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Abstract: There is an increasing need for capable models in the forecast of the output of solar
photovoltaic panels. These models are vital for optimizing the performance and maintenance of PV
systems. There is also a shortage of studies on forecasts of the output power of solar photovoltaics
sites in the absence of meteorological data. Unlike common methods, this study explores numerous
machine learning algorithms for forecasting the output of solar photovoltaic panels in the absence of
weather data such as temperature, humidity and wind speed, which are often used when forecasting
the output of solar PV panels. The considered models include Long Short-Term Memory (LSTM),
Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN) and Transformer. These models were
used with the data collected from 50 different solar photo voltaic sites in South Korea, which consist
of readings of the output of each of the sites collected at regular intervals. This study focuses on
obtaining multistep forecasts for the multi-in multi-out, multi-in uni-out and uni-in uni-out settings.
Detailed experimentation was carried out in each of these settings. Finally, for each of these settings
and different lookback and forecast lengths, the best models were also identified.

Keywords: solar photo voltaic; times series forecasting; meteorology; recurrent neural network;
gated recurrent unit; long-short term memory; transformers

1. Introduction

The popularity of solar photovoltaic (PV) panels as a source of renewable energy has
been at an all time high [1]. The sky-high demand for electricity and the environmental
effects of non-renewable energy sources have made energy sources such as solar more
desirable [2]. This surge in the number of PV systems installed globally escalates the
need for optimization of the performance and minimization of the cost of these systems.
For optimization and cost minimization of PVs, forecasting the output of these systems
is crucial.

Weather conditions, specially solar radiance, temperature, humidity, and wind speed,
highly affect the output of the PV sites [3]. These weather factors are also important in
forecasting the output of PV sites. So, it is comprehensible that most of the studies related
to forecasting the output of the PV sites focus on weather data [4,5]. However, there may
be instances in which weather data are not available. An issue in data collection due
to faulty sensors or equipment, power outages and network failures can also result in
missing or inaccurate data. Meteorological stations may also be located at a significantly
larger distance from solar PV sites, which might cause inaccurate representation of the
local weather conditions. Additionally, historical meteorological data may not be available,
making it laborious to perform long-term forecasting. Furthermore, the PV sites may be
located at remote sites where meteorological stations may be difficult to operate due to the
limited infrastructure [6]. Finally, collection and the processing of the meteorological data
may be expensive and infeasible for small-scale PV sites with low budgets for operation [7].

Sensors 2023, 23, 3399. https://doi.org/10.3390/s23073399 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073399
https://doi.org/10.3390/s23073399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23073399
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073399?type=check_update&version=2


Sensors 2023, 23, 3399 2 of 18

1.1. Time Series Forecasting

A time series analysis has been a long-standing challenge and has been widely in-
vestigated in the past. A range of traditional methods have been developed to tackle the
problem, including Hidden Markov Models [8]; Kalman filters [9]; and statistical methods
such as ARIMA [10], exponentially weighted moving averages [11,12] and vector auto-
regressors [13]. Deep learning techniques have also been applied to time series forecasting
(TSF) with Recurrent Neural Networks (RNNs) being the predominant architecture due
to their ability to model sequential data [14–17]. Recently, temporal convolutional net-
works (TCNs) have gained popularity in the field. In combination with RNNs, graph
neural networks (GNNs) have also been used to capture spatial and temporal patterns in
data [18–23]. With the advent of transformer [24] architectures, RNNs have been replaced
in many applications of sequential modeling. The self-attention mechanism has been a key
factor in the success of transformers, although the quadratic computation and memory com-
plexity associated with self-attention is problematic for longer sequences. Consequently,
the focus of most transformer architectures has been on developing more efficient designs
that employ sparser query matrices to compute self-attention [25,26]. Recent developments
in deep learning for time series forecasting have integrated classical concepts with modern
deep learning techniques, achieving promising results [27,28]. For instance, Autoformer de-
composes the original time series into seasonality and trend components and then extracts
the dependencies using an autocorrelation block [27]. SCINet employs a multi-resolution
analysis approach that combines downsampling techniques, convolutions and a unique
interaction block to capture the dependencies in the data [28].

1.2. Forecasting of Solar PV Power

There has been immense interest on forecasting the output of solar PV plants. The
methods used range from traditional statistical models to simple machine learning models
and the latest deep-learning-based techniques.

