Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,062)

Search Parameters:
Keywords = multi-modal sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 49730 KB  
Article
AMSRDet: An Adaptive Multi-Scale UAV Infrared-Visible Remote Sensing Vehicle Detection Network
by Zekai Yan and Yuheng Li
Sensors 2026, 26(3), 817; https://doi.org/10.3390/s26030817 - 26 Jan 2026
Abstract
Unmanned Aerial Vehicle (UAV) platforms enable flexible and cost-effective vehicle detection for intelligent transportation systems, yet small-scale vehicles in complex aerial scenes pose substantial challenges from extreme scale variations, environmental interference, and single-sensor limitations. We present AMSRDet (Adaptive Multi-Scale Remote Sensing Detector), an [...] Read more.
Unmanned Aerial Vehicle (UAV) platforms enable flexible and cost-effective vehicle detection for intelligent transportation systems, yet small-scale vehicles in complex aerial scenes pose substantial challenges from extreme scale variations, environmental interference, and single-sensor limitations. We present AMSRDet (Adaptive Multi-Scale Remote Sensing Detector), an adaptive multi-scale detection network fusing infrared (IR) and visible (RGB) modalities for robust UAV-based vehicle detection. Our framework comprises four novel components: (1) a MobileMamba-based dual-stream encoder extracting complementary features via Selective State-Space 2D (SS2D) blocks with linear complexity O(HWC), achieving 2.1× efficiency improvement over standard Transformers; (2) a Cross-Modal Global Fusion (CMGF) module capturing global dependencies through spatial-channel attention while suppressing modality-specific noise via adaptive gating; (3) a Scale-Coordinate Attention Fusion (SCAF) module integrating multi-scale features via coordinate attention and learned scale-aware weighting, improving small object detection by 2.5 percentage points; and (4) a Separable Dynamic Decoder generating scale-adaptive predictions through content-aware dynamic convolution, reducing computational cost by 48.9% compared to standard DETR decoders. On the DroneVehicle dataset, AMSRDet achieves 45.8% mAP@0.5:0.95 (81.2% mAP@0.5) at 68.3 Frames Per Second (FPS) with 28.6 million (M) parameters and 47.2 Giga Floating Point Operations (GFLOPs), outperforming twenty state-of-the-art detectors including YOLOv12 (+0.7% mAP), DEIM (+0.8% mAP), and Mamba-YOLO (+1.5% mAP). Cross-dataset evaluation on Camera-vehicle yields 52.3% mAP without fine-tuning, demonstrating strong generalization across viewpoints and scenarios. Full article
(This article belongs to the Special Issue AI and Smart Sensors for Intelligent Transportation Systems)
Show Figures

Figure 1

27 pages, 91954 KB  
Article
A Robust DEM Registration Method via Physically Consistent Image Rendering
by Yunchou Li, Niangang Jiao, Feng Wang and Hongjian You
Appl. Sci. 2026, 16(3), 1238; https://doi.org/10.3390/app16031238 - 26 Jan 2026
Abstract
Digital elevation models (DEMs) play a critical role in geospatial analysis and surface modeling. However, due to differences in data collection payload, data processing methodology, and data reference baseline, DEMs acquired from various sources often exhibit systematic spatial offsets. This limitation substantially constrains [...] Read more.
Digital elevation models (DEMs) play a critical role in geospatial analysis and surface modeling. However, due to differences in data collection payload, data processing methodology, and data reference baseline, DEMs acquired from various sources often exhibit systematic spatial offsets. This limitation substantially constrains their accuracy and reliability in multi-source joint analysis and fusion applications. Traditional registration methods such as the Least-Z Difference (LZD) method are sensitive to gross errors, while multimodal registration approaches overlook the importance of elevation information. To address these challenges, this paper proposes a DEM registration method based on physically consistent rendering and multimodal image matching. The approach converts DEMs into image data through irradiance-based models and parallax geometric models. Feature point pairs are extracted using template-based matching techniques and further refined through elevation consistency analysis. Reliable correspondences are selected by jointly considering elevation error distributions and geometric consistency constraints, enabling robust affine transformation estimation and elevation bias correction. The experimental results demonstrate that in typical terrains such as urban areas, glaciers, and plains, the proposed method outperforms classical DEM registration algorithms and state-of-the-art remote sensing image registration algorithms. The results indicate clear advantages in registration accuracy, robustness, and adaptability to diverse terrain conditions, highlighting the potential of the proposed framework as a universal DEM collaborative registration solution. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

