibility of this integrated scheme. This work represents a key step toward multifunctional integrated photonic systems. Future efforts will focus on enhancing the light emitter output power, improving waveguide efficiency, and scaling up the integration density for advanced applications in optical communication. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

18 pages, 16222 KiB  
Article
Enhanced Photoelectrochemical Performance of 2D Bi2O3/TiO2 Heterostructure Film by Bi2S3 Surface Modification and Broadband Photodetector Application
by Lai Liu and Huizhen Yao
Materials 2025, 18(15), 3528; https://doi.org/10.3390/ma18153528 - 28 Jul 2025
Viewed by 234
Abstract
Photoelectrochemical devices have garnered extensive research attention in the field of smart and multifunctional photoelectronics, owing to their lightweight nature, eco-friendliness, and cost-effective manufacturing processes. In this work, Bi2S3/Bi2O3/TiO2 heterojunction film was successfully fabricated [...] Read more.
Photoelectrochemical devices have garnered extensive research attention in the field of smart and multifunctional photoelectronics, owing to their lightweight nature, eco-friendliness, and cost-effective manufacturing processes. In this work, Bi2S3/Bi2O3/TiO2 heterojunction film was successfully fabricated and functioned as the photoelectrode of photoelectrochemical devices. The designed Bi2S3/Bi2O3/TiO2 photoelectrochemical photodetector possesses a broad light detection spectrum ranging from 400 to 900 nm and impressive self-powered characteristics. At 0 V bias, the device exhibits an on/off current ratio of approximately 1.3 × 106. It achieves a commendable detectivity of 5.7 × 1013 Jones as subjected to a 0.8 V bias potential, outperforming both bare TiO2 and Bi2O3/TiO2 photoelectrochemical devices. Moreover, the Bi2S3/Bi2O3/TiO2 photoelectrode film shows great promise in pollutant decomposition, achieving nearly 97.7% degradation efficiency within 60 min. The appropriate band energy alignment and the presence of an internal electric field at the interface of the Bi2S3/Bi2O3/TiO2 film serve as a potent driving force for the separation and transport of photogenerated carriers. These findings suggest that the Bi2S3/Bi2O3/TiO2 heterojunction film could be a viable candidate as a photoelectrode material for the development of high-performance photoelectrochemical optoelectronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

28 pages, 6374 KiB  
Review
Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication
by Handan Xu, Jiakang Ai, Tianlin Deng, Yuandong Ruan, Di Sun, Yue Liao, Xugao Cui and Pengfei Tian
Photonics 2025, 12(7), 730; https://doi.org/10.3390/photonics12070730 - 18 Jul 2025
Viewed by 505
Abstract
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising [...] Read more.
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising light sources for high-speed VLC systems, owing to their high brightness, low power consumption, and high modulation bandwidth. Recent developments have also seen substantial progress in high-bandwidth GaN-based visible light detectors, which complement the transmission capabilities of micro-LEDs. This paper reviews the latest advancements in micro-LEDs as high-speed transmitters for VLC, detailing their capabilities in terms of bandwidth, data rates, modulation techniques, and diverse applications, including structured lighting systems that combine positioning, communication, and illumination. Additionally, the advantages of using micro-LEDs in GaN-based photodetectors (PDs) are discussed, highlighting their potential in enhancing bandwidth and data rates and facilitating high-speed communications across multifunctional applications. Therefore, this review will benefit the further development of micro-LEDs and their application in 6G communication and global interconnect. Full article
(This article belongs to the Special Issue New Advances in Optical Wireless Communication)
Show Figures

