Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,782)

Search Parameters:
Keywords = multi-population

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 894 KB  
Commentary
Advancing Peptide-Based Vaccines Against Candida: A Comparative Perspective on Liposomal and Synthetic Formulations
by Hong Xin
J. Fungi 2025, 11(10), 715; https://doi.org/10.3390/jof11100715 - 2 Oct 2025
Abstract
The growing threat of multidrug-resistant fungal pathogens, especially Candida auris, has underscored the need for effective antifungal vaccines. This commentary highlights recent advances in peptide-based vaccination using the SNAP (Spontaneous Nanoliposome Antigen Presentation) platform, focusing on the FM-SNAP vaccine, a bivalent liposomal [...] Read more.
The growing threat of multidrug-resistant fungal pathogens, especially Candida auris, has underscored the need for effective antifungal vaccines. This commentary highlights recent advances in peptide-based vaccination using the SNAP (Spontaneous Nanoliposome Antigen Presentation) platform, focusing on the FM-SNAP vaccine, a bivalent liposomal formulation targeting the surface-expressed peptides fructose bisphosphate aldolase (Fba) and methionine synthase (Met6). Compared to earlier constructs such as MP12, FM-SNAP achieves superior immunogenicity and long-lasting protection at lower antigen doses. It elicits balanced Th1/Th2 cytokine responses and demonstrates durable efficacy in both immunocompetent and complement-deficient mouse models. The platform’s compatibility with clinically approved adjuvants (MPLA and QS-21), modular peptide design, and potential for multi-pathogen applications underscores its translational promise. FM-SNAP exemplifies a next-generation vaccine strategy that is both scalable and adaptable for high-risk immunocompromised populations. Full article
Show Figures

Figure 1

20 pages, 16092 KB  
Article
Spatial Accessibility in the Urban Environment of a Medium-Sized City: A Case Study of Public Amenities in Odense, Denmark
by Irma Kveladze
Urban Sci. 2025, 9(10), 407; https://doi.org/10.3390/urbansci9100407 - 2 Oct 2025
Abstract
Spatial accessibility is a key principle in urban studies, shaping how people reach amenities and services across cities. While most research concentrates on large metropolitan areas and central urban services, small and medium-sized cities and their main amenities remain less studied. To bridge [...] Read more.
Spatial accessibility is a key principle in urban studies, shaping how people reach amenities and services across cities. While most research concentrates on large metropolitan areas and central urban services, small and medium-sized cities and their main amenities remain less studied. To bridge this gap, this study explores spatial accessibility to public amenities in relation to population density in Odense, a medium-sized city known for its compact layout and robust infrastructure supporting walking, cycling, and public transport. Despite Odense’s proactive planning and multimodal transport network, marked accessibility inequalities still exist, especially in peripheral neighbourhoods. This research uses a data-driven approach combining network-based travel time analysis with grid-cell-based spatial visualisation. Additionally, a multi-criteria accessibility scoring framework is introduced, including indicators such as amenity density, diversity of services, temporal thresholds for walking and cycling, and population distribution. The results show an uneven accessibility landscape, with significant gaps in outer districts, highlighting the limitations of uniform planning thresholds. By applying spatial analytical principles, the study uncovers embedded socio-spatial inequalities in everyday urban access. These insights offer practical guidance for planners and policymakers, underscoring the importance of context-sensitive multimodal infrastructure and decentralised service provision to support sustainable urban growth. Full article
Show Figures

Figure 1

44 pages, 9238 KB  
Article
SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management
by Lihong Cao and Qi Wei
Biomimetics 2025, 10(10), 664; https://doi.org/10.3390/biomimetics10100664 - 1 Oct 2025
Abstract
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with [...] Read more.
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. Full article
Show Figures

