Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = multianvil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9668 KiB  
Article
Superdeep Diamond Genesis Through Fe-Mediated Carbonate Reduction
by Jing Gao, Bin Chen, Xiang Wu, Xiaojing Lai, Changzeng Fan, Yun Liu and Junfeng Zhang
Geosciences 2025, 15(5), 163; https://doi.org/10.3390/geosciences15050163 - 1 May 2025
Viewed by 601
Abstract
Superdeep diamonds and their syngenetic inclusions are crucial for understanding Earth’s deep carbon cycle and slab–mantle redox dynamics. The origins of these diamonds, especially their links to iron (Fe) carbides and ferropericlase with varying Mg# [=Mg/(Mg+Fe)at], however, remain elusive. In this [...] Read more.
Superdeep diamonds and their syngenetic inclusions are crucial for understanding Earth’s deep carbon cycle and slab–mantle redox dynamics. The origins of these diamonds, especially their links to iron (Fe) carbides and ferropericlase with varying Mg# [=Mg/(Mg+Fe)at], however, remain elusive. In this study, we performed high pressure–temperature (P-T) experiments (10–16 GPa and 1200–1700 K) across cold-to-warm subduction zones using a multi-anvil press. The results reveal a stepwise Fe-mediated carbonate reduction process for the formation of superdeep diamonds: MgCO3 → Fe-carbides (Fe3C/Fe7C3) → graphite/diamond. This mechanism explains two phenomena regarding superdeep diamonds: (1) anomalous 13C depletion results from kinetic isotope fractionation during 12C enrichment into the intermediate Fe-carbides; (2) nitrogen scarcity is due to Fe-carbides acting as nitrogen sinks. Ferropericlase [(Mg,Fe)O] formed during the reactions in our experiments shows Mg# variations (0.2–0.9), similar to those found in natural samples. High Mg# (>0.7) variants from lower temperature experiments indicate diamond crystallization from carbonatitic melts in the shallow lower mantle, while the broad Mg# range (0.2–0.9) from experiments at higher temperatures suggests multi-depth formation processes as found in Brazilian diamonds. These findings suggest that slab–mantle interactions produce superdeep diamonds with distinctive Fe-carbides and ferropericlase assemblages as inclusions, coupled with their 13C- and nitrogen-depleted signatures, which underscore thermochemical carbon cycling as a key factor in deep carbon storage and mantle mineralogy. Full article
Show Figures

Graphical abstract

14 pages, 2934 KiB  
Article
Sound Velocities in Vanadium Reveal Complex Elastic Behavior at High Pressures
by Brian Gulick, Xintong Qi, Ran Wang and Baosheng Li
Metals 2025, 15(4), 427; https://doi.org/10.3390/met15040427 - 10 Apr 2025
Cited by 1 | Viewed by 448
Abstract
Compressional (VP) and shear (VS) wave velocities of polycrystalline vanadium were measured simultaneously up to 11.5 GPa at room temperature using ultrasonic interferometry in a multi-anvil press. Complex softening behavior in VS and resulting shear moduli are discovered, [...] Read more.
Compressional (VP) and shear (VS) wave velocities of polycrystalline vanadium were measured simultaneously up to 11.5 GPa at room temperature using ultrasonic interferometry in a multi-anvil press. Complex softening behavior in VS and resulting shear moduli are discovered, possibly revealing a precursor to the reported phase transition within 30–60 GPa. The current data enables a comprehensive assessment of the elastic and mechanical properties of vanadium at high pressures, including bulk and shear moduli, Young’s modulus, Poisson’s ratio, and Pugh’s ratio. Through fitting to the 3rd-order finite strain equations, the elastic moduli and their pressure derivatives were determined to be KS0 = 151 (2) GPa, G0 = 46.9 (8) GPa, K’S0 = 3.47 (5), and G’0 = 0.62 (1). These experimental results allow us to compare with and benchmark the existing Steinberg–Guinan models for extrapolations to extreme pressure and temperature conditions. Full article
Show Figures

