Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = multi-step wind speed forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4616 KiB  
Article
Temporal Convolutional Network with Attention Mechanisms for Strong Wind Early Warning in High-Speed Railway Systems
by Wei Gu, Guoyuan Yang, Hongyan Xing, Yajing Shi and Tongyuan Liu
Sustainability 2025, 17(14), 6339; https://doi.org/10.3390/su17146339 - 10 Jul 2025
Viewed by 252
Abstract
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions [...] Read more.
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions that are critical for ensuring safe train operations. Numerous WSF schemes based on deep learning have been proposed. However, accurately forecasting strong wind events remains challenging due to the complex and dynamic nature of wind. In this study, we propose a novel hybrid network architecture, MHSETCN-LSTM, for forecasting strong wind. The MHSETCN-LSTM integrates temporal convolutional networks (TCNs) and long short-term memory networks (LSTMs) to capture both short-term fluctuations and long-term trends in wind behavior. The multi-head squeeze-and-excitation (MHSE) attention mechanism dynamically recalibrates the importance of different aspects of the input sequence, allowing the model to focus on critical time steps, particularly when abrupt wind events occur. In addition to wind speed, we introduce wind direction (WD) to characterize wind behavior due to its impact on the aerodynamic forces acting on trains. To maintain the periodicity of WD, we employ a triangular transform to predict the sine and cosine values of WD, improving the reliability of predictions. Massive experiments are conducted to evaluate the effectiveness of the proposed method based on real-world wind data collected from sensors along the Beijing–Baotou railway. Experimental results demonstrated that our model outperforms state-of-the-art solutions for WSF, achieving a mean-squared error (MSE) of 0.0393, a root-mean-squared error (RMSE) of 0.1982, and a coefficient of determination (R2) of 99.59%. These experimental results validate the efficacy of our proposed model in enhancing the resilience and sustainability of railway infrastructure.Furthermore, the model can be utilized in other wind-sensitive sectors, such as highways, ports, and offshore wind operations. This will further promote the achievement of Sustainable Development Goal 9. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

24 pages, 5390 KiB  
Article
Multifeature-Driven Multistep Wind Speed Forecasting Using NARXR and Modified VMD Approaches
by Rose Ellen Macabiog and Jennifer Dela Cruz
Forecasting 2025, 7(1), 12; https://doi.org/10.3390/forecast7010012 - 5 Mar 2025
Cited by 1 | Viewed by 1683
Abstract
The global demand for clean and sustainable energy has driven the rapid growth of wind power. However, wind farm managers face the challenge of forecasting wind power for efficient power generation and management. Accurate wind speed forecasting (WSF) is vital for predicting wind [...] Read more.
The global demand for clean and sustainable energy has driven the rapid growth of wind power. However, wind farm managers face the challenge of forecasting wind power for efficient power generation and management. Accurate wind speed forecasting (WSF) is vital for predicting wind power; yet, the variability and intermittency of the wind make forecasting wind speeds difficult. Consequently, WSF remains a challenging area of wind research, driving continuous improvement in the field. This study aimed to enhance the optimization of multifeature-driven short multistep WSF. The primary contributions of this research include the integration of ReliefF feature selection (RFFS), a novel approach to variational mode decomposition for multifeature decomposition (NAMD), and a recursive non-linear autoregressive with exogenous inputs (NARXR) neural network. In particular, RFFS aids in identifying meteorological features that significantly influence wind speed variations, thus ensuring the selection of the most impactful features; NAMD improves the accuracy of neural network training on historical data; and NARXR enhances the overall robustness and stability of the wind speed forecasting results. The experimental results demonstrate that the predictive accuracy of the proposed NAMD–NARXR hybrid model surpasses that of the models used for comparison, as evidenced by the forecasting error and statistical metrics. Integrating the strengths of RFFS, NAMD, and NARXR enhanced the forecasting performance of the proposed NAMD–NARXR model, highlighting its potential suitability for applications requiring multifeature-driven short-term multistep WSF. Full article
Show Figures