27 pages, 13307 KB  
Article
Synergistic Reinforcement and Multimodal Self-Sensing Properties of Hybrid Fiber-Reinforced Glass Sand ECC at Elevated Temperatures
by Lijun Ma, Meng Sun, Mingxuan Sun, Yunlong Zhang and Mo Liu
Polymers 2026, 18(3), 322; https://doi.org/10.3390/polym18030322 - 25 Jan 2026
Viewed by 52
Abstract
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a [...] Read more.
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a hybrid system of polypropylene fibers (PPFs) and carbon fibers (CFs). The evolution of mechanical properties and the multimodal self-sensing characteristics of the ECC were systematically investigated following thermal treatment from 20 °C to 800 °C. The results indicate that the hybrid system exhibits a significant synergistic effect: through PFFs’ pore-forming mechanism, internal vapor pressure is effectively released to mitigate spalling, while CFs provide residual strength compensation. Mechanically, the compressive strength increased by 51.32% (0.9% CF + 1.0% PPF) at 400 °C compared to ambient temperature, attributed to high-temperature-activated secondary hydration. Regarding self-sensing, the composite containing 1.1% CF and 1.5% PPF displayed superior thermosensitivity during heating (resistivity reduction of 49.1%), indicating potential for early fire warnings. Notably, pressure sensitivity was enhanced after high-temperature exposure, with the 0.7% CF + 0.5% PPF group achieving a Fractional Change in Resistivity of 31.1% at 600 °C. Conversely, flexural sensitivity presented a “thermally induced attenuation effect” primarily attributed to high-temperature-induced interfacial weakening. This study confirms that the “pore-formation” mechanism, combined with the reconstruction of the conductive network, governs the material’s macroscopic properties, providing a theoretical basis for green, intelligent, and fire-safe infrastructure. Full article
Show Figures

Figure 1

26 pages, 4329 KB  
Review
Advanced Sensor Technologies in Cutting Applications: A Review
by Motaz Hassan, Roan Kirwin, Chandra Sekhar Rakurty and Ajay Mahajan
Sensors 2026, 26(3), 762; https://doi.org/10.3390/s26030762 - 23 Jan 2026
Viewed by 213
Abstract
Advances in sensing technologies are increasingly transforming cutting operations by enabling data-driven condition monitoring, predictive maintenance, and process optimization. This review surveys recent developments in sensing modalities for cutting systems, including vibration sensors, acoustic emission sensors, optical and vision-based systems, eddy-current sensors, force [...] Read more.
Advances in sensing technologies are increasingly transforming cutting operations by enabling data-driven condition monitoring, predictive maintenance, and process optimization. This review surveys recent developments in sensing modalities for cutting systems, including vibration sensors, acoustic emission sensors, optical and vision-based systems, eddy-current sensors, force sensors, and emerging hybrid/multi-modal sensing frameworks. Each sensing approach offers unique advantages in capturing mechanical, acoustic, geometric, or electromagnetic signatures related to tool wear, process instability, and fault development, while also showing modality-specific limitations such as noise sensitivity, environmental robustness, and integration complexity. Recent trends show a growing shift toward hybrid and multi-modal sensor fusion, where data from multiple sensors are combined using advanced data analytics and machine learning to improve diagnostic accuracy and reliability under changing cutting conditions. The review also discusses how artificial intelligence, Internet of Things connectivity, and edge computing enable scalable, real-time monitoring solutions, along with the challenges related to data needs, computational costs, and system integration. Future directions highlight the importance of robust fusion architectures, physics-informed and explainable models, digital twin integration, and cost-effective sensor deployment to accelerate adoption across various manufacturing environments. Overall, these advancements position advanced sensing and hybrid monitoring strategies as key drivers of intelligent, Industry 4.0-oriented cutting processes. Full article
Show Figures