Figure 1

34 pages, 424 KB  
Review
Smartphone Addiction in Youth: A Narrative Review of Systematic Evidence and Emerging Strategies
by Daniele Giansanti
Psychiatry Int. 2025, 6(4), 118; https://doi.org/10.3390/psychiatryint6040118 - 1 Oct 2025
Abstract
Smartphone addiction has emerged as a significant public health concern, particularly among adolescents and young adults. This narrative review, conducted in line with the ANDJ checklist, synthesizes evidence from 25 systematic reviews and meta-analyses, complemented by randomized controlled trials and clinical studies, to [...] Read more.
Smartphone addiction has emerged as a significant public health concern, particularly among adolescents and young adults. This narrative review, conducted in line with the ANDJ checklist, synthesizes evidence from 25 systematic reviews and meta-analyses, complemented by randomized controlled trials and clinical studies, to provide a structured overview of the field. The study selection flow and publication trends reveal a rapidly expanding research landscape, with most evidence produced in the last decade, reflecting both the ubiquity of smartphones and increasing awareness of their health impacts. The synthesis highlights converging findings across reviews: excessive smartphone use is consistently associated with psychosocial, behavioral, and academic challenges, alongside sleep disturbances and mental health symptoms. Common messages include the recognition of smartphone addiction as a multidimensional phenomenon, while emerging themes point to heterogeneity in definitions, tools, and methodological approaches. Comparative analysis of reviews underscores both shared risk factors—such as emotional dysregulation and social isolation—and differences in study designs and target populations. Importantly, this review identifies critical gaps, including the lack of standardized definitions, limited longitudinal evidence, and scarce cross-cultural validation. At the same time, promising opportunities are noted, from lifestyle-based interventions (e.g., physical activity) to educational and policy-level strategies fostering digital literacy and self-regulation. The post-pandemic context further emphasizes the need for sustained monitoring and adaptive responses. Overall, this review calls for youth-centered, multi-sector interventions aligned with WHO recommendations, supporting coordinated, evidence-based action across health, education, and policy domains. Full article
46 pages, 6388 KB  
Article
A Multi-Strategy Improved Zebra Optimization Algorithm for AGV Path Planning
by Cunji Zhang, Chuangeng Chen, Jiaqi Lu, Xuan Jing and Wei Liu
Biomimetics 2025, 10(10), 660; https://doi.org/10.3390/biomimetics10100660 - 1 Oct 2025
Abstract
The Zebra Optimization Algorithm (ZOA) is a metaheuristic algorithm inspired by the collective behavior of zebras in the wild. Like many other swarm intelligence algorithms, the ZOA faces several limitations, including slow convergence, susceptibility to local optima, and an imbalance between exploration and [...] Read more.
The Zebra Optimization Algorithm (ZOA) is a metaheuristic algorithm inspired by the collective behavior of zebras in the wild. Like many other swarm intelligence algorithms, the ZOA faces several limitations, including slow convergence, susceptibility to local optima, and an imbalance between exploration and exploitation. To address these challenges, this paper proposes an improved version of the ZOA, termed the Multi-strategy Improved Zebra Optimization Algorithm (MIZOA). First, a multi-population search strategy is introduced to replace the traditional single population structure, dividing the population into multiple subpopulations to enhance diversity and improve global convergence. Second, the mutation operation of genetic algorithm (GA) is integrated with the Metropolis criterion to boost exploration capability in the early stages while maintaining strong exploitation performance in the later stages. Third, a novel selective aggregation strategy is proposed, incorporating the hunting behavior of the Coati Optimization Algorithm (COA) and Lévy flight to further enhance global exploration and convergence accuracy during the defense phase. Experimental evaluations are conducted on 23 benchmark functions, comparing the MIZOA with eight existing swarm intelligence algorithms. The performance is assessed using non-parametric statistical tests, including the Wilcoxon rank-sum test and the Friedman test. The results demonstrate that the MIZOA achieves superior global convergence accuracy and optimization performance, confirming its robustness and effectiveness. The MIZOA was evaluated on real-world engineering problems against seven algorithms to validate its practical performance. Furthermore, when applied to path planning tasks for Automated Guided Vehicles (AGVs), the MIZOA consistently identifies paths closer to the global optimum in both simple and complex environments, thereby further validating the effectiveness of the proposed improvements. Full article
(This article belongs to the Section Biological Optimisation and Management)
18 pages, 30918 KB  
Article
Beyond Local Indicators: Integrating Aggregated Runoff into Rainwater Harvesting Potential Mapping
by Christy Mathew Damascene, Irene Pomarico, Aldo Fiori and Antonio Zarlenga
Water 2025, 17(19), 2866; https://doi.org/10.3390/w17192866 - 1 Oct 2025
Abstract
Water scarcity, driven by over-consumption, population growth, climate change, and pollution, poses severe threats to both human health and ecosystems. Rainwater harvesting (RWH) has emerged as a sustainable solution to mitigate these impacts, offering environmental, social, and economic benefits. Traditional RWH site selection [...] Read more.
Water scarcity, driven by over-consumption, population growth, climate change, and pollution, poses severe threats to both human health and ecosystems. Rainwater harvesting (RWH) has emerged as a sustainable solution to mitigate these impacts, offering environmental, social, and economic benefits. Traditional RWH site selection methods rely heavily on GIS-based Multi-Criteria Approaches, such as the Analytical Hierarchy Process, which typically assess runoff potential at the pixel scale using proxy indicators like runoff coefficients or drainage density. However, these methods often overlook horizontal water fluxes and temporal variability, leading to underestimation of the actual runoff available for harvesting. This study introduces an innovative enhancement to AHP/GIS-based methodologies for rainwater harvesting (RWH) site selection by incorporating Aggregated Runoff (AR) as a key criterion. Unlike traditional approaches, the use of AR—representing the total upstream surface water collected at each pixel—enables a more realistic and accurate assessment of RWH potential without increasing data or computational requirements. The proposed criterion is independent of the specific methodology or data layers adopted, making it broadly applicable and easily integrable into existing frameworks. The methodology is applied to the upper Tiber River catchment in Central Italy, demonstrating that AR-based assessments yield more realistic RWH potential maps compared to conventional methods. Additionally, the study proposes a quantile-based scoring system to account for inter-annual hydrological variability, enhancing the robustness of site selection under changing climate conditions. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