Figure 1

13 pages, 3099 KiB  
Article
Two-Dimensional Porous Beryllium Trinitride Monolayer as Multifunctional Energetic Material
by Jiaxin Jiang, Qifan Hu, Weiyi Wang and Hongyan Guo
Nanomaterials 2025, 15(13), 1004; https://doi.org/10.3390/nano15131004 - 29 Jun 2025
Viewed by 381
Abstract
Polynitrogen compounds have broad applications in the field of high-energy materials, making the exploration of two-dimensional polynitride materials with both novel properties and practical utility a highly attractive research challenge. Through global structure search methods and first-principles theoretical calculations at the Perdew–Burke–Ernzerhof (PBE) [...] Read more.
Polynitrogen compounds have broad applications in the field of high-energy materials, making the exploration of two-dimensional polynitride materials with both novel properties and practical utility a highly attractive research challenge. Through global structure search methods and first-principles theoretical calculations at the Perdew–Burke–Ernzerhof (PBE) level of density functional theory (DFT), the globally minimum-energy configuration of a novel planar BeN3 monolayer (tetr-2D-BeN3) is predicted. This material exhibits a planar quasi-isotropic structure containing pentagonal, hexagonal, and dodecagonal rings, as well as “S”-shaped N6 polymeric units, exhibiting a high energy density of 3.34 kJ·g−1, excellent lattice dynamic stability and thermal stability, an indirect bandgap of 2.66 eV (HSE06), high carrier mobility, and ultraviolet light absorption capacity. In terms of mechanical properties, it shows a low in-plane Young’s stiffness of 52.3–52.9 N·m−1 and a high in-plane Poisson’s ratio of 0.55–0.56, indicating superior flexibility. Furthermore, its porous structure endows it with remarkable selectivity for hydrogen (H2) and argon (Ar) gas separation, achieving a maximum selectivity of up to 1023 (He/Ar). Therefore, the tetr-2D-BeN3 monolayer represents a multifunctional two-dimensional polynitrogen-based energetic material with potential applications in energetic materials, flexible semiconductor devices, ductile materials, ultraviolet photodetectors, and other fields, thereby expanding the design possibilities for polynitride materials. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

30 pages, 10292 KiB  
Review
Boron Phosphide: A Comprehensive Overview of Structures, Properties, Synthesis, and Functional Applications
by Qilong Wu, Jiamin Wu, Maoping Xu, Yi Liu, Qian Tian, Chuang Hou and Guoan Tai
Nanomaterials 2025, 15(9), 654; https://doi.org/10.3390/nano15090654 - 25 Apr 2025
Viewed by 685
Abstract
Boron phosphide (BP), an emerging III–V semiconductor, has garnered significant interest because of its exceptional structural stability, wide bandgap, high thermal conductivity, and tunable electronic properties. This review provides a comprehensive analysis of BP, commencing with its distinctive structural characteristics and proceeding with [...] Read more.
Boron phosphide (BP), an emerging III–V semiconductor, has garnered significant interest because of its exceptional structural stability, wide bandgap, high thermal conductivity, and tunable electronic properties. This review provides a comprehensive analysis of BP, commencing with its distinctive structural characteristics and proceeding with a detailed examination of its exceptional physicochemical properties. Recent progress in BP synthesis is critically examined, with a focus on key fabrication strategies such as chemical vapor deposition, high-pressure co-crystal melting, and molten salt methods. These approaches have enabled the controlled growth of high-quality BP nanostructures, including bulk crystals, nanoparticles, nanowires, and thin films. Furthermore, the review highlights the broad application spectrum of BP, spanning photodetectors, sensors, thermal management, energy conversion, and storage. Despite these advances, precise control over the growth, morphology, and phase purity of BP’s low-dimensional structures remains a critical challenge. Addressing these limitations requires innovative strategies in defect engineering, heterostructure design, and scalable manufacturing techniques. This review concludes by outlining future research directions that are essential for unlocking BP’s potential in next-generation electronics, sustainable energy technologies, and multifunctional materials. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 3466 KiB  
Article
High-Performance Self-Powered Photodetector Enabled by Te-Doped GeH Nanostructures Engineering
by Junting Zhang, Jiexin Chen, Shuojia Zheng, Da Zhang, Shaojuan Luo and Huixia Luo
Sensors 2025, 25(8), 2530; https://doi.org/10.3390/s25082530 - 17 Apr 2025
Viewed by 515
Abstract
Two-dimensional (2D) Xenes, including graphene where X represents C, Si, Ge, and Te, represent a groundbreaking class of materials renowned for their extraordinary electrical transport properties, robust photoresponse, and Quantum Spin Hall effects. With the growing interest in 2D materials, research on germanene-based [...] Read more.
Two-dimensional (2D) Xenes, including graphene where X represents C, Si, Ge, and Te, represent a groundbreaking class of materials renowned for their extraordinary electrical transport properties, robust photoresponse, and Quantum Spin Hall effects. With the growing interest in 2D materials, research on germanene-based systems remains relatively underexplored despite their potential for tailored optoelectronic functionalities. Herein, we demonstrate a facile and rapid chemical synthesis of tellurium-doped germanene hydride (Te-GeH) nanostructures (NSs), achieving precise atomic-scale control. The 2D Te-GeH NSs exhibit a broadband optical absorption spanning ultraviolet (UV) to visible light (VIS), which is a critical feature for multifunctional photodetection. Leveraging this property, we engineer photoelectrochemical (PEC) photodetectors via a simple drop-casting technique. The devices deliver excellent performance, including a high responsivity of 708.5 µA/W, ultrafast response speeds (92 ms rise, 526 ms decay), and a wide operational bandwidth. Remarkably, the detectors operate efficiently at zero-bias voltage, outperforming most existing 2D-material-based PEC systems, and function as self-powered broadband photodetectors. This work not only advances the understanding of germanene derivatives but also unlocks their potential for next-generation optoelectronics, such as energy-efficient sensors and adaptive optical networks. Full article
(This article belongs to the Special Issue Recent Advances in Photoelectrochemical Sensors)
Show Figures

