Sound Velocities in Vanadium Reveal Complex Elastic Behavior at High Pressures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GPa | Gigapascal |
P | Pressure |
T | Temperature |
BCC | Body Centered Cubic |
DAC | Diamond Anvil Cell |
DFT | Density Functional Theory |
LVP | Large Volume Press |
XRD | X-ray Diffraction |
LDA | Local-density approximation |
GGA | Generalized gradient approximation |
VP | P-wave velocity |
VS | S-wave velocity |
WC | Tungsten Carbide |
MHz | Megahertz |
K | Bulk modulus |
G | Shear modulus |
E | Young’s modulus |
ν | Poisson’s ratio |
ρ | Density |
TP | Travel time of the P-wave |
TS | Travel time of the S-wave |
IXS | Inelastic X-ray scattering |
SG | Steinberg-Guinan model |
VISAR | Velocity interferometer system for any reflector |
VASP | Vienna Ab initio Simulation Package |
PAW | Projector-Augmented-Wave |
CALPHAD | Computer Coupling of Phase Diagrams and Thermochemistry |
MSG | Modified Steinberg-Guinan model |
CIS | Compression Induced Softening |
References
- Polyak, D.E. Vanadium Report; U.S. Geological Survey: Reston, VA, USA, 2013. [Google Scholar]
- Kelley, K.D.; Scott, C.; Polyak, D.E.; Kimball, B.E. Vanadium; U.S. Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Suzuki, N.; Otani, M. Theoretical Study on the Lattice Dynamics and Electron–Phonon Interaction of Vanadium under High Pressures. J. Phys. Condens. Matter 2002, 14, 10869. [Google Scholar] [CrossRef]
- Landa, A.; Klepeis, J.; Söderlind, P.; Naumov, I.; Velikokhatnyi, O.; Vitos, L.; Ruban, A. Ab Initio Calculations of Elastic Constants of the Bcc V–Nb System at High Pressures. J. Phys. Chem. Solids 2006, 67, 2056–2064. [Google Scholar] [CrossRef]
- Landa, A.; Klepeis, J.; Söderlind, P.; Naumov, I.; Velikokhatnyi, O.; Vitos, L.; Ruban, A. Fermi Surface Nesting and Pre-Martensitic Softening in V and Nb at High Pressures. J. Phys. Condens. Matter 2006, 18, 5079. [Google Scholar] [CrossRef]
- Cynn, H.; Yoo, C.-S. Equation of State of Tantalum to 174 GPa. Phys. Rev. B 1999, 59, 8526–8529. [Google Scholar] [CrossRef]
- Ding, Y.; Ahuja, R.; Shu, J.; Chow, P.; Luo, W.; Mao, H. Structural Phase Transition of Vanadium at 69 GPa. Phys. Rev. Lett. 2007, 98, 085502. [Google Scholar] [CrossRef]
- Jenei, Z.; Liermann, H.P.; Cynn, H.; Klepeis, J.-H.P.; Baer, B.J.; Evans, W.J. Structural Phase Transition in Vanadium at High Pressure and High Temperature: Influence of Nonhydrostatic Conditions. Phys. Rev. B 2011, 83, 054101. [Google Scholar] [CrossRef]
- Antonangeli, D.; Farber, D.L.; Bosak, A.; Aracne, C.M.; Ruddle, D.G.; Krisch, M. Phonon Triggered Rhombohedral Lattice Distortion in Vanadium at High Pressure. Sci. Rep. 2016, 6, 31887. [Google Scholar] [CrossRef]
- Bosak, A.; Hoesch, M.; Antonangeli, D.; Farber, D.L.; Fischer, I.; Krisch, M. Lattice Dynamics of Vanadium: Inelastic X-Ray Scattering Measurements. Phys. Rev. B 2008, 78, 020301. [Google Scholar] [CrossRef]