Figure 1

17 pages, 2921 KiB  
Article
Melting Curve of Potassium Carbonate K2CO3 at High Pressures
by Jiaqi Lu, Siyuan He, Rebecca Lange and Jie Li
Minerals 2025, 15(3), 217; https://doi.org/10.3390/min15030217 - 24 Feb 2025
Viewed by 976
Abstract
Melting of carbonated rocks in the mantle influences the Earth’s deep carbon cycle and the long-term evolution of the atmosphere. Previous studies of the high-pressure melting curve of K2CO3 have yielded inconsistent results, with discrepancies of nearly 200 °C at [...] Read more.
Melting of carbonated rocks in the mantle influences the Earth’s deep carbon cycle and the long-term evolution of the atmosphere. Previous studies of the high-pressure melting curve of K2CO3 have yielded inconsistent results, with discrepancies of nearly 200 °C at 3 GPa and more than 400 °C at 12 GPa. Here, we report constraints on the melting curve of K2CO3 at pressures up to 20 GPa from in situ ionic conduction experiments and Pt sphere experiments. To help resolve the large discrepancies, we tested the ionic conduction method against the well-established differential thermal analysis (DTA) method and conventional Pt sphere method at the ambient pressure of 1 bar. Furthermore, ionic conduction experiments were conducted on sodium chloride (NaCl) to reduce uncertainties in pressure calibration of the multi-anvil press. We also modified the configuration of the in situ ionic conduction experiments to minimize the influence of thermal gradient on melting point determination. Finally, we inspected the effect of water by varying the initial sample state and container wall thickness in the Pt sphere experiments and applied X-ray radiography as a reliable and efficient method to examine the products. Compared with the results from the ionic conduction experiments, the melting point of K2CO3 from the Pt sphere experiments was found to be 200~400 °C lower, likely due to a small amount of water trapped by hygroscopic K2CO3 in closed platinum (Pt) capsules. We find that anhydrous K2CO3 remains more refractory than Na2CO3 at elevated pressures. Full article
Show Figures

Figure 1

10 pages, 2000 KiB  
Article
Synthesis and Crystal Structure of Ilmenite-Type Silicate with Pyrope Composition
by Takayuki Ishii, Ryosuke Sinmyo and Tomoo Katsura
Solids 2024, 5(3), 394-403; https://doi.org/10.3390/solids5030026 - 2 Aug 2024
Cited by 1 | Viewed by 1697
Abstract
Akimotoite, ilmenite-type MgSiO3 high-pressure polymorph can be stable in the lower-mantle transition zone along average mantle and subducting slab geotherms. Significant amounts of Al2O3 can be incorporated into the structure, having the pyrope (Mg3Al2Si3 [...] Read more.
Akimotoite, ilmenite-type MgSiO3 high-pressure polymorph can be stable in the lower-mantle transition zone along average mantle and subducting slab geotherms. Significant amounts of Al2O3 can be incorporated into the structure, having the pyrope (Mg3Al2Si3O12) composition. Previous studies have investigated the effect of Al2O3 on its crystal structure at nearly endmember compositions. In this study, we synthesized high-quality ilmenite-type Mg3Al2Si3O12 phase at 27 GPa and 1073 K by means of a Kawai-type multi-anvil press and refined the crystal structure at ambient conditions using a synchrotron X-ray diffraction data via the Rietveld method to examine the effect of Al2O3. The unit-cell lattice parameters were determined to be a = 4.7553(7) Å, c = 13.310(2) Å, and V = 260.66(6) Å3, with Z = 6 (hexagonal, R3¯). The volume of the present phase was placed on the akimotoite-corundum endmember join. However, the refined structure showed a strong nonlinear behavior of the a- and c-axes, which can be explained by Al incorporation into the MgO6 and SiO6 octahedral sites, which are distinctly different each other. Ilmenite-type Mg3Al2Si3O12 phase may be found in shocked meteorites and can be a good indicator for shock conditions at relatively low temperatures of 1027–1127 K. Full article
Show Figures

