High-Performance Self-Powered Photodetector Enabled by Te-Doped GeH Nanostructures Engineering
Abstract
:Highlights
- A facile chemical strategy was developed for the synthesis of two-dimensional Te-doped GeH nanostructures with atomic-level precision and structural integrity.
- The Te-GeH-based photoelectrochemical (PEC) photodetectors exhibit high responsivity (708.5 µA/W) and ultrafast response speeds (92 ms rise/526 ms decay) under zero-bias conditions, demonstrating excellent broadband photoresponse.
- The introduction of Te atoms enables effective modulation of the electronic structure in the GeH system. Owing to the comparable atomic radius between Te and Ge, efficient doping is achieved without disrupting the host lattice. In addition, the high electronegativity of Te induces electron redistribution and facilitates the formation of a built-in electric field, thereby optimizing charge separation and transport behavior. This approach provides a novel pathway for the functional design of Zintl-phase-derived two-dimensional materials, with broad implications for advanced optoelectronic applications.
- This doping strategy significantly enhances the photoelectrochemical performance of GeH-based photodetectors and enables the scalable fabrication of 2D nanomaterials with tunable optoelectronic properties. The resulting Te-GeH nanostructures offer improved carrier dynamics and reduced recombination, serving as a promising material platform for next-generation self-powered broadband photodetectors.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of 2D Te-GeH Nanostructures
2.3. Fabrication and Photoresponse Characterization of the Photodetector
2.4. Materials Characterization
2.5. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, D.; Pauporté, T. Advances in Optical Imaging and Optical Communications Based on High-Quality Halide Perovskite Photodetectors. Adv. Funct. Mater. 2024, 34, 202311205. [Google Scholar] [CrossRef]
- Fu, J.; Nie, C.; Sun, F.; Li, G.; Shi, H.; Wei, X. Bionic Visual-Audio Photodetectors with In-Sensor Perception and Preprocessing. Sci. Adv. 2024, 10, eadk8199. [Google Scholar] [CrossRef] [PubMed]
- Demontis, V.; Durante, O.; Marongiu, D.; De Stefano, S.; Matta, S.; Simbula, A.; Ragazzo Capello, C.; Pennelli, G.; Quochi, F.; Saba, M.; et al. Photoconduction in 2D Single-Crystal Hybrid Perovskites. Adv. Opt. Mater. 2024, 13, 2402469. [Google Scholar] [CrossRef]
- Hou, H.Y.; Tian, S.; Ge, H.R.; De Chen, J.; Li, Y.Q.; Tang, J.X. Recent Progress of Polarization-Sensitive Perovskite Photodetectors. Adv. Funct. Mater. 2022, 32, 2209324. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical Cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef]
- Yang, C.; Wang, G.; Liu, M.; Yao, F.; Li, H. Mechanism, Material, Design, and Implementation Principle of Two-Dimensional Material Photodetectors. Nanomaterials 2021, 11, 2688. [Google Scholar] [CrossRef]