Figure 1

12 pages, 3909 KiB  
Article
Forecasting of Tropical Storm Wind Speeds Based on Multi-Step Differencing and Artificial Neural Network
by Tianyou Tao, Peng Deng, Fan Xu and Yichao Xu
J. Mar. Sci. Eng. 2025, 13(2), 372; https://doi.org/10.3390/jmse13020372 - 17 Feb 2025
Viewed by 706
Abstract
The tropical storm is a severe wind disaster that frequently attacks coastal structures and infrastructure facilities. Accurate wind speed forecasting of tropical storms, based on real-time measured data, has become a critical issue in the engineering community. Utilizing the measured data of typical [...] Read more.
The tropical storm is a severe wind disaster that frequently attacks coastal structures and infrastructure facilities. Accurate wind speed forecasting of tropical storms, based on real-time measured data, has become a critical issue in the engineering community. Utilizing the measured data of typical tropical storms at Sutong Bridge, this study develops a new approach for wind speed forecasting, which integrates multi-step differencing with an artificial neural network-based model. Given the non-stationary nature of tropical storm wind speeds, a multi-step differencing operation is initially applied to the wind speed time series. Subsequently, multi-step predictions of the differenced wind speeds are made for future time points. Finally, an inverse differencing operation is employed to reconstruct the wind speeds to be forecasted. The forecasting errors associated with single-step differencing, multi-step differencing, and no differencing are compared to evaluate their respective performances. To validate the generalizability of the developed approach, it is further used in the wind speed forecasting of another typhoon wind speed dataset. The satisfactory performance demonstrates the effectiveness of the developed approach for multi-step wind speed forecasting of tropical storms. Full article
Show Figures

Figure 1

28 pages, 24642 KiB  
Article
Prediction for Coastal Wind Speed Based on Improved Variational Mode Decomposition and Recurrent Neural Network
by Muyuan Du, Zhimeng Zhang and Chunning Ji
Energies 2025, 18(3), 542; https://doi.org/10.3390/en18030542 - 24 Jan 2025
Cited by 1 | Viewed by 811
Abstract
Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw wind speed data often suffer from noise and missing values, which can undermine the prediction performance. This study proposes a systematic [...] Read more.
Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw wind speed data often suffer from noise and missing values, which can undermine the prediction performance. This study proposes a systematic framework, termed VMD-RUN-Seq2Seq-Attention, for noise reduction, outlier detection, and wind speed prediction by integrating Variational Mode Decomposition (VMD), the Runge–Kutta optimization algorithm (RUN), and a Sequence-to-Sequence model with an Attention mechanism (Seq2Seq-Attention). Using wind speed data from the Shidao, Xiaomaidao, and Lianyungang stations as case studies, a fitness function based on the Pearson correlation coefficient was developed to optimize the VMD mode count and penalty factor. A comparative analysis of different Intrinsic Mode Function (IMF) selection ratios revealed that selecting a 50% IMF ratio effectively retains the intrinsic information of the raw data while minimizing noise. For outlier detection, statistical methods were employed, followed by a comparative evaluation of three models—LSTM, LSTM-KAN, and Seq2Seq-Attention—for multi-step wind speed forecasting over horizons ranging from 1 to 12 h. The results consistently showed that the Seq2Seq-Attention model achieved superior predictive accuracy across all forecast horizons, with the correlation coefficient of its prediction results greater than 0.9 in all cases. The proposed VMD-RUN-Seq2Seq-Attention framework outperformed other methods in the denoising, data cleansing, and reconstruction of the original wind speed dataset, with a maximum improvement of 21% in accuracy, producing highly accurate and reliable results. This approach offers a robust methodology for improving data quality and enhancing wind speed forecasting accuracy in coastal environments. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