Figure 1

23 pages, 11291 KiB  
Article
Experimental Modeling of Decarbonation Reactions, Resulting in the Formation of CO2 Fluid and Garnets of Model Carbonated Eclogites under Lithospheric Mantle P,T-Parameters
by Yuliya V. Bataleva, Ivan D. Novoselov, Aleksei N. Kruk, Olga V. Furman and Yuri N. Palyanov
Minerals 2023, 13(7), 859; https://doi.org/10.3390/min13070859 - 25 Jun 2023
Viewed by 2157
Abstract
First experimental modeling of decarbonation reactions resulting in the formation of CO2-fluid and Mg, Fe, Ca, and Mn garnets, with composition corresponding to the garnets of carbonated eclogites of types I and II (ECI and ECII), was carried out at a [...] Read more.
First experimental modeling of decarbonation reactions resulting in the formation of CO2-fluid and Mg, Fe, Ca, and Mn garnets, with composition corresponding to the garnets of carbonated eclogites of types I and II (ECI and ECII), was carried out at a wide range of lithospheric mantle pressures and temperatures. Experimental studies were performed on a multi-anvil high-pressure apparatus of a “split sphere” type (BARS), in (Mg, Fe, Ca, Mn)CO3-Al2O3-SiO2 systems (with compositional variations according to those in ECI and ECII), in the pressure interval of 3.0–7.5 GPa and temperatures of 1050–1450 °C (t = 10–60 h). A specially designed high-pressure cell with a hematite buffering container—preventing the diffusion of hydrogen into the platinum capsule—was used, in order to control the fluid composition. Using the mass spectrometry method, it was proven that in all experiments, the fluid composition was pure CO2. The resulting ECI garnet compositions were Prp48Alm35Grs15Sps02–Prp44Alm40Grs14Sps02, and compositions of the ECII garnet were Prp57Alm34Grs08Sps01–Prp68Alm23Grs08Sps01. We established that the composition of the synthesized garnets corresponds strongly to natural garnets of carbonated eclogites of types I and II, as well as to garnets from xenoliths of diamondiferous eclogites from the Robert Victor kimberlite pipe; according to the Raman characteristics, the best match was found with garnets from inclusions in diamonds of eclogitic paragenesis. In this study, we demonstrated that the lower temperature boundary of the stability of natural garnets from carbonated eclogites in the presence of a CO2 fluid is 1000 (±20) °C at depths of ~90 km, 1150–1250 (±20) °C at 190 km, and 1400 (±20) °C at depths of about 225 km. The results make a significant contribution to the reconstruction of the fluid regime and processes of CO2/carbonate-related mantle metasomatism in the lithospheric mantle. Full article
Show Figures

Figure 1

20 pages, 8597 KiB  
Article
The System KCl–CaCO3–MgCO3 at 3 GPa
by Anton Shatskiy, Ivan V. Podborodnikov, Anton V. Arefiev and Konstantin D. Litasov
Minerals 2023, 13(2), 248; https://doi.org/10.3390/min13020248 - 9 Feb 2023
Cited by 1 | Viewed by 1794
Abstract
Inclusions in mantle minerals and xenoliths from kimberlites worldwide derived from depths exceeding 100 km vary in composition from alkali-rich saline to carbonatitic. Despite the wide distribution of these melts and their geochemical importance as metasomatic agents that altered the mineralogy and geochemistry [...] Read more.
Inclusions in mantle minerals and xenoliths from kimberlites worldwide derived from depths exceeding 100 km vary in composition from alkali-rich saline to carbonatitic. Despite the wide distribution of these melts and their geochemical importance as metasomatic agents that altered the mineralogy and geochemistry of mantle rocks, the P-T range of stability of these melts remains largely undefined. Here we report new experimental data on phase relations in the system KCl–CaCO3–MgCO3 at 3 GPa obtained using a multianvil press. We found that the KCl–CaCO3 and KCl–MgCO3 binaries have the eutectic type of T-X diagrams. The KCl-calcite eutectic is situated at K2# 56 and 1000 °C, while the KCl-magnesite eutectic is located at K2# 79 and 1100 °C, where K2# = 2KCl/(2KCl + CaCO3 + MgCO3) × 100 mol%. Just below solidus, the KCl–CaCO3–MgCO3 system is divided into two partial ternaries: KCl + magnesite + dolomite and KCl + calcite–dolomite solid solutions. Both ternaries start to melt near 1000 °C. The minimum on the liquidus/solidus surface corresponds to the KCl + Ca0.73Mg0.27CO3 dolomite eutectic situated at K2#/Ca# 39/73, where Ca# = 100∙Ca/(Ca + Mg) × 100 mol%. At bulk Ca# ≤ 68, the melting is controlled by a ternary peritectic: KCl + dolomite = magnesite + liquid with K2#/Ca# 40/68. Based on our present and previous data, the KCl + dolomite melting reaction, expected to control solidus of KCl-bearing carbonated eclogite, passes through 1000 °C at 3 GPa and 1200 °C at 6 GPa and crossovers a 43-mW/m2 geotherm at a depth of 120 km and 37-mW/m2 geotherm at a depth of 190 km. Full article
Show Figures