47 pages, 24562 KB  
Article
An Improved Whale Migration Optimization Algorithm for Cooperative UAV 3D Path Planning
by Zhanwei Liu, Shichao Li and Hong Xu
Biomimetics 2025, 10(10), 655; https://doi.org/10.3390/biomimetics10100655 - 1 Oct 2025
Abstract
This study proposes an Improved Whale Migration Algorithm (IWMA) to overcome the shortcomings of the original Whale Migration Algorithm, which suffers from premature convergence and insufficient local exploitation in high-dimensional multimodal optimization. IWMA introduces three enhancements: circle chaotic initialization to improve population diversity, [...] Read more.
This study proposes an Improved Whale Migration Algorithm (IWMA) to overcome the shortcomings of the original Whale Migration Algorithm, which suffers from premature convergence and insufficient local exploitation in high-dimensional multimodal optimization. IWMA introduces three enhancements: circle chaotic initialization to improve population diversity, a three-layer cooperative search framework to achieve a stronger balance between exploration and exploitation, and a dynamic adaptive mechanism with t-distribution re-exploration to reinforce both global escaping and local refinement. On the CEC2017 benchmark suite, IWMA demonstrates clear superiority over seven representative algorithms, delivering the best results on 27 out of 29 functions by best, 25 by mean, and 23 by standard deviation in 30 dimensions, and on 25, 18, and 18 functions, respectively, in 50 dimensions. Compared with other migration-based optimizers, its average rank improves by more than 30 percent, while runtime analysis shows only a small additional overhead of 7 to 12 percent. These outcomes, supported by convergence curves, boxplots, radar charts, and Wilcoxon tests, confirm the effectiveness of the proposed improvements. In six multi-UAV path planning scenarios, IWMA reduces the average cost by 14.5 percent compared with WMA and achieves up to 32.1 percent reduction in the most complex case. Overall, its average cost decreases by 27.4 percent across seven competitors, with a 23.6 percent improvement in the best solutions. These results demonstrate that the proposed modifications are effective, enabling IWMA to transfer its performance gains from benchmark tests to practical multi-UAV cooperative mission planning, where it consistently produces safer and smoother trajectories under complex constraints. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