25 pages, 9369 KiB  
Article
Multistep Forecasting Method for Offshore Wind Turbine Power Based on Multi-Timescale Input and Improved Transformer
by Anping Wan, Zhipeng Gong, Chao Wei, Khalil AL-Bukhaiti, Yunsong Ji, Shidong Ma and Fareng Yao
J. Mar. Sci. Eng. 2024, 12(6), 925; https://doi.org/10.3390/jmse12060925 - 31 May 2024
Cited by 4 | Viewed by 1559
Abstract
Wind energy is highly volatile, and large-scale wind power grid integration significantly impacts grid stability. Accurate forecasting of wind turbine power can improve wind power consumption and ensure the economy of the power grid. This paper proposes a multistep forecasting method for offshore [...] Read more.
Wind energy is highly volatile, and large-scale wind power grid integration significantly impacts grid stability. Accurate forecasting of wind turbine power can improve wind power consumption and ensure the economy of the power grid. This paper proposes a multistep forecasting method for offshore wind turbine power based on a multi-timescale input and an improved transformer. First, the wind speed sequence is decomposed by the VMD method to extract adequate timing information and remove the noise, after which the decomposition signals are merged with the rest of the timing features, and the dataset is split according to different timescales. A GRU receives the short-timescale inputs, and the Improved Transformer captures the timing relationship of the long-timescale inputs. Finally, a CNN is used to extract the information of each time point at the output of each branch, and the fully connected layer outputs multistep forecasting results. Experiments were conducted on operation data from four wind turbines located within the offshore wind farm but not near the edge. The results show that the proposed method achieved average errors of 0.0522 in MAE, 0.0084 in MSE, and 0.0907 in RMSE on a four-step forecast. This outperformed comparison methods LSTM, CNN-LSTM, LSTM-Attention, and Informer. The proposed method demonstrates superior forecasting performance and accuracy for multistep offshore wind turbine power forecasting. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 5883 KiB  
Article
Wind-Speed Multi-Step Forecasting Based on Variational Mode Decomposition, Temporal Convolutional Network, and Transformer Model
by Shengcai Zhang, Changsheng Zhu and Xiuting Guo
Energies 2024, 17(9), 1996; https://doi.org/10.3390/en17091996 - 23 Apr 2024
Cited by 3 | Viewed by 2162
Abstract
Reliable and accurate wind-speed forecasts significantly impact the efficiency of wind power utilization and the safety of power systems. In addressing the performance enhancement of transformer models in short-term wind-speed forecasting, a multi-step prediction model based on variational mode decomposition (VMD), temporal convolutional [...] Read more.
Reliable and accurate wind-speed forecasts significantly impact the efficiency of wind power utilization and the safety of power systems. In addressing the performance enhancement of transformer models in short-term wind-speed forecasting, a multi-step prediction model based on variational mode decomposition (VMD), temporal convolutional network (TCN), and a transformer is proposed. Initially, the Dung Beetle Optimizer (DBO) is utilized to optimize VMD for decomposing non-stationary wind-speed series data. Subsequently, the TCN is used to extract features from the input sequences. Finally, the processed data are fed into the transformer model for prediction. The effectiveness of this model is validated by comparison with six other prediction models across three datasets, demonstrating its superior accuracy in short-term wind-speed forecasting. Experimental findings from three distinct datasets reveal that the developed model achieves an average improvement of 52.1% for R2. To the best of our knowledge, this places our model at the leading edge of wind-speed prediction for 8 h and 12 h forecasts, demonstrating MSEs of 1.003 and 0.895, MAEs of 0.754 and 0.665, and RMSEs of 1.001 and 0.946, respectively. Therefore, this research offers significant contributions through a new framework and demonstrates the utility of the transformer in effectively predicting short-term wind speed. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 6696 KiB  
Article
Short-Term Marine Wind Speed Forecasting Based on Dynamic Graph Embedding and Spatiotemporal Information
by Dibo Dong, Shangwei Wang, Qiaoying Guo, Yiting Ding, Xing Li and Zicheng You
J. Mar. Sci. Eng. 2024, 12(3), 502; https://doi.org/10.3390/jmse12030502 - 18 Mar 2024
Cited by 4 | Viewed by 1827
Abstract
Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph embedding-based graph neural network—long short-term memory joint framework (DGE-GAT-LSTM) to estimate wind speed [...] Read more.
Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph embedding-based graph neural network—long short-term memory joint framework (DGE-GAT-LSTM) to estimate wind speed at numerous stations by considering their spatio-temporal information properties. To begin, the buoys that are pertinent to the target station are chosen based on their geographic position. Then, the local graph structures connecting the stations are represented using cosine similarity at each time interval. Subsequently, the graph neural network captures intricate spatial characteristics, while the LSTM module acquires knowledge of temporal interdependence. The graph neural network and LSTM module are sequentially interconnected to collectively capture spatio-temporal correlations. Ultimately, the multi-step prediction outcomes are produced in a sequential way, where each step relies on the previous predictions. The empirical data are derived from direct measurements made by NDBC buoys. The results indicate that the suggested method achieves a mean absolute error reduction ranging from 1% to 36% when compared to other benchmark methods. This improvement in accuracy is statistically significant. This approach effectively addresses the challenges of inadequate information integration and the complexity of modeling temporal correlations in the forecast of ocean wind speed. It offers valuable insights for optimizing the selection of offshore wind farm locations and enhancing operational and management capabilities. Full article
Show Figures