Most of the studies dealing with the forecast of the output of the solar PV plants
utilize the meteorological data related to the respective sites. A study compared various
regression techniques ranging from linear least squares to support vector machines (SVM)
with different kernel functions in weather forecasts to predict hourly solar intensity [29].
Similarly, another work studied SVM models while differing in their dimensionality reduc-
tion techniques for forecasting PV power [30]. A simple neural network has also previously
been suggested to forecast the global horizontal irradiance (GHI) and direct normal irradi-
ance (DNI) using weather forecasts as predictors [31]. They utilized the Genetic Algorithm
(GA) and Gamma test for initial feature selection and utilized various neural network
structures to perform forecasting. A different study used only the endogenous variables to
obtain forecasting models such as Autoregressive Integrated Moving Average (ARIMA),
k-Nearest-Neighbours (KNN), Neural Networks and neural networks optimized by Ge-
netic Algorithms to predict hourly PV generation with a prediction horizon up to 2 h [32].
A comparison between various statistical and machine learning models such as SVM,
Binary regression Trees, Random Forest (RF), gradient boosted regression trees (GRBT) and
Generative Additive Models (GAM) was presented for performing 1 day ahead hourly
PV power generation forecasts for some powerplants in France [33,34]. The influence of
spatial and temporal information on solar power generation was studied in a different
work using gradient boosting alongside vector autoregressive model and compared it with
the autoregressive model [35]. Probabilistic forecasting of solar power generation has also
been performed using quantile regression forests [34,36].

Taking these challenges into account, it is essential that substitute propositions are
studied for the forecasting of the output power of PV sites in the absence of meteorological
data. In this study, the feasibility of utilizing the output power readings of multiple solar
PV sites located near one another, for multi step forecasting of the output power of these
sites, was studied. The forecasts were performed in various settings: (i) utilizing the
data of a single site for both input and output (univariate input and univariate output),
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(ii) utilizing the data of multiple sites as the input and that of a single site as the output
(multivariate input and univariate output), and (iii) utilizing the data of multiple sites for
both input and output (multivariate input and multivariate output). Numerous machine
learning models were used to perform these forecasts, including Long Short-Term Memory
(LSTM) [37], Recurrent Neural Network (RNN) [38], Gated Recurrent Unit (GRU) [39]
and Transformer [24]. The data used for this study came from 41 solar PV sites located in
Suncheon, South Korea. It included the readings of the output of the panels recorded at a
regular interval of 15 min, over a period of 6 months,

The main contributions of this paper include the following:

• A study of the feasibility of forecasting solar PV outputs in the absence of meteorolog-
ical data.

• Utilizing popular deep learning models for the forecast of the solar PV output for opti-
mization of the performance and minimization of the maintenance costs of PV sites.

• Identifying an appropriate method for the forecast of solar PV output at various
forecasting lengths.

• Suggesting a suitable workflow for the forecasting of solar PV outputs in scenarios
where meteorological data are unavailable and under three different settings: the
multivariate, univariate and multi-in uni-out settings.

2. Methods

The initial steps of this study were data collection and pre-processing. The data
obtained from these steps are defined in Section 3.1. After obtaining the data, the next step
prior to making forecasts was training the forecasting models. The models used for training
are described in Section 3.2. Finally, the trained models were tested on the unseen data,
and the models performing the best were deployed. The results obtained from this step
are described in Section 4. All of these steps can be visualized in Figure 1. A view of the
location of some PV sites used in this study is shown in Figure 2.

2.1. Data Description

The data used in this study came from 50 solar photovoltaic (PV) sites located in
Suncheon, South Korea. The data included readings of the output of the PV panels taken at
regular intervals of 15 min over a period of 6 months from 1 January 2020 to 31 July 2020.
The data were collected in a time series format, with readings taken every 15 min. A total
of 11,142 data points were used. A small portion of the used dataset has been shown in the
Table 1.

The obtained data were pre-processed, and the first pre-processing step was dealing
with missing data points and removing inconsistencies. For example, during nighttime,
there should not be any PV output at all, so the data during night time were set to zero
if otherwise found. The missing data were also replaced by the average of nearby data
points. Similarly, it was possible that poor results could be obtained if the dataset was
inconsistent, so, if for any sites it was found that a huge chunk of data was missing, then
such sites were discarded. Originally, the dataset contained readings from 50 different sites.
However, during the preprocessing step, the data from 10 of the sites were removed due to
the presence of inconsistencies and huge intervals of missing data. After this, the data were
split into train, test, and validation data and scaled.

It is important to note that this study does not utilize weather data, such as temperature,
humidity and wind speed, which are often used in forecasting the output of solar PV panels.
This highlights the need for alternative approaches when weather data are not available.