27 pages, 2217 KB  
Article
A Collaborative Swarm-Differential Evolution Algorithm for Multi-Objective Multi-Robot Task Assignment
by Zhaohui Zhang, Wanqiu Zhao, Xu Bian and Hong Zhao
Appl. Sci. 2025, 15(19), 10627; https://doi.org/10.3390/app151910627 - 30 Sep 2025
Abstract
Multi-Robot Task Assignment (MRTA) is a critical and inherently multi-objective problem in diverse real-world applications, demanding the simultaneous optimization of conflicting objectives such as minimizing total travel distance and balancing robot workload. Existing multi-objective evolutionary algorithms (MOEAs) often struggle with slow convergence and [...] Read more.
Multi-Robot Task Assignment (MRTA) is a critical and inherently multi-objective problem in diverse real-world applications, demanding the simultaneous optimization of conflicting objectives such as minimizing total travel distance and balancing robot workload. Existing multi-objective evolutionary algorithms (MOEAs) often struggle with slow convergence and insufficient diversity when tackling the combinatorial complexity of large-scale MRTA instances. This paper introduces the Collaborative Swarm-Differential Evolution (CSDE) algorithm, a novel MOEA designed to overcome these limitations. CSDE’s core innovation lies in its deep, operator-level fusion of Differential Evolution’s (DE) robust global exploration capabilities with Particle Swarm Optimization’s (PSO) swift local exploitation prowess. This is achieved through a unique fused velocity update mechanism, enabling particles to dynamically benefit from their personal experience, collective swarm intelligence, and population diversity-driven knowledge transfer. Comprehensive experiments on various MRTA scenarios demonstrate that CSDE consistently achieves superior performance in terms of convergence, solution diversity, and Pareto front quality, significantly outperforming standard multi-objective algorithms like Multi-Objective Particle Swarm Optimization (MOPSO), Multi-Objective Differential Evolution (MODE), and Multi-Objective Genetic Algorithm (MOGA). This study highlights CSDE’s substantial contribution to the MRTA field and its potential for more effective and efficient multi-robot system deployment. Full article
28 pages, 2613 KB  
Review
Personalized Nutrition in Pediatric Chronic Diseases
by Marlene Escobedo-Monge, Robert H. Lustig, Sergey Suchkov, Sofia Blokh, Natalya Andronova, Olga Goryacheva, Marina Borisovna Moyseyak, Timur Vlasov, Arturo Solís Herrera, Veronika Polyakova, Elena Antonova and Aleksandr Tuykavin
Metabolites 2025, 15(10), 653; https://doi.org/10.3390/metabo15100653 - 30 Sep 2025
Abstract
This narrative review examines the application of personalized nutrition (PN) through multi-OMICS and trans-OMICS in pediatric populations, particularly in relation to chronic conditions such as obesity, type 2 diabetes, and celiac disease. We synthesize evidence to identify biomarkers and gene–environment interactions and translate [...] Read more.
This narrative review examines the application of personalized nutrition (PN) through multi-OMICS and trans-OMICS in pediatric populations, particularly in relation to chronic conditions such as obesity, type 2 diabetes, and celiac disease. We synthesize evidence to identify biomarkers and gene–environment interactions and translate molecular insights into individualized dietary guidance. Even though PN represents a promising strategy for optimizing child health, significant challenges remain in translating molecular findings into practical, cost-effective, and equitable interventions. We advocate integrating this knowledge into clinical practice and developing policies and standardized methodologies that ensure accessibility for all pediatric populations. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