Figure 1

20 pages, 17064 KB  
Article
PriorSAM-DBNet: A SAM-Prior-Enhanced Dual-Branch Network for Efficient Semantic Segmentation of High-Resolution Remote Sensing Images
by Qiwei Zhang, Yisong Wang, Ning Li, Quanwen Jiang and Yong He
Sensors 2026, 26(2), 749; https://doi.org/10.3390/s26020749 - 22 Jan 2026
Viewed by 85
Abstract
Semantic segmentation of high-resolution remote sensing imagery is a critical technology for the intelligent interpretation of sensor data, supporting automated environmental monitoring and urban sensing systems. However, processing data from dense urban scenarios remains challenging due to sensor signal occlusions (e.g., shadows) and [...] Read more.
Semantic segmentation of high-resolution remote sensing imagery is a critical technology for the intelligent interpretation of sensor data, supporting automated environmental monitoring and urban sensing systems. However, processing data from dense urban scenarios remains challenging due to sensor signal occlusions (e.g., shadows) and the complexity of parsing multi-scale targets from optical sensors. Existing approaches often exhibit a trade-off between the accuracy of global semantic modeling and the precision of complex boundary recognition. While the Segment Anything Model (SAM) offers powerful zero-shot structural priors, its direct application to remote sensing is hindered by domain gaps and the lack of inherent semantic categorization. To address these limitations, we propose a dual-branch cooperative network, PriorSAM-DBNet. The main branch employs a Densely Connected Swin (DC-Swin) Transformer to capture cross-scale global features via a hierarchical shifted window attention mechanism. The auxiliary branch leverages SAM’s zero-shot capability to exploit structural universality, generating object-boundary masks as robust signal priors while bypassing semantic domain shifts. Crucially, we introduce a parameter-efficient Scaled Subsampling Projection (SSP) module that employs a weight-sharing mechanism to align cross-modal features, freezing the massive SAM backbone to ensure computational viability for practical sensor applications. Furthermore, a novel Attentive Cross-Modal Fusion (ACMF) module is designed to dynamically resolve semantic ambiguities by calibrating the global context with local structural priors. Extensive experiments on the ISPRS Vaihingen, Potsdam, and LoveDA-Urban datasets demonstrate that PriorSAM-DBNet outperforms state-of-the-art approaches. By fine-tuning only 0.91 million parameters in the auxiliary branch, our method achieves mIoU scores of 82.50%, 85.59%, and 53.36%, respectively. The proposed framework offers a scalable, high-precision solution for remote sensing semantic segmentation, particularly effective for disaster emergency response where rapid feature recognition from sensor streams is paramount. Full article
Show Figures