- Koci, L.; Ma, Y.; Oganov, A.R.; Souvatzis, P.; Ahuja, R. Elasticity of the Superconducting Metals V, Nb, Ta, Mo, and W at High Pressure. Phys. Rev. B 2008, 77, 214101. [Google Scholar] [CrossRef]
- Lee, B.; Rudd, R.E.; Klepeis, J.E.; Söderlind, P.; Landa, A. Theoretical Confirmation of a High-Pressure Rhombohedral Phase in Vanadium Metal. Phys. Rev. B 2007, 75, 180101. [Google Scholar] [CrossRef]
- Lee, B.; Rudd, R.E.; Klepeis, J.E.; Becker, R. Elastic Constants and Volume Changes Associated with Two High-Pressure Rhombohedral Phase Transformations in Vanadium. Phys. Rev. B 2008, 77, 134105. [Google Scholar] [CrossRef]
- Stevenson, M.G.; Pace, E.J.; Storm, C.V.; Finnegan, S.E.; Garbarino, G.; Wilson, C.W.; McGonegle, D.; Macleod, S.G.; McMahon, M.I. Pressure-Induced Bcc-Rhombohedral Phase Transition in Vanadium Metal. Phys. Rev. B 2021, 103, 134103. [Google Scholar] [CrossRef]
- Wang, H.; Gan, Y.-C.; Chen, X.-R.; Wang, Y.-X.; Geng, H.Y. Modified Steinberg–Guinan Elasticity Model to Describe Softening–Hardening Dual Anomaly in Vanadium. J. Appl. Phys. 2024, 135, 115901. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Zhou, X.M.; Tan, Y.; Hao, L.; Yu, Y.Y.; Dai, C.D.; Jin, K.; Wu, Q.; Jing, Q.M.; et al. Evidence for Mechanical Softening-Hardening Dual Anomaly in Transition Metals from Shock-Compressed Vanadium. Phys. Rev. B 2021, 104, 134102. [Google Scholar] [CrossRef]
- Gathers, G.R. Hugoniot Measurements for Vanadium. J. Appl. Phys. 1986, 59, 3291–3293. [Google Scholar] [CrossRef]
- Dai, C.; Jin, X.; Zhou, X.; Liu, J.; Hu, J. Sound Velocity Variations and Melting of Vanadium under Shock Compression. J. Phys. Appl. Phys. 2001, 34, 3064. [Google Scholar] [CrossRef]
- Yu, Y.; Tan, Y.; Dai, C.; Li, X.; Li, Y.; Wu, Q.; Tan, H. Phase Transition and Strength of Vanadium under Shock Compression up to 88 GPa. Appl. Phys. Lett. 2014, 105, 201910. [Google Scholar] [CrossRef]
- Li, B.; Liebermann, R.C. Study of the Earth’s Interior Using Measurements of Sound Velocities in Minerals by Ultrasonic Interferometry. Phys. Earth Planet. Inter. 2014, 233, 135–153. [Google Scholar] [CrossRef]
- Wang, X.; Chen, T.; Qi, X.; Zou, Y.; Kung, J.; Yu, T.; Wang, Y.; Liebermann, R.C.; Li, B. Acoustic Travel Time Gauges for In-Situ Determination of Pressure and Temperature in Multi-Anvil Apparatus. J. Appl. Phys. 2015, 118, 065901. [Google Scholar] [CrossRef]
- Papadakis, E.P. Ultrasonic Phase Velocity by the Pulse-Echo-Overlap Method Incorporating Diffraction Phase Corrections. J. Acoust. Soc. Am. 1967, 42, 1045–1051. [Google Scholar] [CrossRef]
- Li, B.; Chen, K.; Kung, J.; Liebermann, R.C.; Weidner, D.J. Sound Velocity Measurement Using Transfer Function Method. J. Phys. Condens. Matter 2002, 14, 11337. [Google Scholar] [CrossRef]
- Cook, R.K. Variation of Elastic Constants and Static Strains with Hydrostatic Pressure: A Method for Calculation from Ultrasonic Measurements. J. Acoust. Soc. Am. 1957, 29, 445–449. [Google Scholar] [CrossRef]