Figure 1

14 pages, 3873 KiB  
Article
UV-Vis-NIR Broadband Dual-Mode Photodetector Based on Graphene/InP Van Der Waals Heterostructure
by Mingyang Shen, Hao Liu, Qi Wang, Han Ye, Xueguang Yuan, Yangan Zhang, Bo Wei, Xue He, Kai Liu, Shiwei Cai, Yongqing Huang and Xiaomin Ren
Sensors 2025, 25(7), 2115; https://doi.org/10.3390/s25072115 - 27 Mar 2025
Viewed by 763
Abstract
Dual-mode photodetectors (DmPDs) have attracted considerable interest due to their ability to integrate multiple functionalities into a single device. However, 2D material/InP heterostructures, which exhibit built-in electric fields and rapid response characteristics, have not yet been utilized in DmPDs. In this work, we [...] Read more.
Dual-mode photodetectors (DmPDs) have attracted considerable interest due to their ability to integrate multiple functionalities into a single device. However, 2D material/InP heterostructures, which exhibit built-in electric fields and rapid response characteristics, have not yet been utilized in DmPDs. In this work, we fabricate a high-performance DmPD based on a graphene/InP Van der Waals heterostructure in a facile way, achieving a broadband response from ultraviolet-visible to near-infrared wavelengths. The device incorporates two top electrodes contacting monolayer chemical vapor deposition (CVD) graphene and a bottom electrode on the backside of an InP substrate. By flexibly switching among these three electrodes, the as-fabricated DmPD can operate in a self-powered photovoltaic mode for energy-efficient high-speed imaging or in a biased photoconductive mode for detecting weak light signals, fully demonstrating its multifunctional detection capabilities. Specifically, in the self-powered photovoltaic mode, the DmPD leverages the vertically configured Schottky junction to achieve an on/off ratio of 8 × 103, a responsivity of 49.2 mA/W, a detectivity of 4.09 × 1011 Jones, and an ultrafast response, with a rising time (τr) and falling time (τf) of 2.8/6.2 μs. In the photoconductive mode at a 1 V bias, the photogating effect enhances the responsivity to 162.5 A/W. This work advances the development of InP-based multifunctional optoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Optoelectronic Sensors)
Show Figures

Figure 1

10 pages, 2464 KiB  
Article
The Multiferroic, Magnetic Exchange Bias Effect, and Photodetection Multifunction Characteristics in MnSe/Ga0.6Fe1.4O3 Heterostructure
by Ye Zhao, Ruilong Yang, Ke Yang, Jiarui Dou, Jinzhong Guo, Xiaoting Yang, Guowei Zhou and Xiaohong Xu
Materials 2025, 18(3), 586; https://doi.org/10.3390/ma18030586 - 27 Jan 2025
Viewed by 834
Abstract
Artificial heterostructures are typically created by layering distinct materials, thereby giving rise to unique characteristics different from their individual components. Herein, two-dimensional α-MnSe nanosheets with a non-layered structure were fabricated on Ga0.6Fe1.4O3 (GFO) films. The superior crystalline properties [...] Read more.
Artificial heterostructures are typically created by layering distinct materials, thereby giving rise to unique characteristics different from their individual components. Herein, two-dimensional α-MnSe nanosheets with a non-layered structure were fabricated on Ga0.6Fe1.4O3 (GFO) films. The superior crystalline properties of MnSe/GFO heterostructures were confirmed through structural and morphological analyses. The remanent polarization is around 1.5 μC/cm2 and the leakage current density can reach 2 × 10−3 A/cm2 under 4 V. In addition, the piezo-response force microscopy amplitude and phase images further supported the ferroelectric property. The significant improvement of coercive field and saturated magnetization, along with the antiparallel signals of Mn and Fe ions observed through synchrotron X-ray analyses, suggest the presence of magnetic interaction within the MnSe/GFO heterostructure. Finally, the excellent photodetector with a photo detectivity of 6.3 × 108 Jones and a photoresponsivity of 2.8 × 10−3 A·W−1 was obtained under 532 nm in the MnSe/GFO heterostructure. The characteristics of this heterostructure, which include multiferroic, magnetic exchange bias effect, and photodetection capabilities, are highly beneficial for multifunctional devices. Full article
Show Figures