- Tao, W.; Kong, N.; Ji, X.; Zhang, Y.; Sharma, A.; Ouyang, J.; Qi, B.; Wang, J.; Xie, N.; Kang, C.; et al. Emerging Two-Dimensional Monoelemental Materials (Xenes) for Biomedical Applications. Chem. Soc. Rev. 2019, 48, 2891–2912. [Google Scholar] [CrossRef]
- Ye, X.; Li, Y.; Wei, M.; Yang, Z.; Li, T.; Chen, C. Review: Photothermal Effect of Two-Dimensional Flexible Materials. J. Mater. Sci. 2025, 60, 1797–1825. [Google Scholar] [CrossRef]
- Wang, H.; Song, X.; Li, Z.; Li, D.; Xu, X.; Chen, Y.; Liu, P.; Zhou, X.; Zhai, T. Recent Advances in Two-Dimensional Photovoltaic Devices. J. Semicond. 2024, 45, 051701. [Google Scholar] [CrossRef]
- Liu, N.; Qiao, H.; Xu, K.; Xi, Y.; Ren, L.; Cheng, N.; Cui, D.; Qi, X.; Xu, X.; Hao, W.; et al. Hydrogen Terminated Germanene for a Robust Self-Powered Flexible Photoelectrochemical Photodetector. Small 2020, 16, 2000283. [Google Scholar] [CrossRef]
- Han, K.; Huang, G.; Jia, Y.; Niu, Q.; Zheng, Z.; Wang, B. Research on Photoelectrochemical Photodetectors Based on Bismuth 2D Thin Films. Opt. Mater. 2024, 148, 114971. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, Z.; Wu, Q.; Wu, J.; Liu, S.; Chen, X.; Zhao, Q. 2D Black Phosphorus Infrared Photodetectors. Laser Photon. Rev. 2025, 19, 2400703. [Google Scholar] [CrossRef]
- Kumar, A.; Intonti, K.; Viscardi, L.; Durante, O.; Pelella, A.; Kharsah, O.; Sleziona, S.; Giubileo, F.; Martucciello, N.; Ciambelli, P.; et al. Memory Effect and Coexistence of Negative and Positive Photoconductivity in Black Phosphorus Field Effect Transistor for Neuromorphic Vision Sensors. Mater. Horiz. 2024, 11, 2397–2405. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Dai, Y.; Ma, X.-C.; Yu, L.; Wei, W.; Huang, B.-B. Enhancement of Photocatalytic Activity of a Two-Dimensional GeH/Graphene Heterobilayer Under Visible Light. RSC Adv. 2015, 5, 52264–52268. [Google Scholar] [CrossRef]
- Bianco, E.; Butler, S.; Jiang, S.; Restrepo, O.D.; Windl, W.; Goldberger, J.E. Stability and Exfoliation of Germanane: A Germanium Graphane Analogue. ACS Nano 2013, 7, 4414–4421. [Google Scholar] [CrossRef]
- Liang, F.; Chen, W.; Feng, M.; Huang, Y.; Liu, J.; Sun, X.; Zhan, X.; Sun, Q.; Wu, Q.; Yang, H. Effect of Si Doping on the Performance of Gan Schottky Barrier Ultraviolet Photodetector Grown on Si Substrate. Photonics 2021, 8, 28. [Google Scholar] [CrossRef]
- Singh, O.P.; Sharma, A.; Gour, K.S.; Husale, S.; Singh, V.N. Fast Switching Response of Na-Doped CZTS Photodetector from Visible to NIR Range. Sol. Energy Mater. Sol. Cells 2016, 157, 28–34. [Google Scholar] [CrossRef]
- Zhang, C.; Qian, Q.; Qin, L.; Zhu, X.; Wang, C.; Li, X. Broadband Light Harvesting for Highly Efficient Hot-Electron Application Based on Conformal Metallic Nanorod Arrays. ACS Photonics 2018, 5, 5079–5085. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, B.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X.; Qi, Z.; Liu, H.; Feng, Y.; et al. Van der Waals Epitaxial Growth and Optoelectronics of Large-Scale WSe2/SnS2 Vertical Bilayer p–n Junctions. Nat. Commun. 2017, 8, 1906. [Google Scholar] [CrossRef]
- Dong, J.; Lian, Y.; Zhang, Y.; Perfetti, L.; Chen, Z. Tuning the Band Gap in InSb (100) by Surface Chemical Doping. Appl. Surf. Sci. 2025, 689, 162564. [Google Scholar] [CrossRef]