In this study, I focus on multi-step time series forecasting, where the goal is to predict
the output of the PV panels based on the readings at multiple time steps in the past.
Despite the absence of weather data, this study aims to demonstrate the feasibility of using
alternative approaches to forecast the output of solar PV panels.
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Figure 1. Flowchart of the overall steps performed.

Figure 2. View of the locations of some of the PV sites used in this study.
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Table 1. A small portion of the dataset used.

Time Site 1 Site 2 Site 3 Site 4 Site 5 ....... Site 47 Site 48 Site 49 Site 50

2020-01-01 06:45 0 0 0 0 0 ....... 0 0 0 0
2020-01-01 07:00 0 0 0 0 0 ....... 0 0 0 0
2020-01-01 07:15 0 0 0 0 0 ....... 0 0 0 0
2020-01-01 07:30 0 207 216 0 225 ....... 0 186 217 215
2020-01-01 07:45 212 205 217 217 218 ....... 212 192 265 215
2020-01-01 08:00 211 250 212 271 211 ....... 212 494 465 215
2020-01-01 08:15 225 377 209 363 585 ....... 214 745 708 235
2020-01-01 08:30 240 424 865 648 798 ....... 239 953 934 250
2020-01-01 08:45 260 541 1087 948 1017 ....... 321 1138 1147 306
2020-01-01 09:00 506 861 1278 1147 1251 ....... 428 1315 1322 505

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......
2020-06-22 14:15 794 1176 1738 1177 715 ....... 1447 1349 1370 1417
2020-06-22 14:30 839 885 970 866 972 ....... 792 892 897 780
2020-06-22 14:45 911 1043 1021 1093 458 ....... 1489 1211 1241 1419
2020-06-22 15:00 1681 643 1130 659 591 ....... 567 693 703 567
2020-06-22 15:15 1474 1032 1123 823 275 ....... 1086 1057 947 1007

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

2.2. Used Forecasting Models

For the purpose of this study, I used four popular machine learning models to perform
forecasting of the solar PV output. The used models are Recurrent Neural Network
(RNN) [38], Gated Recurrent Unit (GRU) [39], Long Short-Term Memory (LSTM) [37], and
Transformer [24].

2.2.1. Recurrent Neural Network (RNN) [38]

A Recurrent Neural Network (RNN) is a type of artificial neural network that is well
suited for processing sequential data. RNNs are used for tasks such as natural language
processing and speech recognition, where the input data have a temporal structure. RNNs
maintain an internal hidden state that can capture information from the entire sequence
of inputs up to a given time step. This allows RNNs to model long-term dependencies in
sequential data.

RNNs consist of a series of interconnected nodes or neurons that are connected in a
feedforward manner. The hidden state of the network is updated at each time step based on
the previous hidden state and the input data at that time step. This allows RNNs to model
the dependencies between the data at different time steps, which is crucial for processing
sequential data.

The main drawback of traditional RNNs is that they are prone to the vanishing gradient
problem, where the gradient of the error signal with respect to the network parameters
decreases exponentially as it propagates through time. This makes it difficult to train RNNs
on long sequences, as the gradient of the error signal becomes very small, making it difficult
to update the network parameters. To overcome this, various variants of RNNs have been
developed, such as LSTMs (Long Short-Term Memory) and GRUs (Gated Recurrent Units),
which are more robust to the vanishing gradient problem. The architecture of a general
RNN is shown in Figure 3.

The equation for an RNN model at time step t can be expressed as follows:

ht = f (Whxxt + Whhht−1 + bh) (1)

yt = g(Wyhht + by) (2)

where ht is the hidden state at time step t, xt is the input at time step t, yt is the output at time
step t, Whx and Whh are weight matrices, bh is the bias vector for the hidden layer, Wyh is the
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weight matrix and by is the bias vector for the output layer. f and g are activation functions,
which are often the hyperbolic tangent or the rectified linear unit (ReLU) function.

A

X0

h0

a

A

Xt

ht

A

X1

h1

A

Xt

ht

Figure 3. The architecture of a simple RNN unrolled.

2.2.2. Gated Recurrent Unit (GRU) [39]

Gated Recurrent Units (GRUs) are a type of Recurrent Neural Network (RNN) de-
signed to capture the long-term dependencies between time steps in sequential data. Unlike
traditional RNNs, which have a simple linear activation function to capture the relation-
ships between time steps, GRUs have a gating mechanism that allows them to selectively
choose which information to preserve from previous time steps and which to discard.

The GRU has two hidden states, the reset gate and the update gate, which are used to
control the flow of information from previous time steps. The reset gate decides how much
of the previous hidden state is to be forgotten, while the update gate decides how much of
the previous hidden state is to be combined with the current input. The final hidden state
is then used to predict the output at the current time step.