Figure 1

30 pages, 1726 KB  
Article
A Sensor-Oriented Multimodal Medical Data Acquisition and Modeling Framework for Tumor Grading and Treatment Response Analysis
by Linfeng Xie, Shanhe Xiao, Bihong Ming, Zhe Xiang, Zibo Rui, Xinyi Liu and Yan Zhan
Sensors 2026, 26(2), 737; https://doi.org/10.3390/s26020737 - 22 Jan 2026
Viewed by 36
Abstract
In precision oncology research, achieving joint modeling of tumor grading and treatment response, together with interpretable mechanism analysis, based on multimodal medical imaging and clinical data remains a challenging and critical problem. From a sensing perspective, these imaging and clinical data can be [...] Read more.
In precision oncology research, achieving joint modeling of tumor grading and treatment response, together with interpretable mechanism analysis, based on multimodal medical imaging and clinical data remains a challenging and critical problem. From a sensing perspective, these imaging and clinical data can be regarded as heterogeneous sensor-derived signals acquired by medical imaging sensors and clinical monitoring systems, providing continuous and structured observations of tumor characteristics and patient states. Existing approaches typically rely on invasive pathological grading, while grading prediction and treatment response modeling are often conducted independently. Moreover, multimodal fusion procedures generally lack explicit structural constraints, which limits their practical utility in clinical decision-making. To address these issues, a grade-guided multimodal collaborative modeling framework was proposed. Built upon mature deep learning models, including 3D ResNet-18, MLP, and CNN–Transformer, tumor grading was incorporated as a weakly supervised prior into the processes of multimodal feature fusion and treatment response modeling, thereby enabling an integrated solution for non-invasive grading prediction, treatment response subtype discovery, and intrinsic mechanism interpretation. Through a grade-guided feature fusion mechanism, discriminative information that is highly correlated with tumor malignancy and treatment sensitivity is emphasized in the multimodal joint representation, while irrelevant features are suppressed to prevent interference with model learning. Within a unified framework, grading prediction and grade-conditioned treatment response modeling are jointly realized. Experimental results on real-world clinical datasets demonstrate that the proposed method achieved an accuracy of 84.6% and a kappa coefficient of 0.81 in the tumor-grading prediction task, indicating a high level of consistency with pathological grading. In the treatment response prediction task, the proposed model attained an AUC of 0.85, a precision of 0.81, and a recall of 0.79, significantly outperforming single-modality models, conventional early-fusion models, and multimodal CNN–Transformer models without grading constraints. In addition, treatment-sensitive and treatment-resistant subtypes identified under grading conditions exhibited stable and significant stratification differences in clustering consistency and survival analysis, validating the potential value of the proposed approach for clinical risk assessment and individualized treatment decision-making. Full article
(This article belongs to the Special Issue Application of Optical Imaging in Medical and Biomedical Research)
Show Figures