56 pages, 1777 KB  
Review
Vis Inertiae and Statistical Inference: A Review of Difference-in-Differences Methods Employed in Economics and Other Subjects
by Bruno Paolo Bosco and Paolo Maranzano
Econometrics 2025, 13(4), 38; https://doi.org/10.3390/econometrics13040038 - 30 Sep 2025
Abstract
Difference in Differences (DiD) is a useful statistical technique employed by researchers to estimate the effects of exogenous events on the outcome of some response variables in random samples of treated units (i.e., units exposed to the event) ideally drawn from an infinite [...] Read more.
Difference in Differences (DiD) is a useful statistical technique employed by researchers to estimate the effects of exogenous events on the outcome of some response variables in random samples of treated units (i.e., units exposed to the event) ideally drawn from an infinite population. The term “effect” should be understood as the discrepancy between the post-event realisation of the response and the hypothetical realisation of that same outcome for the same treated units in the absence of the event. This theoretical discrepancy is clearly unobservable. To circumvent the implicit missing variable problem, DiD methods utilise the realisations of the response variable observed in comparable random samples of untreated units. The latter are samples of units drawn from the same population, but they are not exposed to the event under investigation. They function as the control or comparison group and serve as proxies for the non-existent untreated realisations of the responses in treated units during post-treatment periods. In summary, the DiD model posits that, in the absence of intervention and under specific conditions, treated units would exhibit behaviours that are indistinguishable from those of control or untreated units during the post-treatment periods. For the purpose of estimation, the method employs a combination of before–after and treatment–control group comparisons. The event that affects the response variables is referred to as “treatment.” However, it could also be referred to as “causal factor” to emphasise that, in the DiD approach, the objective is not to estimate a mere statistical association among variables. This review introduces the DiD techniques for researchers in economics, public policy, health research, management, environmental analysis, and other fields. It commences with the rudimentary methods employed to estimate the so-called Average Treatment Effect upon Treated (ATET) in a two-period and two-group case and subsequently addresses numerous issues that arise in a multi-unit and multi-period context. A particular focus is placed on the statistical assumptions necessary for a precise delineation of the identification process of the cause–effect relationship in the multi-period case. These assumptions include the parallel trend hypothesis, the no-anticipation assumption, and the SUTVA assumption. In the multi-period case, both the homogeneous and heterogeneous scenarios are taken into consideration. The homogeneous scenario refers to the situation in which the treated units are initially treated in the same periods. In contrast, the heterogeneous scenario involves the treatment of treated units in different periods. A portion of the presentation will be allocated to the developments associated with the DiD techniques that can be employed in the context of data clustering or spatio-temporal dependence. The present review includes a concise exposition of some policy-oriented papers that incorporate applications of DiD. The areas of focus encompass income taxation, migration, regulation, and environmental management. Full article
Show Figures

Figure 1

31 pages, 13120 KB  
Article
Assessment of Age-Friendly Streets in High-Density Urban Areas Using AFEAT, Street View Imagery, and Deep Learning: A Case Study of Qinhuai District, Nanjing, China
by Xiaoguang Liu, Yiyang Lv, Wangtao Li, Lihua Peng and Zhen Wu
Buildings 2025, 15(19), 3518; https://doi.org/10.3390/buildings15193518 - 30 Sep 2025
Abstract
With the rapid urban aging trend in China, evaluating the age-friendliness of street environments is critical for inclusive urban planning. This study proposes the Age-Friendly Environment Assessment Tool (AFEAT) to assess street-level age-friendliness in high-density urban contexts, grounded in the World Health Organization’s [...] Read more.
With the rapid urban aging trend in China, evaluating the age-friendliness of street environments is critical for inclusive urban planning. This study proposes the Age-Friendly Environment Assessment Tool (AFEAT) to assess street-level age-friendliness in high-density urban contexts, grounded in the World Health Organization’s (WHO) Global Age-Friendly Cities: A Guide and adapted to the spatial characteristics of Nanjing’s Qinhuai District. By integrating multi-source data such as street-view image segmentation, Point of Interest (POI)-based network accessibility, kernel density estimation, Analytic Hierarchy Process (AHP)-derived indicator weights, and Random Forest regression, the study develops a comprehensive and spatialized evaluation framework. The results reveal significant spatial disparities in age-friendliness across street segments, with Safe Mobility, Healthcare Services, and Walkable Environment identified as the most influential factors for older adults. High-performing areas are concentrated in the central urban core, while peripheral zones face challenges such as poor walkability, insufficient lighting, and a lack of facilities. The study recommends strengthening a walkability-based age-friendly safety and healthcare support system and optimizing the spatial distribution of recreational and medical facilities to address mismatches between supply and demand. These findings provide practical guidance for targeted, evidence-based interventions aimed at fostering equitable and resilient urban environments for aging populations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 2815 KB  
Article
Optimization of Pavement Maintenance Planning in Cambodia Using a Probabilistic Model and Genetic Algorithm
by Nut Sovanneth, Felix Obunguta, Kotaro Sasai and Kiyoyuki Kaito
Infrastructures 2025, 10(10), 261; https://doi.org/10.3390/infrastructures10100261 - 29 Sep 2025
Abstract
Optimizing pavement maintenance and rehabilitation (M&R) strategies is essential, especially in developing countries with limited budgets. This study presents an integrated framework combining a deterioration prediction model and a genetic algorithm (GA)-based optimization model to plan cost-effective M&R strategies for flexible pavements, including [...] Read more.
Optimizing pavement maintenance and rehabilitation (M&R) strategies is essential, especially in developing countries with limited budgets. This study presents an integrated framework combining a deterioration prediction model and a genetic algorithm (GA)-based optimization model to plan cost-effective M&R strategies for flexible pavements, including asphalt concrete (AC) and double bituminous surface treatment (DBST). The GA schedules multi-year interventions by accounting for varied deterioration rates and budget constraints to maximize pavement performance. The optimization process involves generating a population of candidate solutions representing a set of selected road sections for maintenance, followed by fitness evaluation and solution evolution. A mixed Markov hazard (MMH) model is used to model uncertainty in pavement deterioration, simulating condition transitions influenced by pavement bearing capacity, traffic load, and environmental factors. The MMH model employs an exponential hazard function and Bayesian inference via Markov Chain Monte Carlo (MCMC) to estimate deterioration rates and life expectancies. A case study on Cambodia’s road network evaluates six budget scenarios (USD 12–27 million) over a 10-year period, identifying the USD 18 million budget as the most effective. The framework enables road agencies to access maintenance strategies under various financial and performance conditions, supporting data-driven, sustainable infrastructure management and optimal fund allocation. Full article
Show Figures