Figure 1

13 pages, 2630 KiB  
Article
Quench Products of K-Ca-Mg Carbonate Melt at 3 and 6 GPa: Implications for Carbonatite Inclusions in Mantle Minerals
by Anton V. Arefiev, Anton Shatskiy, Altyna Bekhtenova and Konstantin D. Litasov
Minerals 2022, 12(9), 1077; https://doi.org/10.3390/min12091077 - 25 Aug 2022
Cited by 1 | Viewed by 1710
Abstract
Alkali-rich carbonate melts are found as inclusions in magmatic minerals, mantle xenoliths, and diamonds from kimberlites and lamproites worldwide. However, the depth of their origin and bulk melt composition remains unclear. Here, we studied quench products of K-Ca-Mg carbonate melt at 3 and [...] Read more.
Alkali-rich carbonate melts are found as inclusions in magmatic minerals, mantle xenoliths, and diamonds from kimberlites and lamproites worldwide. However, the depth of their origin and bulk melt composition remains unclear. Here, we studied quench products of K-Ca-Mg carbonate melt at 3 and 6 GPa. The following carbonates were detected at 3 GPa: K2CO3, K2Ca(CO3)2 bütschliite (R3¯2/m), o-K2Ca3(CO3)4 (P212121), K2Ca2(CO3)3 (R3), K2Mg(CO3)2 (R3¯m), Mg-bearing calcite, dolomite, and magnesite. At 6 GPa, the variety of quench carbonate phases includes K2CO3, K2Ca(CO3)2 bütschliite (R3¯2/m), d-K2Ca3(CO3)4 (Pnam), K2Mg(CO3)2 (R3¯m), aragonite, Mg-bearing calcite, dolomite, and magnesite. The data obtained indicate that alkali-bearing carbonate melts quench to the alkaline earth and double carbonates that are thermodynamically stable at quenching pressure and can be used as markers reflecting the pressure of their entrapment. Further, in this study, we established the fields of melt compositions corresponding to the distinct quench assemblages of carbonate minerals, which can be used for the reconstruction of the composition of carbonatitic melts entrapped by mantle minerals. Full article
Show Figures