- Feng, D.; Huang, B.; Li, L.; Li, X.; Gu, Y.; Hu, W.; Zhang, Z. The Effects of Eu3+ Doping on the Epitaxial Growth and Photovoltaic Properties of BiFeO3 Thin Films. J. Mater. Sci. Technol. 2022, 106, 49–55. [Google Scholar] [CrossRef]
- Shkir, M.; Ashraf, I.M.; AlFaify, S.; El-Toni, A.M.; Ahmed, M.; Khan, A. A Noticeable Effect of Pr Doping on Key Optoelectrical Properties of CdS Thin Films Prepared Using Spray Pyrolysis Technique for High-Performance Photodetector Applications. Ceram. Int. 2020, 46, 4652–4663. [Google Scholar] [CrossRef]
- Chen, S.H.; Ho, C.M.; Chang, Y.H.; Lee, K.M.; Wu, M.C. Efficient Perovskite Solar Cells with Low J-V Hysteretic Behavior Based on Mesoporous Sn-Doped TiO2 Electron Extraction Layer. Chem. Eng. J. 2022, 445, 136761. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical Synthesis of 2D Materials. Chem. Soc. Rev. 2018, 47, 8744–8765. [Google Scholar] [CrossRef]
- Xie, Z.; Xing, C.; Huang, W.; Fan, T.; Li, Z.; Zhao, J.; Xiang, Y.; Guo, Z.; Li, J.; Yang, Z.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705833. [Google Scholar] [CrossRef]
- Giousis, T.; Potsi, G.; Kouloumpis, A.; Spyrou, K.; Georgantas, Y.; Chalmpes, N.; Dimos, K.; Antoniou, M.K.; Papavassiliou, G.; Bourlinos, A.B.; et al. Synthesis of 2D Germanane (GeH): A New, Fast, and Facile Approach. Angew. Chemie Int. Ed. 2021, 60, 360–365. [Google Scholar] [CrossRef]
- Husain, S.; Alkhtaby, L.A.; Bhat, I.; Giorgetti, E.; Zoppi, A.; Muniz Miranda, M. Study of Cobalt Doping on Structural and Luminescence Properties of Nanocrystalline ZnO. J. Lumin. 2014, 154, 430–436. [Google Scholar] [CrossRef]
- Hartman, T.; Šturala, J.; Luxa, J.; Sofer, Z. Chemistry of Germanene: Surface Modification of Germanane Using Alkyl Halides. ACS Nano 2020, 14, 7319–7327. [Google Scholar] [CrossRef]
- Shalvoy, R.B.; Fisher, G.B.; Stiles, P.J. Bond Ionicity and Structural Stability of Some Average-Valence-Five Materials Studied by X-Ray Photoemission. Phys. Rev. B 1977, 15, 1680–1697. [Google Scholar] [CrossRef]
- Nwankwo, M.C.; Ezealigo, B.; Nwanya, A.C.; Nkele, A.C.; Agbogu, A.; Chime, U.; Asogwa, P.U.; Ezekoye, B.A.; Ekwealor, A.B.C.; Osuji, R.U.; et al. Syntheses and Characterizations of GO/Mn3O4 Nanocomposite Film Electrode Materials for Supercapacitor Applications. Inorg. Chem. Commun. 2020, 119, 107983. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Chu, J.; Yang, L.; Zhao, X.; Zhang, Y.; Liu, T.; Lu, Y.; Chen, C.; Hou, X.; et al. Tailoring the Epitaxial Growth of Oriented Te Nanoribbon Arrays. iScience 2023, 26, 106177. [Google Scholar] [CrossRef] [PubMed]
- Parida, S.; Das, S.; Mallik, A. Application of Electrochemical Impedance Spectroscopy (EIS) to Study the Effect of Temperature and Ion Concentration During Electroplating of Copper from an Acidic Bath. Trans. Indian Inst. Met. 2024, 77, 1433–1442. [Google Scholar] [CrossRef]
- Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Barnes, P.; Zuo, Y.; Dixon, K.; Hou, D.; Lee, S.; Ma, Z.; Connell, J.G.; Zhou, H.; Deng, C.; Smith, K.; et al. Electrochemically Induced Amorphous-to-Rock-Salt Phase Transformation in Niobium Oxide Electrode for Li-Ion Batteries. Nat. Mater. 2022, 21, 795–803. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, S.; Wang, H.; Zhang, J.; Shi, J.; Wang, H.; Yan, D. Relation Between Interfacial Band-Bending and Electronic Properties in Organic Semiconductor Pentacene. Adv. Electron. Mater. 2017, 3, 1700136. [Google Scholar] [CrossRef]
- Chun, W.J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J.N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K. Conduction and Valence Band Positions of Ta2O5, TaOn, and Ta3N5 by UPS and Electrochemical Methods. J. Phys. Chem. B 2003, 107, 1798–1803. [Google Scholar] [CrossRef]
- Liang, Z.; Hao, R.; Luo, H.; He, Z.; Su, L.; Fan, X. Enhancing the Photo-Response Performance of a SnSe-Based Photoelectrochemical Photodetector via Ga Doping. J. Mater. Chem. C 2024, 12, 2981–2992. [Google Scholar] [CrossRef]
- Wang, H.; Lu, C.; Dong, W.; Xue, X.; Li, E.; Zhao, Q.; Xu, X. Photoelectrochemical Photodetector Based on Germanium Telluride Film Synthesized by Physical Vapor Deposition. ACS Appl. Nano Mater. 2024, 7, 9616–9625. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, K.; Li, J. A Robust 3D Self-Powered Photoelectrochemical Type Photodetector Based on ReS2 Nanoflowers. J. Mater. Sci. Mater. Electron. 2023, 34, 1987. [Google Scholar] [CrossRef]
- Yu, R.; Qiao, H.; Zhou, Y.; Liao, G.; Huang, Z.; Wang, Z.; Qi, X. Etching Exfoliated Ti2CTx Nanosheets for Photoelectrochemical Photodetectors with Enhanced Performance and Alkaline Stability. J. Electron. Mater. 2023, 52, 3029–3037. [Google Scholar] [CrossRef]
- Deng, J.; Qiao, H.; Luo, S.; Zhang, S.; Huang, Z.; Wang, Z.; Qi, X. Simulation Photosynthesis Improves the Photoresponse Performance of Cr2Ge2Te6 Nanosheets for High-Performance Self-Powered Photoelectrochemical Photodetectors. ACS Appl. Nano Mater. 2023, 6, 9331–9338. [Google Scholar] [CrossRef]
- Luo, S.; Wu, Z.; Zhao, J.; Luo, Z.; Qiu, Q.; Li, Z.; Wu, H.; Xing, G.; Wu, C. ZIF-67 Derivative Decorated MXene for a Highly Integrated Flexible Self-Powered Photodetector. ACS Appl. Mater. Interfaces 2022, 14, 19725–19735. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Bai, X.; Han, T.; Dong, W.; Zhang, Y.; Wang, Y.; Lu, C.; Hua, D. High Performance UV–Vis Photodetectors Based on Tin Monosulfide Film Synthesized by Physical Vapor Deposition. Appl. Surf. Sci. 2022, 597, 153691. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Guo, J.; Zhang, X.; Liu, X.; Fu, Y.; Zhang, F.; Ma, C.; Shi, Z.; Cao, R.; et al. Designing of 0D/2D Mixed-Dimensional van der Waals Heterojunction over Ultrathin g-C3N4 for High-Performance Flexible Self-Powered Photodetector. Chem. Eng. J. 2021, 420, 129556. [Google Scholar] [CrossRef]
- Qiao, H.; Li, Z.; Huang, Z.; Ren, X.; Kang, J.; Qiu, M.; Liu, Y.; Qi, X.; Zhong, J.; Zhang, H. Self-Powered Photodetectors Based on 0D/2D Mixed Dimensional Heterojunction with Black Phosphorus Quantum Dots as Hole Accepters. Appl. Mater. Today 2020, 20, 100765. [Google Scholar] [CrossRef]