- Errandonea, D.; MacLeod, S.G.; Burakovsky, L.; Santamaria-Perez, D.; Proctor, J.E.; Cynn, H.; Mezouar, M. Melting Curve and Phase Diagram of Vanadium under High-Pressure and High-Temperature Conditions. Phys. Rev. B 2019, 100, 094111. [Google Scholar] [CrossRef]
- Delaire, O.; Kresch, M.; Muñoz, J.A.; Lucas, M.S.; Lin, J.Y.Y.; Fultz, B. Electron-Phonon Interactions and High-Temperature Thermodynamics of Vanadium and Its Alloys. Phys. Rev. B 2008, 77, 214112. [Google Scholar] [CrossRef]
- Ming, L.; Manghnani, M.H. Isothermal Compression of Bcc Transition Metals to 100 Kbar. J. Appl. Phys. 1978, 49, 208–212. [Google Scholar] [CrossRef]
- Takemura, K. Equation of State of V and Nb under Truly Hydrostatic Conditions. In Proceedings of the 17th AIRAPT Honolulu Conference, Honolulu, HI, USA, 25–30 July 1999. [Google Scholar]
- Nakamoto, Y.; Takemura, K.; Ishizuka, M.; Shimizu, K.; Kikegawa, T. Equation of State for Vanadium Under Hydrostatic Conditions. In Proceedings of the Joint 20th AIRAPT-43rd EHPRG Conference on Science and Technology of High Pressure, Karlsruhe, Germany, 27 June–1 July 2005; p. 120. [Google Scholar]
- Qi, X.; Wang, S.; Chen, S.; Cai, N.; Li, B. Anomalous Elastic Behavior of Tantalum at High Pressures: Experimental and Theoretical Studies. Int. J. Refract. Met. Hard Mater. 2021, 101, 105691. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Davies, G.F.; Dziewonski, A.M. Homogeneity and Constitution of the Earth’s Lower Mantle and Outer Core. Phys. Earth Planet. Inter. 1975, 10, 336–343. [Google Scholar] [CrossRef]
- Katahara, K.W.; Manghnani, M.H.; Fisher, E.S. Pressure Derivatives of the Elastic Moduli of BCC Ti-V-Cr, Nb-Mo and Ta-W Alloys. J. Phys. F Met. Phys. 1979, 9, 773. [Google Scholar] [CrossRef]
- Bolef, D.I.; Smith, R.E.; Miller, J.G. Elastic Properties of Vanadium. I. Temperature Dependence of the Elastic Constants and the Thermal Expansion. Phys. Rev. B 1971, 3, 4100–4108. [Google Scholar] [CrossRef]
- Karbasi, A.; Saxena, S.; Hrubiak, R. The Thermodynamics of Several Elements at High Pressure. Calphad 2011, 35, 72–81. [Google Scholar] [CrossRef]
- Wang, Y.X.; Geng, H.Y.; Wu, Q.; Chen, X.R. Orbital Localization Error of Density Functional Theory in Shear Properties of Vanadium and Niobium. J. Chem. Phys. 2020, 152, 024118. [Google Scholar] [CrossRef] [PubMed]
- Crichton, W.A.; Guignard, J.; Bailey, E.; Dobson, D.P.; Hunt, S.A.; Thomson, A.R. High-Temperature Equation of State of Vanadium. High Press. Res. 2016, 36, 16–22. [Google Scholar] [CrossRef]
- Mcqueen, R.G.; Marsh, S.P.; Taylor, J.W.; Fritz, J.N.; Carter, W.J. Chapter VII—The equation of state of solids from shock wave studies. In High-Velocity Impact Phenomena; Kinslow, R., Ed.; Academic Press: Cambridge, MA, USA, 1970; pp. 293–417. ISBN 978-0-12-408950-1. [Google Scholar]