Figure 1

27 pages, 23394 KB  
Article
YOLO-MSRF: A Multimodal Segmentation and Refinement Framework for Tomato Fruit Detection and Segmentation with Count and Size Estimation Under Complex Illumination
by Ao Li, Chunrui Wang, Aichen Wang, Jianpeng Sun, Fengwei Gu and Tianxue Zhang
Agriculture 2026, 16(2), 277; https://doi.org/10.3390/agriculture16020277 - 22 Jan 2026
Viewed by 59
Abstract
Segmentation of tomato fruits under complex lighting conditions remains technically challenging, especially in low illumination or overexposure, where RGB-only methods often suffer from blurred boundaries and missed small or occluded instances, and simple multimodal fusion cannot fully exploit complementary cues. To address these [...] Read more.
Segmentation of tomato fruits under complex lighting conditions remains technically challenging, especially in low illumination or overexposure, where RGB-only methods often suffer from blurred boundaries and missed small or occluded instances, and simple multimodal fusion cannot fully exploit complementary cues. To address these gaps, we propose YOLO-MSRF, a lightweight RGB–NIR multimodal segmentation and refinement framework for robust tomato perception in facility agriculture. Firstly, we propose a dual-branch multimodal backbone, introduce Cross-Modality Difference Complement Fusion (C-MDCF) for difference-based complementary RGB–NIR fusion, and design C2f-DCB to reduce computation while strengthening feature extraction. Furthermore, we develop a cross-scale attention fusion network and introduce the proposed MS-CPAM to jointly model multi-scale channel and position cues, strengthening fine-grained detail representation and spatial context aggregation for small and occluded tomatoes. Finally, we design the Multi-Scale Fusion and Semantic Refinement Network, MSF-SRNet, which combines the Scale-Concatenate Fusion Module (Scale-Concat) fusion with SDI-based cross-layer detail injection to progressively align and refine multi-scale features, improving representation quality and segmentation accuracy. Extensive experiments show that YOLO-MSRF achieves substantial gains under weak and low-light conditions, where RGB-only models are most prone to boundary degradation and missed instances, and it still delivers consistent improvements on the mixed four-light validation set, increasing mAP0.5 by 2.3 points, mAP0.50.95 by 2.4 points, and mIoU by 3.60 points while maintaining real-time inference at 105.07 FPS. The proposed system further supports counting, size estimation, and maturity analysis of harvestable tomatoes, and can be integrated with depth sensing and yield estimation to enable real-time yield prediction in practical greenhouse operations. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 10692 KB  
Article
Short-Time Homomorphic Deconvolution (STHD): A Novel 2D Feature for Robust Indoor Direction of Arrival Estimation
by Yeonseok Park and Jun-Hwa Kim
Sensors 2026, 26(2), 722; https://doi.org/10.3390/s26020722 - 21 Jan 2026
Viewed by 127
Abstract
Accurate indoor positioning and navigation remain significant challenges, with audio sensor-based sound source localization emerging as a promising sensing modality. Conventional methods, often reliant on multi-channel processing or time-delay estimation techniques such as Generalized Cross-Correlation, encounter difficulties regarding computational complexity, hardware synchronization, and [...] Read more.
Accurate indoor positioning and navigation remain significant challenges, with audio sensor-based sound source localization emerging as a promising sensing modality. Conventional methods, often reliant on multi-channel processing or time-delay estimation techniques such as Generalized Cross-Correlation, encounter difficulties regarding computational complexity, hardware synchronization, and reverberant environments where time difference in arrival cues are masked. While machine learning approaches have shown potential, their performance depends heavily on the discriminative power of input features. This paper proposes a novel feature extraction method named Short-Time Homomorphic Deconvolution, which transforms multi-channel audio signals into a 2D Time × Time-of-Flight representation. Unlike prior 1D methods, this feature effectively captures the temporal evolution and stability of time-of-flight differences between microphone pairs, offering a rich and robust input for deep learning models. We validate this feature using a lightweight Convolutional Neural Network integrated with a dual-stage channel attention mechanism, designed to prioritize reliable spatial cues. The system was trained on a large-scale dataset generated via simulations and rigorously tested using real-world data acquired in an ISO-certified anechoic chamber. Experimental results demonstrate that the proposed model achieves precise Direction of Arrival estimation with a Mean Absolute Error of 1.99 degrees in real-world scenarios. Notably, the system exhibits remarkable consistency between simulation and physical experiments, proving its effectiveness for robust indoor navigation and positioning systems. Full article
Show Figures

Figure 1

15 pages, 4461 KB  
Article
Conceptualising Sound, Inferring Structure, Making Meaning: Artistic Considerations in Ravel’s ‘La vallée des cloches’
by Billy O’Brien
Arts 2026, 15(1), 23; https://doi.org/10.3390/arts15010023 - 21 Jan 2026
Viewed by 93
Abstract
Processes of preparing repertoire for performance in the field of artistic pianism are far from linear, often involving many epistemic modes contributing to an ever-evolving relationship between the pianist, the score and their instrument. Beyond the absorption and internalisation of the score (note-learning, [...] Read more.
Processes of preparing repertoire for performance in the field of artistic pianism are far from linear, often involving many epistemic modes contributing to an ever-evolving relationship between the pianist, the score and their instrument. Beyond the absorption and internalisation of the score (note-learning, memorisation, addressing technical issues), a range of contingent elements preoccupy pianists in their artistic journey of interpretation. These multifarious influences and approaches have increasingly been acknowledged in the field of Artistic Research, which has for some time sought to move beyond textualist, singular readings of works as bearers of fixed meanings and recognise the creative role of performers and the experience they bring. Through scholarly and phenomenological enquiry concerning the practice of ‘La vallée des cloches’ from Miroirs by Maurice Ravel, in this article, I attempt to represent the multi-modal complexity involved in the creative process of interpretation from my perspective as pianist and artistic researcher. I present novel engagement with scholarship in a multidisciplinary sense, demonstrating a dialogue through which scholarship and performance can interact. I reveal new insights about ‘La vallée des cloches’ through the analysis of my own diary entries logged over three practice sessions, exploring the themes of sound conceptualisation, the consideration of musical structure, and the creation of meaning. Full article
(This article belongs to the Special Issue Creating Musical Experiences)
Show Figures