Graphical abstract

14 pages, 8516 KiB  
Article
A Flexible Multifunctional Sensor Based on an AgNW@ZnONR Composite Material
by Hao Lv, Xue Qi, Yuxin Wang, Yang Ye, Peike Wang, Ao Yin, Jingjing Luo, Zhongqi Ren, Haipeng Liu, Suzhu Yu and Jun Wei
Materials 2024, 17(19), 4788; https://doi.org/10.3390/ma17194788 - 29 Sep 2024
Cited by 1 | Viewed by 879
Abstract
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite [...] Read more.
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite was formed via the hydrothermal method to ensure the multifunctional capability of the flexible sensors. After refining the process parameters, the size of the ZnO nanorods was decreased to fabricate pliable multifunctional sensors using AgNW@ZnONRs. At a deposition of 0.207 g of AgNW@ZnONRs, the sensor achieves its maximum switching ratio and fastest response time under conditions of 2000 μW/cm2 UV optical power density. With a ton (rise time) of 2.7 s and a toff (fall time) of 2.3 s, the ratio of Ion to Ioff current is 1151. Additionally, the sensor’s maximum optical current value correlates linearly with UV light’s power density. The maximum response current increased from 222.5 pA to 588.1 pA, an increase of 164.3%, when the bending angle was increased from 15° to 90° for the sensor with a deposition of 0.276 g of AgNW@ZnONRs. There was no degradation in the response of the sensors after 10,000 bending cycles, as they have excellent stability and repeatability, which means they can meet the requirements of wearable sensor applications. Therefore, there is great potential for the practical application of multifunctional AgNW@ZnONRs in flexible sensors. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

14 pages, 6981 KiB  
Article
A Facile Synthesis of TiO2–α-Ga2O3-Based Self-Powered Broad-Band UVC/UVA Photodetector and Optical Communication Study
by Wenxing Zhang, Anqi Xu, Xin Zhou, Dan Zhang and Honglin Li
Materials 2024, 17(16), 4103; https://doi.org/10.3390/ma17164103 - 19 Aug 2024
Cited by 4 | Viewed by 1671
Abstract
Traditional optical communication systems rely on single narrow-band PDs, which can expose confidential information and data to potential eavesdropping in free space. With advancements in technology, even optical communication in the UV spectrum, invisible to the sun, faces risks of interception. Consequently, broad-band [...] Read more.
Traditional optical communication systems rely on single narrow-band PDs, which can expose confidential information and data to potential eavesdropping in free space. With advancements in technology, even optical communication in the UV spectrum, invisible to the sun, faces risks of interception. Consequently, broad-band PDs that combine optical encryption with algorithmic encryption hold significant promise for secure and reliable communication. This study presents a photodetector based on TiO2–α-Ga2O3 heterostructures, prepared via direct oxidation and hydrothermal reaction, demonstrating self-powered UVC/UVA broad-band detection capabilities. The PD exhibits response peaks at approximately 250 and 320 nm, with R of 42.16 and 59.88 mA/W and D* of 8.21 × 1013 and 9.56 × 1013 Jones, respectively. Leveraging the superior optical response characteristics of UVC and UVA wavelengths, this device has been employed to develop a communication system designed for data transmission. The proposed system features two independent channels: one for data transmission using UVC and another for key distribution using UVA. Secure communication is ensured through specialized encryption algorithms. In summary, this work offers a straightforward, cost-effective, and practical method for fabricating self-powered UVC/UVA broad-band PDs. This PD provides new insights into the development of multi-purpose, multi-band secure optical communication devices and holds promise for integration into multifunctional optoelectronic systems in the future. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