- Martin, M.; Shen, T.; Thadhani, N.N. Instrumented Anvil-on-Rod Impact Experiments for Validating Constitutive Strength Model for Simulating Transient Dynamic Deformation Response of Metals. Mater. Sci. Eng. A 2008, 494, 416–424. [Google Scholar] [CrossRef]
- Steinberg, D.J.; Cochran, S.G.; Guinan, M.W. A Constitutive Model for Metals Applicable at High-strain Rate. J. Appl. Phys. 1980, 51, 1498–1504. [Google Scholar] [CrossRef]
- Steinberg, D.J. Equation of State and Strength Properties of Selected Materials; Lawrence Livermore National Lab: Livermore, CA, USA, 1991. [Google Scholar]
- Foster, J.M.; Comley, A.J.; Case, G.S.; Avraam, P.; Rothman, S.D.; Higginbotham, A.; Floyd, E.K.R.; Gumbrell, E.T.; Luis, J.J.D.; McGonegle, D.; et al. X-Ray Diffraction Measurements of Plasticity in Shock-Compressed Vanadium in the Region of 10–70 GPa. J. Appl. Phys. 2017, 122, 025117. [Google Scholar] [CrossRef]
- Rudd, R.E.; Klepeis, J.E. Multiphase Improved Steinberg–Guinan Model for Vanadium. J. Appl. Phys. 2008, 104, 093528. [Google Scholar] [CrossRef]
Pressure (GPa) | 2 TP (μs) | 2 TS (μs) | L (mm) * | ρ (g/cm3) | VP (km/s) | VS (km/s) | K (GPa) | G (GPa) | E (GPa) | ν |
---|---|---|---|---|---|---|---|---|---|---|
0.5 (2) | 0.3420 (2) | 0.7346 (2) | 1.019 (4) | 6.09 (2) | 5.96 (3) | 2.77 (1) | 153.7 (3.2) | 46.9 (6) | 127.6 (4.0) | 0.362 (14) |
1.0 (2) | 0.3392 (2) | 0.7318 (2) | 1.018 (4) | 6.11 (2) | 6.00 (3) | 2.78 (1) | 157.0 (3.3) | 47.3 (6) | 128.9 (4.0) | 0.363 (14) |
2.0 (2) | 0.3368 (2) | 0.7250 (2) | 1.016 (4) | 6.15 (2) | 6.03 (3) | 2.80 (1) | 159.3 (3.4) | 48.3 (6) | 131.5 (4.1) | 0.362 (14) |
2.6 (2) | 0.3348 (2) | 0.7208 (2) | 1.014 (4) | 6.17 (2) | 6.06 (3) | 2.81 (1) | 161.5 (3.4) | 48.9 (6) | 133.2 (4.2) | 0.362 (14) |
3.4 (2) | 0.3334 (2) | 0.7150 (2) | 1.013 (4) | 6.21 (2) | 6.07 (3) | 2.83 (1) | 162.6 (3.5) | 49.8 (6) | 135.5 (4.2) | 0.361 (14) |
4.5 (2) | 0.3312 (2) | 0.7112 (2) | 1.010 (4) | 6.25 (2) | 6.10 (3) | 2.84 (1) | 165.3 (3.5) | 50.4 (6) | 137.3 (4.3) | 0.362 (14) |
5.5 (2) | 0.3288 (2) | 0.7100 (2) | 1.008 (4) | 6.28 (2) | 6.13 (3) | 2.84 (1) | 168.8 (3.6) | 50.7 (6) | 138.2 (4.3) | 0.363 (14) |
6.2 (2) | 0.3270 (2) | 0.7094 (2) | 1.007 (4) | 6.31 (2) | 6.16 (3) | 2.84 (1) | 171.5 (3.6) | 50.9 (6) | 138.8 (4.3) | 0.365 (14) |
6.9 (2) | 0.3264 (2) | 0.7084 (2) | 1.005 (4) | 6.34 (2) | 6.16 (3) | 2.84 (1) | 172.5 (3.6) | 51.1 (6) | 139.5 (4.3) | 0.365 (14) |
7.5 (2) | 0.3252 (2) | 0.7064 (2) | 1.004 (4) | 6.36 (2) | 6.18 (3) | 2.84 (1) | 174.1 (3.7) | 51.4 (6) | 140.4 (4.4) | 0.366 (14) |
7.9 (2) | 0.3238 (2) | 0.7050 (2) | 1.003 (4) | 6.38 (2) | 6.20 (3) | 2.85 (1) | 176.0 (3.7) | 51.7 (6) | 141.2 (4.4) | 0.366 (14) |
8.5 (2) | 0.3218 (2) | 0.7018 (2) | 1.002 (4) | 6.39 (2) | 6.23 (3) | 2.86 (1) | 178.6 (3.8) | 52.2 (6) | 142.7 (4.4) | 0.367 (14) |
9.0 (2) | 0.3208 (2) | 0.7004 (2) | 1.002 (4) | 6.41 (2) | 6.24 (3) | 2.86 (1) | 180.1 (3.8) | 52.5 (6) | 143.4 (4.4) | 0.367 (14) |
9.3 (2) | 0.3186 (2) | 0.6988 (2) | 1.001 (4) | 6.43 (2) | 6.28 (3) | 2.86 (1) | 183.3 (3.8) | 52.7 (6) | 144.3 (4.5) | 0.369 (14) |