Figure 1

21 pages, 4936 KiB  
Article
Research on a Deep Ensemble Learning Model for the Ultra-Short-Term Probabilistic Prediction of Wind Power
by Yan Zhou, Fuzhen Wei, Kaiyang Kuang and Rabea Jamil Mahfoud
Electronics 2024, 13(3), 475; https://doi.org/10.3390/electronics13030475 - 23 Jan 2024
Cited by 3 | Viewed by 1810
Abstract
An accurate method for predicting wind power is crucial in effectively mitigating wind energy fluctuations and ensuring a stable power supply. Nevertheless, the inadequacy of the stability of wind energy severely hampers the consistent functioning of the power grid and the reliable provision [...] Read more.
An accurate method for predicting wind power is crucial in effectively mitigating wind energy fluctuations and ensuring a stable power supply. Nevertheless, the inadequacy of the stability of wind energy severely hampers the consistent functioning of the power grid and the reliable provision of electricity. To enhance the accuracy of wind power forecasting, this paper proposes an ensemble model named the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and convolutional bidirectional long short-term memory (CNN-BiLSTM), which incorporates a data preprocessing technique, feature selection method, deep ensemble model, and adaptive control. Initially, CEEMDAN is utilized to decompose wind speed and power sequences and hence obtain decomposed subsequences for further analysis. Subsequently, the CNN is used to extract features from each subsequence, whereas each subsequence is processed by BiLSTM to obtain an ultra-short-term deterministic prediction model. Additionally, the adaptive kernel density estimation (AKDE) method is employed to estimate the probabilistic distribution of prediction error, enabling ultra-short-term probabilistic wind power prediction. Finally, based on real datasets, the reliability of the model in probabilistic prediction is verified through the evaluation metrics of multi-step prediction intervals (PIs). Full article
Show Figures

Figure 1

24 pages, 3527 KiB  
Article
A Novel Hybrid Deep Learning Model for Forecasting Ultra-Short-Term Time Series Wind Speeds for Wind Turbines
by Jianzan Yang, Feng Pang, Huawei Xiang, Dacheng Li and Bo Gu
Processes 2023, 11(11), 3247; https://doi.org/10.3390/pr11113247 - 18 Nov 2023
Cited by 6 | Viewed by 2237
Abstract
Accurate forecasting of ultra-short-term time series wind speeds (UTSWS) is important for improving the efficiency and safe and stable operation of wind turbines. To address this issue, this study proposes a VMD-AOA-GRU based method for UTSWS forecasting. The proposed method utilizes variational mode [...] Read more.
Accurate forecasting of ultra-short-term time series wind speeds (UTSWS) is important for improving the efficiency and safe and stable operation of wind turbines. To address this issue, this study proposes a VMD-AOA-GRU based method for UTSWS forecasting. The proposed method utilizes variational mode decomposition (VMD) to decompose the wind speed data into temporal mode components with different frequencies and effectively extract high-frequency wind speed features. The arithmetic optimization algorithm (AOA) is then employed to optimize the hyperparameters of the model of the gated recurrent unit (GRU), including the number of hidden neurons, training epochs, learning rate, learning rate decay period, and training data temporal length, thereby constructing a high-precision AOA-GRU forecasting model. The AOA-GRU forecasting model is trained and tested using different frequency temporal mode components obtained from the VMD, which achieves multi-step accurate forecasting of the UTSWS. The forecasting results of the GRU, VMD-GRU, VMD-AOA-GRU, LSTM, VMD-LSTM, PSO-ELM, VMD-PSO-ELM, PSO-BP, VMD-PSO-BP, PSO-LSSVM, VMD-PSO-LSSVM, ARIMA, and VMD-ARIMA are compared and analyzed. The calculation results show that the VMD algorithm can accurately mine the high-frequency components of the time series wind speed, which can effectively improve the forecasting accuracy of the forecasting model. In addition, optimizing the hyperparameters of the GRU model using the AOA can further improve the forecasting accuracy of the GRU model. Full article
(This article belongs to the Special Issue Process Design and Modeling of Low-Carbon Energy Systems)
Show Figures