Figure 1

15 pages, 5548 KiB  
Article
High Pressure (HP) in Spark Plasma Sintering (SPS) Processes: Application to the Polycrystalline Diamond
by Jérémy Guignard, Mythili Prakasam and Alain Largeteau
Materials 2022, 15(14), 4804; https://doi.org/10.3390/ma15144804 - 9 Jul 2022
Cited by 8 | Viewed by 3746
Abstract
High-Pressure (HP) technology allows new possibilities of processing by Spark Plasma Synthesis (SPS). This process is mainly involved in the sintering process and for bonding, growing and reaction. High-Pressure tools combined with SPS is applied for processing polycrystalline diamond without binder (binderless PCD) [...] Read more.
High-Pressure (HP) technology allows new possibilities of processing by Spark Plasma Synthesis (SPS). This process is mainly involved in the sintering process and for bonding, growing and reaction. High-Pressure tools combined with SPS is applied for processing polycrystalline diamond without binder (binderless PCD) in this current work. Our described innovative Ultra High Pressure Spark Plasma Sintering (UHP-SPS) equipment shows the combination of our high-pressure apparatus (Belt-type) with conventional pulse electric current generator (Fuji). Our UHP-SPS equipment allows the processing up to 6 GPa, higher pressure than HP-SPS equipment, based on a conventional SPS equipment in which a non-graphite mold (metals, ceramics, composite and hybrid) with better mechanical properties (capable of 1 GPa) than graphite. The equipment of UHP-SPS and HP-SPS elements (pistons + die) conductivity of the non-graphite mold define a Hot-Pressing process. This study presents the results showing the ability of sintering diamond powder without additives at 4–5 GPa and 1300–1400 °C for duration between 5 and 30 min. Our described UHP-SPS innovative cell design allows the consolidation of diamond particles validated by the formation of grain boundaries on two different grain size powders, i.e., 0.75–1.25 μm and 8–12 μm. The phenomena explanation is proposed by comparison with the High Pressure High Temperature (HP-HT) (Belt, toroidal-Bridgman, multi-anvils (cubic)) process conventionally used for processing binderless polycrystalline diamond (binderless PCD). It is shown that using UHP-SPS, binderless diamond can be sintered at very unexpected P-T conditions, typically ~10 GPa and 500–1000 °C lower in typical HP-HT setups. This makes UHP-SPS a promising tool for the sintering of other high-pressure materials at non-equilibrium conditions and a potential industrial transfer with low environmental fingerprints could be considered. Full article
(This article belongs to the Special Issue Spark Plasma Synthesis under High Pressure for Advanced Materials)
Show Figures

Figure 1

14 pages, 3760 KiB  
Article
Elastic Wave Propagation in a Stainless-Steel Standard and Verification of a COMSOL Multiphysics Numerical Elastic Wave Toolbox
by Mohsen Bazargan, Bjarne S. G. Almqvist, Hem Bahadur Motra, Pooyan Broumand, Tobias Schmiedel and Christoph F. Hieronymus
Resources 2022, 11(5), 49; https://doi.org/10.3390/resources11050049 - 17 May 2022
Cited by 3 | Viewed by 4617
Abstract
Laboratory-based elastic wave measurements are commonly used to quantify the seismic properties of Earth’s crust and upper mantle. Different types of laboratory apparatuses are available for such measurements, simulating seismic properties at different pressure and temperature. To complement such laboratory measurements, we present [...] Read more.
Laboratory-based elastic wave measurements are commonly used to quantify the seismic properties of Earth’s crust and upper mantle. Different types of laboratory apparatuses are available for such measurements, simulating seismic properties at different pressure and temperature. To complement such laboratory measurements, we present a numerical toolbox to investigate the seismic properties of rock samples. The numerical model is benchmarked against experimental results from a multi-anvil apparatus, using measurements of a stainless steel calibration standard. Measured values of the mean compressional- and shear-wave velocities at room conditions of the steel block were 6.03 km/s and 3.26 km/s, respectively. Calculated numerical results predicted 6.12 km/s and 3.30 km/s for compressional and shear-wave velocities. Subsequently, we measured Vp and Vs up to 600 MPa hydrostatic confining pressure and 600 °C. These measurements, at pressure and temperature, were then used as the basis to predict numerical wave speeds. There is, in general, good agreement between measurement and predicted numerical results. The numerical method presented in this study serves as a flexible toolbox, allowing for the easy setup of different model geometries and composite materials. Full article
Show Figures