Figure 1

21 pages, 4991 KB  
Article
Do Newly Built Urban Parks Support Higher Bird Diversity? Evidence from the High-Density Urban Built-Up Area of Zhengzhou, China
by Xiaxi Liuyang, Xiangyu Wang, Wenxi He, Lei Wang, Yang Cao and Shaokun Li
Diversity 2025, 17(10), 678; https://doi.org/10.3390/d17100678 - 28 Sep 2025
Abstract
Rapid urbanization has resulted in widespread habitat loss and fragmentation, threatening global biodiversity. Urban parks serve as essential refuges for wildlife within cities, particularly for birds, which are sensitive indicators of ecosystem health and habitat quality. In recent years, numerous Chinese cities have [...] Read more.
Rapid urbanization has resulted in widespread habitat loss and fragmentation, threatening global biodiversity. Urban parks serve as essential refuges for wildlife within cities, particularly for birds, which are sensitive indicators of ecosystem health and habitat quality. In recent years, numerous Chinese cities have begun integrating biodiversity-friendly design approaches into new park development. However, the effectiveness of these strategies remains insufficiently evaluated. This study assesses the ecological performance of newly built parks by examining 11 recently constructed parks (within the past decade) and 9 historical parks in Zhengzhou, China’s high-density urban area. Monthly bird surveys were conducted across all 20 parks from May to December 2020, covering breeding, post-breeding, and overwintering seasons. Our findings reveal that new parks significantly outperformed old parks in bird abundance, species richness, Shannon diversity index, and functional diversity. Analysis of environmental variables at both local (within-park) and landscape (1-km buffer) scales showed that habitat diversity and multi-layered vegetation structure were the most influential local factors promoting bird diversity, while green space connectivity was the primary landscape-scale contributor. Notably, neither park area nor age significantly predicted diversity patterns. Based on these results, we propose three key planning strategies: (1) enhancing habitat diversity within parks to support species from various ecological niches; (2) implementing multi-layered vegetation planting to provide diverse food resources and nesting opportunities; (3) improving green space connectivity to facilitate species movement and population persistence within urban environments. These findings provide valuable insights for designing more effective biodiversity-friendly urban green spaces. Full article
(This article belongs to the Special Issue Biodiversity Conservation in Urbanized Ecosystems)
Show Figures