23 pages, 6709 KiB  
Article
Polymer-Gel-Derived PbS/C Composite Nanosheets and Their Photoelectronic Response Properties Studies in the NIR
by Xingfa Ma, Xintao Zhang, Mingjun Gao, You Wang and Guang Li
Coatings 2024, 14(8), 981; https://doi.org/10.3390/coatings14080981 - 3 Aug 2024
Cited by 1 | Viewed by 1507
Abstract
Non-conjugated polymer-derived functional nanocomposites are one of the important ways to develop multifunctional hybrids. By increasing the degree of crosslinking, their photophysical properties can be improved. PbS is a class of narrow bandgap infrared active materials. To avoid aggregation and passivation of the [...] Read more.
Non-conjugated polymer-derived functional nanocomposites are one of the important ways to develop multifunctional hybrids. By increasing the degree of crosslinking, their photophysical properties can be improved. PbS is a class of narrow bandgap infrared active materials. To avoid aggregation and passivation of the surface defects of PbS nanomaterials, a large number of organic and inorganic ligands are usually used. In this study, PbS/C composite nanosheets were synthesized with Pb2+ ion-crosslinked sodium alginate gel by one-pot carbonization. The resulting nanosheets were coated on untreated A4 printing paper, and the electrodes were the graphite electrodes with 5B pencil drawings. The photocurrent signals of the products were measured using typical 650, 808, 980, and 1064 nm light sources. The results showed that the photocurrent switching signals were effectively extracted in the visible and near-infrared regions, which was attributed to the mutual passivation of defects during the in situ preparation of PbS and carbon nanomaterials. At the same time, the resulting nanocomposite exhibited electrical switching responses to the applied strain to a certain extent. The photophysical and defect passivation mechanisms were discussed based on the aggregation state of the carbon hybrid and the interfacial electron interaction. This material would have potential applications in broadband flexible photodetectors, tentacle sensors, or light harvesting interdisciplinary areas. This study provided a facile approach to prepare a low-cost hybrid with external stimulus response and multifunctionality. These results show that the interfacial charge transfer is the direct experimental evidence of interfacial interaction, and the regulation of interfacial interaction can improve the physical and chemical properties of nanocomposites, which can meet the interdisciplinary application. The interdisciplinary and application of more non-conjugated polymer systems in some frontier areas will be expanded upon. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

19 pages, 58291 KiB  
Article
D–A Structural Oligomers Containing Benzothiadiazole or Benzophenone as Novel Multifunctional Materials for Electrochromic and Photodetector Devices
by Zipeng He, Binhua Mei, Hongmei Chu, Yanjun Hou and Haijun Niu
Polymers 2023, 15(10), 2274; https://doi.org/10.3390/polym15102274 - 11 May 2023
Cited by 1 | Viewed by 1757
Abstract
In this study, six conjugated oligomers containing D–A structures were synthesized using the Stille coupling reaction and named PHZ1–PHZ6. All the oligomers utilized demonstrated excellent solubilities in common solvents and notable color variations in the domain of electrochromic characteristics. By designing and synthesizing [...] Read more.
In this study, six conjugated oligomers containing D–A structures were synthesized using the Stille coupling reaction and named PHZ1–PHZ6. All the oligomers utilized demonstrated excellent solubilities in common solvents and notable color variations in the domain of electrochromic characteristics. By designing and synthesizing two electron-donating groups modified with alkyl side chains and a common aromatic electron-donating group, as well as cross-binding them with two electron-withdrawing groups with lower molecular weights, the six oligomers presented good color-rendering efficiencies, among which PHZ4 presented the best color-rendering efficiency (283 cm2·C−1). The products also demonstrated excellent electrochemical switching-response times. PHZ5 presented the fastest coloring time (0.7 s), PHZ3 and PHZ6 presented the fastest bleaching times (2.1 s). Following 400 s of cycling activity, all the oligomers under study showed good working stabilities. Moreover, three kinds of photodetectors based on conducting oligomers were prepared, and the experimental results show that the three photodetectors have better specific detection performances and gains. These characteristics indicate that oligomers containing D–A structures are suitable for use as electrochromic and photodetector materials in the research. Full article
Show Figures