Figure 1

19 pages, 28640 KiB  
Article
Effect of Different Mineralogical Proportions on the Electrical Conductivity of Dry Hot-Pressed Sintering Gabbro at High Temperatures and Pressures
by Mengqi Wang, Lidong Dai, Haiying Hu, Wenqing Sun, Ziming Hu and Chenxin Jing
Minerals 2022, 12(3), 336; https://doi.org/10.3390/min12030336 - 8 Mar 2022
Cited by 7 | Viewed by 2689
Abstract
Electrical conductivities of the dry hot-pressed sintering gabbro with various mineralogical proportions (CpxXPl100−X, X = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 vol% (the signals of Cpx and Pl denote clinopyroxene and plagioclase, [...] Read more.
Electrical conductivities of the dry hot-pressed sintering gabbro with various mineralogical proportions (CpxXPl100−X, X = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 vol% (the signals of Cpx and Pl denote clinopyroxene and plagioclase, respectively) were measured in the YJ-3000t multi-anvil pressure and Solartron-1260 impedance spectroscopy analyzer at temperatures of 773–1073 K and pressures of 1.0–3.0 GPa. At the given pressure conditions, the electrical conductivity and temperature conformed to an Arrhenius relation. For the fixed mineralogical composition of Cpx50Pl50, the electrical conductivities of the samples significantly increased with the rise of temperature, but slightly decreased with increasing pressure. Furthermore, the activation energy and activation volume were determined as 1.06 ± 0.12 eV and 6.00 ± 2.00 cm3/mole, respectively. As for the various mineralogical compositions of dry gabbro, the electrical conductivities of the samples increased with the rise of volume percentage of clinopyroxene (Cpx) at 1.0 GPa. It is proposed that the main conduction mechanism is the small polaron, owing to the positive relation between the electrical conductivity and the iron content in samples. On the basis of these obtained conductivity results, laboratory-based electrical conductivity–depth profiles for the hot-pressed sintering gabbro with various mineralogical proportions and temperature gradients were successfully established. In conclusion, although the present acquired electrical conductivity results on the dry hot-pressed sintering gabbro with various mineralogical proportions cannot explain the high conductivity anomaly in the oceanic crust and West African craton, it can provide one reasonable constraint on the mineralogical composition in these representative gabbro-rich regions. Full article
(This article belongs to the Special Issue High-Pressure Physical and Chemical Behaviors of Minerals and Rocks)
Show Figures

Figure 1

23 pages, 4724 KiB  
Review
Some Remarks on the Electrical Conductivity of Hydrous Silicate Minerals in the Earth Crust, Upper Mantle and Subduction Zone at High Temperatures and High Pressures
by Haiying Hu, Lidong Dai, Wenqing Sun, Yukai Zhuang, Kaixiang Liu, Linfei Yang, Chang Pu, Meiling Hong, Mengqi Wang, Ziming Hu, Chenxin Jing, Chuang Li, Chuanyu Yin and Sivaprakash Paramasivam
Minerals 2022, 12(2), 161; https://doi.org/10.3390/min12020161 - 28 Jan 2022
Cited by 8 | Viewed by 3620
Abstract
As a dominant water carrier, hydrous silicate minerals and rocks are widespread throughout the representative regions of the mid-lower crust, upper mantle, and subduction zone of the deep Earth interior. Owing to the high sensitivity of electrical conductivity on the variation of water [...] Read more.
As a dominant water carrier, hydrous silicate minerals and rocks are widespread throughout the representative regions of the mid-lower crust, upper mantle, and subduction zone of the deep Earth interior. Owing to the high sensitivity of electrical conductivity on the variation of water content, high-pressure laboratory-based electrical characterizations for hydrous silicate minerals and rocks have been paid more attention to by many researchers. With the improvement and development of experimental technique and measurement method for electrical conductivity, there are many related results to be reported on the electrical conductivity of hydrous silicate minerals and rocks at high-temperature and high-pressure conditions in the last several years. In this review paper, we concentrated on some recently reported electrical conductivity results for four typical hydrous silicate minerals (e.g., hydrous Ti-bearing olivine, epidote, amphibole, and kaolinite) investigated by the multi-anvil press and diamond anvil cell under conditions of high temperatures and pressures. Particularly, four potential influence factors including titanium-bearing content, dehydration effect, oxidation−dehydrogenation effect, and structural phase transition on the high-pressure electrical conductivity of these hydrous silicate minerals are deeply explored. Finally, some comprehensive remarks on the possible future research aspects are discussed in detail. Full article
(This article belongs to the Special Issue High-Pressure Physical and Chemical Behaviors of Minerals and Rocks)
Show Figures