10.0 (2) | 0.3160 (2) | 0.6984 (2) | 1.000 (4) | 6.45 (2) | 6.33 (3) | 2.86 (1) | 187.7 (3.9) | 52.9 (6) | 145.0 (4.5) | 0.371 (14) |
10.3 (2) | 0.3150 (2) | 0.6976 (2) | 0.999 (4) | 6.46 (2) | 6.34 (3) | 2.86 (1) | 189.3 (3.9) | 53.0 (6) | 145.4 (4.5) | 0.372 (14) |
10.8 (2) | 0.3140 (2) | 0.6972 (2) | 0.998 (4) | 6.48 (2) | 6.36 (3) | 2.86 (1) | 191.0 (3.9) | 53.1 (6) | 145.8 (4.5) | 0.373 (14) |
11.1 (2) | 0.3130 (2) | 0.6956 (2) | 0.998 (4) | 6.49 (2) | 6.37 (3) | 2.87 (1) | 192.5 (4.0) | 53.4 (6) | 146.6 (4.5) | 0.373 (14) |
11.4 (2) | 0.3122 (2) | 0.6946 (2) | 0.997 (4) | 6.50 (2) | 6.39 (3) | 2.87 (1) | 193.7 (4.0) | 53.6 (6) | 147.1 (4.5) | 0.373 (14) |
Source | KS0 (GPa) | KT0 (GPa) | K’S0 | K’T0 | G0 (GPa) | G’0 | Notes |
---|---|---|---|---|---|---|---|
Current study | 151 (2) | 3.47 (2) | 47 (1) | 0.62 (1) | Ultrasonic LVP, 0–11.4 GPa | ||
[33] Katahara, 1979 | 155.6 | 4.27 | 47.85 † | 0.48 | Ultrasonic, 0–0.5 GPa | ||
[34] Bolef, 1971 | 157.1 | 48.1 † | Ultrasonic benchtop | ||||
[19] Yu, 2014 | 46.8 (5) | Ultrasonic benchtop | |||||
[37] Crichton, 2016 | 150.4 (6.2) | 5.5 (1.0) | LVP XRD, 0–11.5 GPa | ||||
[7] Ding, 2007 | 158 (1) | 3.9 (2) | DAC XRD, 0–155 GPa | ||||
[27] Ming and Manghnani, 1978 | 154 (5) | DAC XRD, 0–10 GPa | |||||
[29] Nakamoto, 2005 | 152.1 | 4.1 | DAC XRD, 0–224 GPa | ||||
[25] Errandonea, 2019 | 152 (4) | 5.4 (4) | DAC XRD, 0–120 GPa | ||||
[14] Stevenson, 2021 | 158.9 (1) | 3.58 (6) | DAC XRD single-Crystal, 0–154 GPa | ||||
[7] Ding, 2007 | 195 (3) | 3.5 (5) | DAC (nonhydrostatic) XRD, 0–155 GPa | ||||
[8] Jenei, 2011 | 179 (8) | 3.11 (1.23) | DAC (nonhydrostatic) XRD, 0–82 GPa | ||||
[38] McQueen, 1970 | 157 | 3.5 | Shock | ||||
[11] Koci, 2008 | 182 | 3.75 | 35.26 † | VASP: GGA and PAW, 0–400 GPa | |||
[25] Errandonea, 2019 | 143 | 4.4 | VASP QMD PBE, 0–400 GPa | ||||
[35] Karbasi, 2011 | 162 | 3.5 | CALPHAD, 0–400 GPa | ||||
[15] Wang, 2024 | 168.5 | 3.86 | 32.02 | MSG model, 0–500 GPa | |||
[4] Landa, 2006 | 183.2 | DFT, 0–600 GPa | |||||
[39] Martin, 2008 | 48.1 | 0.4906 | SG model | ||||
[39] Martin, 2008 | 47.9 | Shock, VISAR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulick, B.; Qi, X.; Wang, R.; Li, B. Sound Velocities in Vanadium Reveal Complex Elastic Behavior at High Pressures. Metals 2025, 15, 427. https://doi.org/10.3390/met15040427
Gulick B, Qi X, Wang R, Li B. Sound Velocities in Vanadium Reveal Complex Elastic Behavior at High Pressures. Metals. 2025; 15(4):427. https://doi.org/10.3390/met15040427
Chicago/Turabian StyleGulick, Brian, Xintong Qi, Ran Wang, and Baosheng Li. 2025. "Sound Velocities in Vanadium Reveal Complex Elastic Behavior at High Pressures" Metals 15, no. 4: 427. https://doi.org/10.3390/met15040427
APA StyleGulick, B., Qi, X., Wang, R., & Li, B. (2025). Sound Velocities in Vanadium Reveal Complex Elastic Behavior at High Pressures. Metals, 15(4), 427. https://doi.org/10.3390/met15040427