The GRU’s gating mechanism allows it to efficiently handle long sequences of data, as
it can selectively preserve the most relevant information and discard the rest. Additionally,
GRUs require fewer parameters than traditional RNNs, which can reduce overfitting and
improve model training efficiency.

GRUs have been applied to various time series forecasting problems, including solar
PV output forecasting. In such applications, the GRU is trained on historical time series
data to capture the relationships between time steps and then used to make predictions
for future time steps. The input to the GRU is the time series data, and the output is a
prediction for the future values of the time series. The architecture of a single block of GRU
is shown in Figure 4.

The update gate, reset gate and new memory cell vector of a Gated Recurrent Unit
(GRU) can be computed using the following equations:

zt = σ(Wzxt + Uzht−1 + bz) (3)

rt = σ(Wrxt + Urht−1 + br) (4)

h̃t = tanh(Wxt + U(rt � ht−1) + b) (5)

where xt is the input at time step t; ht−1 is the hidden state at the previous time step; Wz, Uz
and bz are the weights and bias for the update gate; Wr, Ur and br are the weights and bias
for the reset gate; W, U and b are the weights and bias for computing the new memory cell
vector; zt is the update gate output; rt is the reset gate output; h̃t is the candidate hidden
state; and ht is the current hidden state. The σ function is the sigmoid function, and � is
the element-wise product (Hadamard product).
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Figure 4. The architecture of a single block of GRU.

2.2.3. Long Short-Term Memory (LSTM) [37]

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)
architecture that is specifically designed to overcome the vanishing gradient problem faced
by traditional RNNs. LSTM is widely used for time-series analysis, sequential prediction
and natural language processing tasks.

LSTMs consist of memory cells that store information for an extended period of time
and gates that control the flow of information into and out of the memory cells. The three
gates in LSTM are the input gate, forget gate and output gate. These gates help in deciding
what information should be stored in the memory, what information should be discarded
and what information should be outputted.

The input gate controls the amount of new information that is allowed to enter the
memory cell. The forget gate decides what information should be discarded from the
memory cell. The output gate controls what information should be outputted from the
memory cell.

LSTMs are trained using backpropagation through time (BPTT) to minimize a loss
function that represents the difference between the predicted output and the true output.
The weights of the gates and the memory cells are updated during the training process to
minimize the loss function.

LSTMs are able to capture long-term dependencies in time-series data and to out-
perform traditional RNNs in tasks that require memory and sequential prediction. They
have been widely used for time-series forecasting, natural language processing and speech
recognition. The architecture of a single block of LSTM is shown in Figure 5.

The equations for the different gates of LSTM are as follows:

ft = σ(W f [ht−1, xt] + b f ) (6)

it = σ(Wi[ht−1, xt] + bi) (7)

C̃t = tanh(WC[ht−1, xt] + bC) (8)

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

ot = σ(Wo[ht−1, xt] + bo) (10)

ht = ot ∗ tanh(Ct) (11)
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where ft is the forget gate, it is the input gate, C̃t is the candidate cell state, Ct is the cell
state, ot is the output gate, ht is the hidden state at time t, xt is the input at time t, W and b
are the weight and bias matrices, and σ is the sigmoid activation function.

.

σ σ tanh

xt

ht-1

.

ct

ht

ct-1 .

σ

+

tanh

Figure 5. The architecture of a single block of LSTM.

2.2.4. Transformer [24]

Transformer is a neural network architecture that was introduced in 2017 by Vaswani et al.
in the paper “Attention is All You Need” [24]. Transformer is designed to handle sequential
data and has revolutionized the field of natural language processing (NLP). The key
innovation of Transformer is the self-attention mechanism, which allows the model to
weigh the importance of each feature in the input sequence when making predictions. The
original transformer and its variants have also been used in multiple time series forecasting
applications [24,40].

A traditional Recurrent Neural Network (RNN) operates on a sequence by processing
one element at a time while maintaining an internal state. In contrast, the Transformer
operates on the entire sequence at once, allowing it to capture long-term dependencies
between elements. This capability of Transformer makes it well suited for sequence-to-
sequence problems, such as time series forecasting.

The Transformer architecture consists of an encoder and a decoder, both of which are
made up of a series of stacked attention and feed-forward layers. The encoder takes the
input sequence and computes a sequence of hidden states. The decoder then takes the
hidden states and produces the output sequence.