- Wang, X.; Liang, J.; You, Q.; Zhu, J.; Fang, F.; Xiang, Y.; Song, J. Bandgap Engineering of Hydroxy-Functionalized Borophene for Superior Photo-Electrochemical Performance. Angew. Chemie Int. Ed. 2020, 59, 23559–23563. [Google Scholar] [CrossRef]
- Su, L.; Tang, X.; Fan, X.; Ma, D.; Liang, W.; Li, Y.; Zhang, H. Halogenated Antimonene: One-Step Synthesis, Structural Simulation, Tunable Electronic and Photoresponse Property. Adv. Funct. Mater. 2019, 29, 1905857. [Google Scholar] [CrossRef]
- Huang, W.; Xing, C.; Wang, Y.; Li, Z.; Wu, L.; Ma, D.; Dai, X.; Xiang, Y.; Li, J.; Fan, D.; et al. Facile Fabrication and Characterization of Two-Dimensional Bismuth(Iii) Sulfide Nanosheets for High-Performance Photodetector Applications under Ambient Conditions. Nanoscale 2018, 10, 2404–2412. [Google Scholar] [CrossRef]
- Ren, X.; Li, Z.; Huang, Z.; Sang, D.; Qiao, H.; Qi, X.; Li, J.; Zhong, J.; Zhang, H. Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self-Powered Photodetector. Adv. Funct. Mater. 2017, 27, 1606834. [Google Scholar] [CrossRef]
Materials | Measurement Conditions | Rise/Decay Time (s) | Responsivity (μA W−1) | Ref. |
---|---|---|---|---|
Te-GeH | 0.5 M Na2SO4, 0 V | 0.092/0.526 | 708.5 | This work |
GeH | 0.5 M Na2SO4, 0 V | 0.24/0.74 | 22 | [10] |
GaxSn1−xSe | 0.5 M KOH, 0.6 V | 0.17/0.17 | 0.19 | [37] |
GeTe | 0.3 M Na2SO4, 0.6 V | 0.48/0.75 | 228.9 | [38] |
ReS2 | 1 M Na2SO4,0 V | 5/4.96 | 2.15 | [39] |
Ti2CTx | 0.5 M KOH, 0.8 V | 2.23/6.13 | 18.1 | [40] |
Cr2Ge2Te6 | 0.5 M Na2SO4, 0 V | - | 54.4 | [41] |
2D Te nanosheets | 0.1 M KOH, 0.3 V | - | 0.152 | [25] |
Co-CoOx/NC/Mo2CTx | 0.5 M KOH, 0.3 V | 0.4/0.4 | 13.13 | [42] |
SnS NSs | 0.5 m Na2SO4, 0.4 V | 0.6/0.3 | 18.2 | [43] |
g-C3N4@Bi | 0.5 M KOH, 0 V | 0.51/1.43 | 42.54 | [44] |
BP QDs-MoS2 | 1 M KOH, 0 V | 0.051 | 15.7 | [45] |
borophene-OH | 0.5 M KOH, 0 V | - | 58.46 | [46] |
Sb NSs | 0.5 M KOH, 0.6 V | 0.9/1.3 | 1.6 | [47] |
2D Bi2S3 | 1 M KOH, 0 V | 0.1/0.1 | 9 | [48] |
2D BP | 0.1 M KOH, 0 V | 0.5/1.4 | 2.2 | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, J.; Zheng, S.; Zhang, D.; Luo, S.; Luo, H. High-Performance Self-Powered Photodetector Enabled by Te-Doped GeH Nanostructures Engineering. Sensors 2025, 25, 2530. https://doi.org/10.3390/s25082530
Zhang J, Chen J, Zheng S, Zhang D, Luo S, Luo H. High-Performance Self-Powered Photodetector Enabled by Te-Doped GeH Nanostructures Engineering. Sensors. 2025; 25(8):2530. https://doi.org/10.3390/s25082530
Chicago/Turabian StyleZhang, Junting, Jiexin Chen, Shuojia Zheng, Da Zhang, Shaojuan Luo, and Huixia Luo. 2025. "High-Performance Self-Powered Photodetector Enabled by Te-Doped GeH Nanostructures Engineering" Sensors 25, no. 8: 2530. https://doi.org/10.3390/s25082530
APA StyleZhang, J., Chen, J., Zheng, S., Zhang, D., Luo, S., & Luo, H. (2025). High-Performance Self-Powered Photodetector Enabled by Te-Doped GeH Nanostructures Engineering. Sensors, 25(8), 2530. https://doi.org/10.3390/s25082530