Figure 1

23 pages, 5845 KiB  
Article
A Novel Twin Support Vector Regression Model for Wind Speed Time-Series Interval Prediction
by Xinyue Fu, Zhongkai Feng, Xinru Yao and Wenjie Liu
Energies 2023, 16(15), 5656; https://doi.org/10.3390/en16155656 - 27 Jul 2023
Cited by 5 | Viewed by 1777
Abstract
Although the machine-learning model demonstrates high accuracy in wind speed prediction, it struggles to accurately depict the fluctuation range of the predicted values due to the inherent uncertainty in wind speed sequences. To address this limitation and enhance the reliability, we propose an [...] Read more.
Although the machine-learning model demonstrates high accuracy in wind speed prediction, it struggles to accurately depict the fluctuation range of the predicted values due to the inherent uncertainty in wind speed sequences. To address this limitation and enhance the reliability, we propose an effective wind speed interval prediction model that combines twin support vector regression (TSVR), variational mode decomposition (VMD), and the slime mould algorithm (SMA). In our methodology, the complex wind speed series is decomposed into multiple relatively stable subsequences using the VMD method. The principal component and residual series are then subject to interval prediction using the TSVR model, while the remaining components undergo point prediction. The SMA method is employed to search for optimal parameter combinations. The prediction interval of wind speed is obtained by aggregating the forecasting results of all TSVR models for each subseries. Our proposed model has demonstrated superior performance in various applications. It ensures that the wind speed value falls within the designated interval range while achieving the narrowest prediction interval. For instance, in the spring dataset with 1-period, we obtained a predicted interval with a prediction intervals coverage probability (PICP) value of 0.9791 and prediction interval normalized range width (PINRW) value of 0.0641. This outperforms other comparative models and significantly enhances its practical application value. After adding the residual interval prediction model, the reliability of the prediction interval is significantly improved. As a result, this study presents a novel twin support vector regression model as a valuable approach for multi-step wind speed interval prediction. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid)
Show Figures

Figure 1

26 pages, 5666 KiB  
Article
Multi-Step-Ahead Wind Speed Forecast Method Based on Outlier Correction, Optimized Decomposition, and DLinear Model
by Jialin Liu, Chen Gong, Suhua Chen and Nanrun Zhou
Mathematics 2023, 11(12), 2746; https://doi.org/10.3390/math11122746 - 17 Jun 2023
Cited by 6 | Viewed by 2421
Abstract
Precise and dependable wind speed forecasting (WSF) enables operators of wind turbines to make informed decisions and maximize the use of available wind energy. This study proposes a hybrid WSF model based on outlier correction, heuristic algorithms, signal decomposition methods, and DLinear. Specifically, [...] Read more.
Precise and dependable wind speed forecasting (WSF) enables operators of wind turbines to make informed decisions and maximize the use of available wind energy. This study proposes a hybrid WSF model based on outlier correction, heuristic algorithms, signal decomposition methods, and DLinear. Specifically, the hybrid model (HI-IVMD-DLinear) comprises the Hampel identifier (HI), the improved variational mode decomposition (IVMD) optimized by grey wolf optimization (GWO), and DLinear. Firstly, outliers in the wind speed sequence are detected and replaced with the HI to mitigate their impact on prediction accuracy. Next, the HI-processed sequence is decomposed into multiple sub-sequences with the IVMD to mitigate the non-stationarity and fluctuations. Finally, each sub-sequence is predicted by the novel DLinear algorithm individually. The predictions are reconstructed to obtain the final wind speed forecast. The HI-IVMD-DLinear is utilized to predict the real historical wind speed sequences from three regions so as to assess its performance. The experimental results reveal the following findings: (a) HI could enhance prediction accuracy and mitigate the adverse effects of outliers; (b) IVMD demonstrates superior decomposition performance; (c) DLinear has great prediction performance and is suited to WSF; and (d) overall, the HI-IVMD-DLinear exhibits superior precision and stability in one-to-four-step-ahead forecasting, highlighting its vast potential for application. Full article
Show Figures