The attention mechanism in Transformer computes a weight for each element in the
input sequence, indicating its importance in the current prediction. These weights are used
to compute a weighted sum of the hidden states, which is then used to make the prediction.
This allows Transformer to focus on the most relevant parts of the input sequence when
making predictions.

In addition to the self-attention mechanism, Transformer also uses multi-head atten-
tion, which allows the model to attend to multiple aspects of the input sequence at once.
This allows the model to capture complex relationships between elements in the input
sequence. Figure 6 shows the architecture of a transformer.

The self-attention in the Transformer architecture is given by the following equation:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (12)

This equation calculates the output of the self-attention mechanism, which is used to
compute the relationship between each position in the input sequence. Here, Q represents



Sensors 2023, 23, 3399 9 of 18

the queries, K represents the keys and V represents the values. The equation calculates
the dot product of the queries and keys, which are divided by the square root of the
dimensionality of the keys, to scale the gradients. The result is passed through a softmax
activation function to obtain a probability distribution over the keys, which is then used to
weight the values.

The multi-head attention in the transformer architecture is given by the following equation:

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO (13)

where
headi = Attention(QWQ

i , KWK
i , VWV

i )

This equation applies the self-attention mechanism multiple times in parallel to capture
different relationships between the input sequence elements. Here, Q, K and V are the
same as in the self-attention equation but are projected using weight matrices WQ

i , WK
i

and WV
i to create h different subspaces, or "heads". The self-attention operation is then

applied to each of these subspaces to produce h different outputs, which are concatenated
and linearly transformed using a weight matrix WO to produce the final output.
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Figure 6. The architecture of Transformer [24].

2.3. Forecast Settings

The forecasts were performed in three different settings, namely multi-in multi-out,
multi-in uni-out and uni-in uni-out. For all three of these settings, the lookback length
(LBL) is the number of past data points used as input and forecast horizon length (FHL)
is the number of datapoints into the future that forecasts was made. Multi-in muli-out
is the scenario where, for fixed values of LBL and FHL, the forecasts for multiple sites
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are made using the input past data from each of those sites. This is useful when multiple
site are to be monitored and managed simultaneously. Similarly, in the multi-in uni-out
setting for fixed values of LBL and FHL, the forecasts for a single site are made using
past input data from multiple neighbouring sites. The multi-in uni-out setting is useful
if the goal is to obtain longer term forecasts of a single site with more accuracy. Finally,
in the uni-in uni-out setting for fixed values of LBL and FHL, the forecasts for a single
site are made using past input data from the same site. This setting is useful when only
single-site short-term forecasts are required and resources are not available for multi-in
uni-out settings. These resources might be computational resources or data. In terms of
computational resources, processing multiple site data points requires more computation
as compared with processing single-site data points. In terms of data, it is possible that only
a single PV site is in operation or that the user may not have access to other neighbouring
sites data. These three settings have been visualized in Figure 7.
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Figure 7. Visualization of forecast settings.

3. Experiment and Results

The possibility of forecasting solely using only the historical recordings of the solar
PV output in the absence of any kind of weather information was tested in these experi-
ments. Famous deep learning architectures—RNN, GRU, LSTM and Transformer—were
compared here in terms of mean square error (MSE) and mean absolute error (MAE) while
making forecasts.

3.1. Implementation Details

The data were split into train, test and validation sets at a ratio of 8:1:1. All of the
models were then trained with L2 loss, which is the squared difference between the actual
value and the prediction value, using the ADAM [41] optimizer. The code used was
implemented using the PyTorch framework, and the the experiments were performed on a
single NVIDIA GeForce RTX 3060 laptop GPU.

Furthermore, the experiments were performed in three different setups: (i) the multi-in
multi-out setting, (ii) the multi-in uni-out setting and (iii) the uni-in uni-out setting.

3.2. Details of Hyper-Parameters Used

The details of the hyper-parameters used are shown in Table 2. The hyper-parameter
values are same for RNN, GRU and LSTM for all settings. The learning rate was set very
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low to 1× 10−5 as the models seemed to overfit even in very few epochs when set to a
value higher than this. Additionally, due to the same reason, each configuration of the
models used were also very simple. The number of RNN, GRU and LSTM layers used was
2 and the number of encoders and decoders in Transformer was set to 3. The weight decay
was set to 1× 10−6, and the batch size was set to a fixed value of 64 for each of the settings.
The number of epochs for Transformer used was 50 as compared with 100 for the rest of
the models because Transformer was overfitting very early.

Table 2. Details of hyper-parameters used.