Figure 1

22 pages, 14763 KB  
Article
Construction of a High-Density Genetic Map and QTL Mapping Analysis for Yield, Tuber Shape, and Eye Number in Diploid Potato
by Jing Yang, Chunguang Yao, Jiahao Miao, Nan Li, Faru Ji, Die Hu, Sitong Wang, Zixian Zhou, Kunyan Dai, Aie Chen and Canhui Li
Agriculture 2025, 15(19), 2032; https://doi.org/10.3390/agriculture15192032 - 28 Sep 2025
Abstract
Potato (Solanum tuberosum L.) is a globally important food crop, but its tetrasomic inheritance and diploid self-incompatibility have limited the discovery of potato genes and progress in breeding. Here, we developed an F2 segregating population consisting of 174 lines by crossing [...] Read more.
Potato (Solanum tuberosum L.) is a globally important food crop, but its tetrasomic inheritance and diploid self-incompatibility have limited the discovery of potato genes and progress in breeding. Here, we developed an F2 segregating population consisting of 174 lines by crossing a self-compatible genome-homozygous diploid line (Y8, female parent) with a heterozygous diploid line (IVP101, male parent), followed by selfing. Using whole-genome resequencing, we constructed a high-density genetic map containing 4464 recombinant bin markers with an average physical distance of 165.51 Kb. Phenotypic evaluation of 8 traits related to yield, tuber shape, and tuber eye number across three environments revealed significant parental differences and wide phenotypic variation within the F2 population. QTL (Quantitative trait loci) mapping using this genetic map and multi-environment phenotypic data identified 89 QTLs, including 7 previously reported QTLs/genes. In addition, 10 QTLs were stably detected across multiple seasons (stable QTLs). Further genetic effect analysis showed that favorable alleles of these stable QTLs significantly enhanced phenotypic values. Notably, two pleiotropic QTLs were identified on chromosomes 5 and 12; the major-effect QTL on chromosome 12 (qTY-12-6, qTS-12-3, and qTE-12-4) exhibited high phenotypic variance explained (PVE). Its favorable allele from Y8 significantly increased mean tuber weight, tuber number per plant, and promoted rounder tuber shape while reducing eye number, simultaneously improving yield and quality. Collectively, this study provides a reference for genetic mapping using homozygous and heterozygous diploid parents, and the identified QTLs offer valuable genetic resources for potato breeding and molecular mechanism research, enhancing our understanding of the genetic regulation of yield, tuber shape, and eye number in potato. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

30 pages, 2477 KB  
Article
Multi-Province Collaborative Carbon Emission Forecasting and Scenario Analysis Based on the Spatio-Temporal Attention Mechanism—Empowering the Green and Low-Carbon Transition of the Transportation Sector Through Technological Innovation
by Shukai Li, Jifeng Chen, Wei Dai, Fangyuan Li, Yuting Gong, Hongmei Gong and Ziyi Zhu
Sustainability 2025, 17(19), 8711; https://doi.org/10.3390/su17198711 - 28 Sep 2025
Abstract
As one of the primary contributors to carbon emissions in China, the transportation sector plays a pivotal role in achieving green and low-carbon development. Considering the spatio-temporal dependency characteristics of transportation carbon emissions driven by economic interactions and population mobility among provinces, this [...] Read more.
As one of the primary contributors to carbon emissions in China, the transportation sector plays a pivotal role in achieving green and low-carbon development. Considering the spatio-temporal dependency characteristics of transportation carbon emissions driven by economic interactions and population mobility among provinces, this study proposes a predictive framework for transportation carbon emissions based on a spatio-temporal attention mechanism from the perspective of multi-province spatio-temporal synergy. First, the study conducts transportation carbon emission accounting by considering both transportation fuel consumption and electricity usage, followed by feature selection using an enhanced STIRPAT model. Second, it integrates the spatio-temporal attention mechanism with graph convolutional neural networks to construct a multi-province transportation carbon emission collaborative prediction model. Comparative experiments highlight the superior performance of deep learning methods and spatio-temporal correlation modeling in multi-province transportation carbon emission collaborative prediction. Finally, three future development scenarios are designed to analyze the evolution paths of transportation carbon emissions. The results indicate that technological innovation can significantly improve the efficiency of transportation emission reduction. Moreover, given that the eastern region and the central and western regions are at distinct stages of development, it is essential to develop differentiated emission reduction strategies tailored to local conditions to facilitate a green and low-carbon transformation in the transportation sector. Full article
Show Figures

Figure 1

Back to TopTop