Figure 1

10 pages, 2227 KiB  
Article
Single-Crystal Structure of HP-Sc2TeO6 Prepared by High-Pressure/High-Temperature Synthesis
by Raimund Ziegler, Martina Tribus, Clivia Hejny and Gunter Heymann
Crystals 2021, 11(12), 1554; https://doi.org/10.3390/cryst11121554 - 13 Dec 2021
Cited by 2 | Viewed by 2675
Abstract
The first high-pressure scandium tellurate HP-Sc2TeO6 was synthesized from an NP-Sc2TeO6 normal-pressure precursor at 12 GPa and 1173 K using a multianvil apparatus (1000 t press, Walker-type module). The compound crystallizes in the monoclinic space group P [...] Read more.
The first high-pressure scandium tellurate HP-Sc2TeO6 was synthesized from an NP-Sc2TeO6 normal-pressure precursor at 12 GPa and 1173 K using a multianvil apparatus (1000 t press, Walker-type module). The compound crystallizes in the monoclinic space group P2/c (no. 13) with a = 729.43(3), b = 512.52(2), c = 1095.02(4) pm and β = 103.88(1)°. The structure was refined from X-ray single-crystal diffractometer data: R1 = 0.0261, wR2 = 0.0344, 568 F2 values and 84 variables. HP-Sc2TeO6 is isostructural to Yb2WO6 and is built up from TeO6 octahedra, typical for tellurate(VI) compounds. During synthesis, a reconstructive transition from P321 (normal-pressure modification) to P2/c (high-pressure modification) takes place and the scandium–oxygen distances as well as the coordination number of scandium increase. However, the coordination sphere around the Te6+ cations gets only slightly distorted. High-temperature powder XRD investigations revealed a back-transformation of HP-Sc2TeO6 to the ambient-pressure modification above 973 K. Full article
(This article belongs to the Special Issue Solid State Chemistry: Memorial Issue for Professor Emilio Morán)
Show Figures

Graphical abstract

13 pages, 3243 KiB  
Article
Experimental Modeling of Ankerite–Pyrite Interaction under Lithospheric Mantle P–T Parameters: Implications for Graphite Formation as a Result of Ankerite Sulfidation
by Yuliya V. Bataleva, Ivan D. Novoselov, Yuri M. Borzdov, Olga V. Furman and Yuri N. Palyanov
Minerals 2021, 11(11), 1267; https://doi.org/10.3390/min11111267 - 14 Nov 2021
Cited by 3 | Viewed by 2463
Abstract
Experimental modeling of ankerite–pyrite interaction was carried out on a multi-anvil high-pressure apparatus of a “split sphere” type (6.3 GPa, 1050–1550 °C, 20–60 h). At T ≤ 1250 °C, the formation of pyrrhotite, dolomite, magnesite, and metastable graphite was established. At higher temperatures, [...] Read more.
Experimental modeling of ankerite–pyrite interaction was carried out on a multi-anvil high-pressure apparatus of a “split sphere” type (6.3 GPa, 1050–1550 °C, 20–60 h). At T ≤ 1250 °C, the formation of pyrrhotite, dolomite, magnesite, and metastable graphite was established. At higher temperatures, the generation of two immiscible melts (carbonate and sulfide ones), as well as graphite crystallization and diamond growth on seeds, occurred. It was established that the decrease in iron concentration in ankerite occurs by extraction of iron by sulfide and leads to the formation of pyrrhotite or sulfide melt, with corresponding ankerite breakdown into dolomite and magnesite. Further redox interaction of Ca,Mg,Fe carbonates with pyrrhotite (or between carbonate and sulfide melts) results in the carbonate reduction to C0 and metastable graphite formation (±diamond growth on seeds). It was established that the ankerite–pyrite interaction, which can occur in a downgoing slab, involves ankerite sulfidation that triggers further graphite-forming redox reactions and can be one of the scenarios of the elemental carbon formation under subduction settings. Full article
Show Figures