RNN, LSTM, GRU Transformer
Hyper-Parameter Value Hyper-Parameter Value

Number of hidden state 64 Number of heads 4
Number of recurrent layers 2 Number of encoder layers 3

Number of decoder layers 3
Number of expected features in the encoder/decoder inputs 128

Feedforward network dimension 256
Number of epochs 100 Number of epochs 50

Dropout 0.3 Dropout 0.3
Weight Decay 1× 10−6 Weight Decay 1× 10−6

Learning rate 1× 10−4 Learning rate 1× 10−4

3.3. Evaluation Metrics

The evaluation metrics used to evaluate the performance of the forecasting models are
mean square error (MSE) and mean absolute error (MAE).

3.3.1. Mean Square Error (MSE)

MSE is a common metric used to evaluate the accuracy of a regression model. It
measures the average squared difference between the predicted values and the actual
values. The formula for calculating MSE is as follows:

MSE =
1
n ∑ (y− ŷ)2 (14)

where n is the number of observations, y is the actual value and ŷ is the predicted value.
Better performance is obtained during forecasting when the MSE is lower. It amplifies the
effect of a larger error, and the model will be more sensitive to them.

3.3.2. Mean Absolute Error (MAE)

MAE is another metric commonly used to evaluate regression models. It measures
the average absolute difference between the predicted values and the actual values. The
formula for calculating MAE is as follows:

MAE =
1
n ∑ |y− ŷ| (15)

where n is the number of observations, y is the actual value and ŷ is the predicted value.
MAE has the same unit as the predicted output and is more interpretable. Additionally, the
performance of the model is better when the MAE value is lower. MAE is less sensitive to
outliers and is easy to understand.

3.4. Results
3.4.1. Results of Multi-In Multi-Out Setting

The comparative results obtained for the multi-in multi-out setting for each of the used
forecasting models are shown in Table 3. From Table 3, it can be deduced that Transformer
performs arguably the best in the multivariate predictive scenario. This can be attributed
to the better ability of Transformer to realize the individual relationships between each
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of the input features. As can be seen from Table 3, Transformer outperforms each of the
other architectures by a huge margin. The RNN, GRU and LSTM models perform almost
similarly when the length of the lookback window is 48 or 96, with either GRU or LSTM
mostly performing better than the simple RNN model. The performance of LSTM is much
better as compared with that of RNN and GRU when the lookback window length was
144 and the forecast horizon was 24. Furthermore, while for a short FHL length of 4 or 8,
the performances are comparable for all LBLs, it can even be said that the performance
when a shorter LBL, 48, is used is better. However, as the FHL becomes longer (12 or 24),
the performance improves as the FHL increases. Therefore, Table 3 suggests that, when
proper resources are available, the use of Transformer for the multivariate setting would
provide the best results. However, architectures such as LSTM and GRU can also be used if
required, since the forecasting results are acceptable in these cases as well. Additionally, for
a shorter FHL, using a shorter LBL is sufficient; however, for a longer FHL, a longer LBL
is required.

Table 3. Results in multi-in multi-out setting. Lower MSE and MAE values are better. The best results
are shown in bold and underlined.

Models RNN GRU LSTM Transformer

LBL FHL MSE MAE MSE MAE MSE MAE MSE MAE

48 4 0.1337 0.2111 0.1280 0.2049 0.1334 0.2084 0.1070 0.1786
8 0.2351 0.3103 0.1643 0.2479 0.1927 0.252 0.1429 0.2245

12 0.2059 0.2796 0.2414 0.3027 0.2197 0.2739 0.1856 0.2618
24 0.2514 0.3168 0.237 0.2946 0.2998 0.3199 0.2352 0.2768

96 4 0.1356 0.2109 0.1345 0.2081 0.1377 0.2052 0.0971 0.1722
8 0.1657 0.2409 0.1574 0.2387 0.1612 0.2286 0.1137 0.2113

12 0.2386 0.2927 0.2165 0.2828 0.2646 0.2881 0.1603 0.2404
24 0.276 0.3416 0.2709 0.3113 0.4467 0.4007 0.2069 0.2451

144 4 0.1472 0.2203 0.1427 0.2174 0.1385 0.2088 0.115 0.1823
8 0.2331 0.2985 0.158 0.2336 0.2523 0.1887 0.1246 0.2345

12 0.3148 0.3478 0.2233 0.2851 0.2465 0.1773 0.1687 0.2312
24 0.3475 0.3800 0.4703 0.3966 0.2359 0.2997 0.184 0.2211