Figure 1

25 pages, 5034 KiB  
Article
Reconstruction of Unsteady Wind Field Based on CFD and Reduced-Order Model
by Guangchao Zhang and Shi Liu
Mathematics 2023, 11(10), 2223; https://doi.org/10.3390/math11102223 - 9 May 2023
Cited by 3 | Viewed by 1754
Abstract
Short-term wind power forecasting is crucial for updating the wind power trading strategy, equipment protection and control regulation. To solve the difficulty surrounding the instability of the statistical model and the time-consuming nature of the physical model in short-term wind power forecasting, two [...] Read more.
Short-term wind power forecasting is crucial for updating the wind power trading strategy, equipment protection and control regulation. To solve the difficulty surrounding the instability of the statistical model and the time-consuming nature of the physical model in short-term wind power forecasting, two innovative wind field reconstruction methods combining CFD and a reduced-order model were developed. In this study, POD and Tucker decomposition were employed to obtain the spatial–temporal information correlation of 2D and 3D wind fields, and their inverse processes were combined with sparse sensing to reconstruct multi-dimensional unsteady wind fields. Simulation and detailed discussion were performed to verify the practicability of the proposed algorithms. The simulation results indicate that the wind speed distributions could be reconstructed with reasonably high accuracy (where the absolute velocity relative error was less than 0.8%) using 20 sensors (which only accounted for 0.04% of the total data in the 3D wind field) based on the proposed algorithms. The factors influencing the results of reconstruction were systematically analyzed, including all-time steps, the number of basis vectors and 4-mode dimensions, the diversity of CFD databases, and the reconstruction time. The results indicated that the reconstruction time could be shortened to the time interval of data acquisition to synchronize data acquisition with wind field reconstruction, which is of great significance in the reconstruction of unsteady wind fields. Although there are still many studies to be carried out to achieve short-term predictions, both unsteady reconstruction methods proposed in this paper enable a new direction for short-term wind field prediction. Full article
(This article belongs to the Special Issue Theoretical Research and Computational Applications in Fluid Dynamics)
Show Figures

Figure 1

18 pages, 1501 KiB  
Article
Predicting the Output of Solar Photovoltaic Panels in the Absence of Weather Data Using Only the Power Output of the Neighbouring Sites
by Heon Jeong
Sensors 2023, 23(7), 3399; https://doi.org/10.3390/s23073399 - 23 Mar 2023
Cited by 7 | Viewed by 2668
Abstract
There is an increasing need for capable models in the forecast of the output of solar photovoltaic panels. These models are vital for optimizing the performance and maintenance of PV systems. There is also a shortage of studies on forecasts of the output [...] Read more.
There is an increasing need for capable models in the forecast of the output of solar photovoltaic panels. These models are vital for optimizing the performance and maintenance of PV systems. There is also a shortage of studies on forecasts of the output power of solar photovoltaics sites in the absence of meteorological data. Unlike common methods, this study explores numerous machine learning algorithms for forecasting the output of solar photovoltaic panels in the absence of weather data such as temperature, humidity and wind speed, which are often used when forecasting the output of solar PV panels. The considered models include Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN) and Transformer. These models were used with the data collected from 50 different solar photo voltaic sites in South Korea, which consist of readings of the output of each of the sites collected at regular intervals. This study focuses on obtaining multistep forecasts for the multi-in multi-out, multi-in uni-out and uni-in uni-out settings. Detailed experimentation was carried out in each of these settings. Finally, for each of these settings and different lookback and forecast lengths, the best models were also identified. Full article
(This article belongs to the Special Issue Application of Semantic Technologies in Sensors and Sensing Systems)
Show Figures