Figure 1

27 pages, 4010 KiB  
Article
Phase Stability of Iron Nitride Fe4N at High Pressure—Pressure-Dependent Evolution of Phase Equilibria in the Fe–N System
by Marius Holger Wetzel, Tina Trixy Rabending, Martin Friák, Monika Všianská, Mojmír Šob and Andreas Leineweber
Materials 2021, 14(14), 3963; https://doi.org/10.3390/ma14143963 - 15 Jul 2021
Cited by 11 | Viewed by 3716
Abstract
Although the general instability of the iron nitride γ′-Fe4N with respect to other phases at high pressure is well established, the actual type of phase transitions and equilibrium conditions of their occurrence are, as of yet, poorly investigated. In the present [...] Read more.
Although the general instability of the iron nitride γ′-Fe4N with respect to other phases at high pressure is well established, the actual type of phase transitions and equilibrium conditions of their occurrence are, as of yet, poorly investigated. In the present study, samples of γ′-Fe4N and mixtures of α Fe and γ′-Fe4N powders have been heat-treated at temperatures between 250 and 1000 °C and pressures between 2 and 8 GPa in a multi-anvil press, in order to investigate phase equilibria involving the γ′ phase. Samples heat-treated at high-pressure conditions, were quenched, subsequently decompressed, and then analysed ex situ. Microstructure analysis is used to derive implications on the phase transformations during the heat treatments. Further, it is confirmed that the Fe–N phases in the target composition range are quenchable. Thus, phase proportions and chemical composition of the phases, determined from ex situ X-ray diffraction data, allowed conclusions about the phase equilibria at high-pressure conditions. Further, evidence for the low-temperature eutectoid decomposition γα+ε is presented for the first time. From the observed equilibria, a PT projection of the univariant equilibria in the Fe-rich portion of the Fe–N system is derived, which features a quadruple point at 5 GPa and 375 °C, above which γ′-Fe4N is thermodynamically unstable. The experimental work is supplemented by ab initio calculations in order to discuss the relative phase stability and energy landscape in the Fe–N system, from the ground state to conditions accessible in the multi-anvil experiments. It is concluded that γ′-Fe4N, which is unstable with respect to other phases at 0 K (at any pressure), has to be entropically stabilised in order to occur as stable phase in the system. In view of the frequently reported metastable retention of the γ′ phase during room temperature compression experiments, energetic and kinetic aspects of the polymorphic transition γε are discussed. Full article
(This article belongs to the Special Issue Materials under Pressure)
Show Figures

Figure 1

21 pages, 6448 KiB  
Article
Utilizing Rare-Earth-Elements Luminescence and Vibrational-Spectroscopies to Follow High Pressure Densification of Soda–Lime Glass
by Ferdinand Werr, Weniamin Yusim, Michael Bergler, Svyatoslav Shcheka, Armin Lenhart and Dominique de Ligny
Materials 2021, 14(8), 1831; https://doi.org/10.3390/ma14081831 - 7 Apr 2021
Cited by 3 | Viewed by 2249
Abstract
A new series of soda–lime glass naturally doped with Nd and doped with 0.2 wt% of Eu2O3 was densified in a multi-anvil press up to 21 GPa. The densities of the millimetric samples were precisely measured using a floatation method [...] Read more.
A new series of soda–lime glass naturally doped with Nd and doped with 0.2 wt% of Eu2O3 was densified in a multi-anvil press up to 21 GPa. The densities of the millimetric samples were precisely measured using a floatation method in a heavy liquid made with sodium polytungstate. The obtained densification curve is significantly different from the calibration previously reported, reaching a maximum densification saturation of 3.55 ± 0.14%. This difference could be due to better hydrostatic conditions realized in this new study. The densified samples were characterized using Raman and Brillouin spectroscopy, as well as the emission of both Eu3+ and Nd3+. The evolution of the spectra was evaluated using integration methods to reduce error bars. The relative precision of the calibration curves is discussed. The evolution of Nd3+ transition was found to be the most sensitive calibration. Linear dependence with the density was found for all observables, with exception for Brillouin spectroscopy showing a divergent behavior. The Brillouin shift shows an unreported minimum for a densification ~0.4%. Full article
Show Figures

Figure 1

Back to TopTop