3.4.2. Results of Multi-In Uni-Out Setting

Table 4 gives the comparative results for the forecasting models in the multi-in uni-
out setting. Table 4 shows that the LSTM and Transformer models go head to head in
terms of different settings. The LSTM has better MAE values in most of the cases in this
setting and Transformer has better MSE values with all the lookback window lengths
and forecast horizon lengths. However, in the multi-in multi-out setting, there is little
difference in the performance of the best and the worst performing models in each of the
settings. Additionally, like in multi-in multi-out for a short FHL of 4 or 8, the performances
are comparable for all LBLs, and it can even be said that, when a shorter LBL of 48 is
used, the performance is better. However, as the FHL becomes longer (12 or 24), the
performance improves as the FHL increases. Therefore, in this scenario, it can be suggested
that RNN, GRU or LSTM can be used, considering the fact that there is no major difference
in performance in each of the four models and the fact that Transformer requires much
larger computing resources as compared with rest of the models. Furthermore, like in the
multi-in multi-out setting with a shorter FHL, using a shorter LBL is sufficient; however,
for a longer FHL, a longer LBL is required.
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Table 4. Results in multiple-in uni-out setting. Lower MSE and MAE values are better. The best
results are shown in bold and underlined.

Models RNN GRU LSTM Transformer

LBL FHL MSE MAE MSE MAE MSE MAE MSE MAE

48 4 0.1366 0.2249 0.1435 0.2264 0.1112 0.1995 0.1120 0.1762
8 0.1382 0.2265 0.1382 0.228 0.1157 0.2083 0.1184 0.1834

12 0.1454 0.2488 0.1369 0.2264 0.1104 0.2049 0.1212 0.1893
24 0.2217 0.3054 0.1717 0.2594 0.1517 0.2405 0.1300 0.2020

96 4 0.1335 0.2249 0.1446 0.2259 0.1030 0.1947 0.1171 0.1763
8 0.1474 0.2331 0.133 0.2199 0.1154 0.1980 0.1245 0.1923

12 0.1410 0.2417 0.1301 0.2161 0.1087 0.1975 0.1217 0.1838
24 0.2178 0.2913 0.2174 0.2901 0.1919 0.2707 0.1747 0.2216

144 4 0.1396 0.2281 0.1494 0.2304 0.1106 0.1978 0.0993 0.1624
8 0.147 0.2278 0.1399 0.2254 0.1237 0.2076 0.1153 0.1669

12 0.1472 0.244 0.1347 0.2256 0.1054 0.1923 0.1192 0.1823
24 0.2457 0.3220 0.2096 0.2812 0.1801 0.2550 0.1562 0.2112

3.4.3. Results of Uni-In Uni-Out Setting

The results of the uni-in uni-out forecasting of the power of a solar pv is shown in Table
5. In this setting, Transformer mostly dominates the other models in terms of performance.
The rest of the models performed better than the Transformer model only occasionally. For
example, RNN performed better than the rest of the models in terms of mean squared error
when the lookback length was 48 and the forecast horizon was 4. Similarly, GRU performed
better than the rest of the models in terms of mean squared error when the lookback length
was 48 and the horizon was 12 and when the lookback length was 96 and the horizon
was 4. Finally, LSTM performed better than the rest of the models both in terms of mean
squared error and mean average error when the lookback length was 48 and the forecast
horizon was 8 and only in terms of mean squared error when the lookback length was 96
and the forecast horizon was 4. Like in the previous two settings for a shorter FHL, the
performances are comparable for different LBLs. For RNN, the performance for an FHL of
4 was even better when the LBL was 48 compared with an LBL of 96 or 144. However, for a
longer FHL to be forecasted, the results are better when a longer LBL is used.

Table 5. Results in uni-in uni-out setting. Lower MSE and MAE values are better. The best results are
shown in bold and underlined.

Models RNN GRU LSTM Transformer

LBL FHL MSE MAE MSE MAE MSE MAE MSE MAE

48 4 0.0887 0.1560 0.0917 0.1624 0.0923 0.1621 0.094 0.1518
8 0.1140 0.2099 0.1066 0.1890 0.1054 0.1815 0.1128 0.1914

12 0.1248 0.2241 0.1204 0.2033 0.1238 0.2094 0.1247 0.1924
24 0.201 0.2811 0.1947 0.2671 0.2167 0.2788 0.1832 0.2531

96 4 0.0892 0.1616 0.0900 0.1543 0.0879 0.1577 0.0912 0.1423
8 0.1057 0.1963 0.1031 0.1765 0.1004 0.1755 0.0996 0.1724

12 0.1272 0.2197 0.1276 0.1989 0.1202 0.2056 0.1065 0.1818
24 0.1968 0.2737 0.2324 0.2865 0.2055 0.2723 0.1624 0.2395