Figure 1

18 pages, 3035 KiB  
Article
Variational Bayesian Network with Information Interpretability Filtering for Air Quality Forecasting
by Xue-Bo Jin, Zhong-Yao Wang, Wen-Tao Gong, Jian-Lei Kong, Yu-Ting Bai, Ting-Li Su, Hui-Jun Ma and Prasun Chakrabarti
Mathematics 2023, 11(4), 837; https://doi.org/10.3390/math11040837 - 7 Feb 2023
Cited by 51 | Viewed by 3835
Abstract
Air quality plays a vital role in people’s health, and air quality forecasting can assist in decision making for government planning and sustainable development. In contrast, it is challenging to multi-step forecast accurately due to its complex and nonlinear caused by both temporal [...] Read more.
Air quality plays a vital role in people’s health, and air quality forecasting can assist in decision making for government planning and sustainable development. In contrast, it is challenging to multi-step forecast accurately due to its complex and nonlinear caused by both temporal and spatial dimensions. Deep models, with their ability to model strong nonlinearities, have become the primary methods for air quality forecasting. However, because of the lack of mechanism-based analysis, uninterpretability forecasting makes decisions risky, especially when the government makes decisions. This paper proposes an interpretable variational Bayesian deep learning model with information self-screening for PM2.5 forecasting. Firstly, based on factors related to PM2.5 concentration, e.g., temperature, humidity, wind speed, spatial distribution, etc., an interpretable multivariate data screening structure for PM2.5 forecasting was established to catch as much helpful information as possible. Secondly, the self-screening layer was implanted in the deep learning network to optimize the selection of input variables. Further, following implantation of the screening layer, a variational Bayesian gated recurrent unit (GRU) network was constructed to overcome the complex distribution of PM2.5 and achieve accurate multi-step forecasting. The high accuracy of the proposed method is verified by PM2.5 data in Beijing, China, which provides an effective way, with multiple factors for PM2.5 forecasting determined using deep learning technology. Full article
Show Figures

Figure 1

14 pages, 3379 KiB  
Article
Multi-Feature Data Fusion-Based Load Forecasting of Electric Vehicle Charging Stations Using a Deep Learning Model
by Prince Aduama, Zhibo Zhang and Ameena S. Al-Sumaiti
Energies 2023, 16(3), 1309; https://doi.org/10.3390/en16031309 - 26 Jan 2023
Cited by 45 | Viewed by 4331
Abstract
We propose a forecasting technique based on multi-feature data fusion to enhance the accuracy of an electric vehicle (EV) charging station load forecasting deep-learning model. The proposed method uses multi-feature inputs based on observations of historical weather (wind speed, temperature, and humidity) data [...] Read more.
We propose a forecasting technique based on multi-feature data fusion to enhance the accuracy of an electric vehicle (EV) charging station load forecasting deep-learning model. The proposed method uses multi-feature inputs based on observations of historical weather (wind speed, temperature, and humidity) data as multiple inputs to a Long Short-Term Memory (LSTM) model to achieve a robust prediction of charging loads. Weather conditions are significant influencers of the behavior of EV drivers and their driving patterns. These behavioral and driving patterns affect the charging patterns of the drivers. Rather than one prediction (step, model, or variables) made by conventional LSTM models, three charging load (energy demand) predictions of EVs were made depending on different multi-feature inputs. Data fusion was used to combine and optimize the different charging load prediction results. The performance of the final implemented model was evaluated by the mean absolute prediction error of the forecast. The implemented model had a prediction error of 3.29%. This prediction error was lower than initial prediction results by the LSTM model. The numerical results indicate an improvement in the performance of the EV load forecast, indicating that the proposed model could be used to optimize and improve EV load forecasts for electric vehicle charging stations to meet the energy requirements of EVs. Full article
(This article belongs to the Special Issue Design, Planning and Evaluation of Flexible Power Systems)
Show Figures

Figure 1

Back to TopTop