Figure 1

12 pages, 35041 KiB  
Article
A Light/Pressure Bifunctional Electronic Skin Based on a Bilayer Structure of PEDOT:PSS-Coated Cellulose Paper/CsPbBr3 QDs Film
by Wenhao Li, Jingyu Jia, Xiaochen Sun, Sue Hao and Tengling Ye
Polymers 2023, 15(9), 2136; https://doi.org/10.3390/polym15092136 - 29 Apr 2023
Cited by 5 | Viewed by 2143
Abstract
With the continuous development of electronic skin (e-skin), multifunctional e-skin is approaching, and in some cases even surpassing, the capabilities of real human skin, which has garnered increasing attention. Especially, if e-skin processes eye’s function, it will endow e-skins more powerful advantages, such [...] Read more.
With the continuous development of electronic skin (e-skin), multifunctional e-skin is approaching, and in some cases even surpassing, the capabilities of real human skin, which has garnered increasing attention. Especially, if e-skin processes eye’s function, it will endow e-skins more powerful advantages, such as the vision reparation, enhanced security, improved adaptability and enhanced interactivity. Here, we first study the photodetector based on CsPbBr3 quantum dots film and the pressure sensor based on PEDOT: PSS-coated cellulose paper, respectively. On the base of these two kinds of sensors, a light/pressure bifunctional sensor was successfully fabricated. Finally, flexible bifunctional sensors were obtained by using a flexible interdigital electrode. They can simultaneously detect light and pressure stimulation. As e-skin, a high photosensitivity with a switching ratio of 168 under 405 nm light at a power of 40 mW/cm2 was obtained and they can also monitor human motions in the meantime. Our work showed that the strategy to introduce perovskite photodetectors into e-skins is feasible and may open a new way for the development of flexible multi-functional e-skin. Full article
(This article belongs to the Special Issue Polymers/Their Hybrid Materials for Optoelectronic Applications)
Show Figures

Figure 1

24 pages, 4729 KiB  
Review
Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations
by Jian Chen, Jiuxu Wang, Xin Li, Jin Chen, Feilong Yu, Jiale He, Jian Wang, Zengyue Zhao, Guanhai Li, Xiaoshuang Chen and Wei Lu
Sensors 2022, 22(2), 677; https://doi.org/10.3390/s22020677 - 16 Jan 2022
Cited by 35 | Viewed by 10586
Abstract
Benefiting from the inherent capacity for detecting longer wavelengths inaccessible to human eyes, infrared photodetectors have found numerous applications in both military and daily life, such as individual combat weapons, automatic driving sensors and night-vision devices. However, the imperfect material growth and incomplete [...] Read more.
Benefiting from the inherent capacity for detecting longer wavelengths inaccessible to human eyes, infrared photodetectors have found numerous applications in both military and daily life, such as individual combat weapons, automatic driving sensors and night-vision devices. However, the imperfect material growth and incomplete device manufacturing impose an inevitable restriction on the further improvement of infrared photodetectors. The advent of artificial microstructures, especially metasurfaces, featuring with strong light field enhancement and multifunctional properties in manipulating the light–matter interactions on subwavelength scale, have promised great potential in overcoming the bottlenecks faced by conventional infrared detectors. Additionally, metasurfaces exhibit versatile and flexible integration with existing detection semiconductors. In this paper, we start with a review of conventionally bulky and recently emerging two-dimensional material-based infrared photodetectors, i.e., InGaAs, HgCdTe, graphene, transition metal dichalcogenides and black phosphorus devices. As to the challenges the detectors are facing, we further discuss the recent progress on the metasurfaces integrated on the photodetectors and demonstrate their role in improving device performance. All information provided in this paper aims to open a new way to boost high-performance infrared photodetectors. Full article
(This article belongs to the Special Issue State-of-the-Art Optical Sensors Technology in China)
Show Figures

Figure 1

18 pages, 7100 KiB  
Review
Metasurface Photodetectors
by Jinzhao Li, Junyu Li, Shudao Zhou and Fei Yi
Micromachines 2021, 12(12), 1584; https://doi.org/10.3390/mi12121584 - 20 Dec 2021
Cited by 23 | Viewed by 7965
Abstract
Photodetectors are the essential building blocks of a wide range of optical systems. Typical photodetectors only convert the intensity of light electrical output signals, leaving other electromagnetic parameters, such as the frequencies, phases, and polarization states unresolved. Metasurfaces are arrays of subwavelength structures [...] Read more.
Photodetectors are the essential building blocks of a wide range of optical systems. Typical photodetectors only convert the intensity of light electrical output signals, leaving other electromagnetic parameters, such as the frequencies, phases, and polarization states unresolved. Metasurfaces are arrays of subwavelength structures that can manipulate the amplitude, phase, frequency, and polarization state of light. When combined with photodetectors, metasurfaces can enhance the light-matter interaction at the pixel level and also enable the detector pixels to resolve more electromagnetic parameters. In this paper, we review recent research efforts in merging metasurfaces with photodetectors towards improved detection performances and advanced detection schemes. The impacts of merging metasurfaces with photodetectors, on the architecture of optical systems, and potential applications are also discussed. Full article
(This article belongs to the Special Issue 2D Materials Optoelectronic and Nanophotonic Devices)
Show Figures

Figure 1

Back to TopTop