144 4 0.0949 0.1628 0.0927 0.1577 0.0931 0.161 0.0832 0.1463
8 0.1087 0.1925 0.1096 0.1837 0.1049 0.1828 0.0999 0.1582

12 0.132 0.2281 0.1266 0.2027 0.1216 0.2037 0.1123 0.1812
24 0.2341 0.2973 0.2414 0.2927 0.221 0.2848 0.2120 0.2541

3.4.4. Comparative Analysis of Results Obtained

The three forecast settings: multi-in multi-out, multi-in uni-out and uni-in uni-out are
useful in their own regards. A visual comparison of Tables 3–5 shows that these settings



Sensors 2023, 23, 3399 14 of 18

play different roles when the FHLs are varied for each LBL and each model. The simplest
of the three settings, the uni-in uni-out setting, seems to be much more effective than the
rest when the required FHL is short (4 or 8). Similarly, the multi-in uni-out setting seems to
be more effective when the FHLs are longer (12 or 24). So, either the multi-in uni-out or
uni-in uni-out setting can be used based on the FHL required, when the forecast of only a
single site is required. Finally the results of mutli-in multi-out are better than that of the
multi-in uni-out setting when the FHL is 4 or 8 but not as good as the uni-in uni-out setting
for the same FHL. For a longer FHL the results of the multi-in multi-out setting are not as
good as that of the other two. However, the multi-in multi-out setting is still useful when
the forecasts of all the sites are required at once without having to generate the forecast of
individual sites separately.

The plots for the output by each of the used forecasting models are presented in Figure
8. The plots in Figure 8 show that the forecast does not always follow the exact patterns of
the actual output. However, the forecasts are actually really close to the real output values.
Moreover, the plots for the Transformer model seem to model the output patterns better
than the rest of the models.
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Figure 8. Visualization of the forecasts of PV output from RNN, GRU, LSTM and Transformer in
the univariate setting for varying lookback lengths and forecast horizons. Lookback length has been
written as ’LB’, and forecast horizon has been written as ’H’. (a) LB:48 H:4; (b) LB:48 H:8; (c) LB:48
H:12; (d) LB:48 H:24; (e) LB:96 H:4; (f) LB:96 H:8; (g) LB:96 H:12; (h) LB:96 H:24; (i) LB:144 H:4;
(j) LB:144 H:8; (k) LB:144 H:12; (l) LB:144 H:24.

4. Conclusions

Unlike previously performed studies on solar PV output forecasting, this study has
opted to perform forecasts solely based on historical reading of the PV output values and
without considering weather information. This study has been performed so as to confirm
whether the forecast of solar PV output values in such conditions is suitable. The data used
were collected from multiple solar PV sites in Suncheon, South Korea, at regular intervals
for a duration of 6 months. The forecasting models used for the study are RNN, GRU,
LSTM and Transformer. This study was performed in three different settings (multivariate,
multi-in uni-out and univariate). For each of the different settings, Transformer seemed
to have performed better most of the time. However, it is necessary to consider that the
Transformer model requires more computing resources as compared to the rest of the
models. Therefore, it is best that a proper forecasting model is selected based on the
requirements and existing constraints such as the availability of resources and data. For
instance, the results for the multi-in uni-out setting were not very different for each of the
models, so if there a possible resource constraint, then the less powerful models such as
LSTM, GRU or even RNN can be considered. Furthermore, it is necessary that the data in
use are well processed and that there are very few anomalies in them. If these steps are
properly performed, then the forecasting requirements of solar PV power plant outputs
can be achieved even in the absence of meteorological data.
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In future work, various existing architectures can be studied to perform solar output
forecasts and a novel architecture can be suggested. Longer term forecasts can also be
studied for detailed system implementation for load management. Finally, the forecasted
results can also be used to detect anomalies in the system by comparing the actual output
of the plants with forecasted outputs.
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The following abbreviations are used in this manuscript:

TSF Time Series Forecasting
PV Photo Voltaic
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
LB Lookback
FH Forecast Horizon
TCN Temporal Convolution Networks
GNN Graph Neural Networks
SVM Support Vector Machines
GHI Global Horizontal Irradiance
DNI Direct Normal Irradiance
GA Genetic Algorithm
ARIMA Autoregressive Integrated Moving Average
KNN K- Nearest Neighbours
RF Random Forest
GAM Generative Additive Model
GRBT Gradient Boosted Regression Trees
BPTT Back Propagation Through Time
MSE Mean Square Error
MAE Mean Absolute Error
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