Figure 1

9 pages, 630 KB  
Perspective
Digital-Intelligent Precision Health Management: An Integrative Framework for Chronic Disease Prevention and Control
by Yujia Ma, Dafang Chen and Jin Xie
Biomedicines 2026, 14(1), 223; https://doi.org/10.3390/biomedicines14010223 - 20 Jan 2026
Viewed by 172
Abstract
Non-communicable diseases (NCDs) impose an overwhelming burden on global health systems. Prevailing healthcare for NCDs remains largely hospital-centered, episodic, and reactive, rendering them poorly suited to address the long-term, heterogeneous, and multifactorial nature of NCDs. Rapid advances in digital technologies, artificial intelligence (AI), [...] Read more.
Non-communicable diseases (NCDs) impose an overwhelming burden on global health systems. Prevailing healthcare for NCDs remains largely hospital-centered, episodic, and reactive, rendering them poorly suited to address the long-term, heterogeneous, and multifactorial nature of NCDs. Rapid advances in digital technologies, artificial intelligence (AI), and precision medicine have catalyzed the development of an integrative framework for digital-intelligent precision health management, characterized by the functional integration of data, models, and decision support. It is best understood as an integrated health management framework operating across three interdependent dimensions. First, it is grounded in multidimensional health-related phenotyping, enabled by continuous digital sensing, wearable and ambient devices, and multi-omics profiling, which together allow for comprehensive, longitudinal characterization of individual health states in real-world settings. Second, it leverages intelligent risk warning and early diagnosis, whereby multimodal data are fused using advanced machine learning algorithms to generate dynamic risk prediction, detect early pathological deviations, and refine disease stratification beyond conventional static models. Third, it culminates in health management under intelligent decision-making, integrating digital twins and AI health agents to support personalized intervention planning, virtual simulation, adaptive optimization, and closed-loop management across the disease continuum. Framed in this way, digital-intelligent precision health management enables a fundamental shift from passive care towards proactive, anticipatory, and individual-centered health management. This Perspectives article synthesizes recent literature from the past three years, critically examines translational and ethical challenges, and outlines future directions for embedding this framework within population health and healthcare systems. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

19 pages, 393 KB  
Article
HybridSense-LLM: A Structured Multimodal Framework for Large-Language-Model–Based Wellness Prediction from Wearable Sensors with Contextual Self-Reports
by Cheng-Huan Yu and Mohammad Masum
Bioengineering 2026, 13(1), 120; https://doi.org/10.3390/bioengineering13010120 - 20 Jan 2026
Viewed by 185
Abstract
Wearable sensors generate continuous physiological and behavioral data at a population scale, yet wellness prediction remains limited by noisy measurements, irregular sampling, and subjective outcomes. We introduce HybridSense, a unified framework that integrates raw wearable signals and their statistical descriptors with large language [...] Read more.
Wearable sensors generate continuous physiological and behavioral data at a population scale, yet wellness prediction remains limited by noisy measurements, irregular sampling, and subjective outcomes. We introduce HybridSense, a unified framework that integrates raw wearable signals and their statistical descriptors with large language model–based reasoning to produce accurate and interpretable estimates of stress, fatigue, readiness, and sleep quality. Using the PMData dataset, minute-level heart rate and activity logs are transformed into daily statistical features, whose relevance is ranked using a Random Forest model. These features, together with short waveform segments, are embedded into structured prompts and evaluated across seven prompting strategies using three large language model families: OpenAI 4o-mini, Gemini 2.0 Flash, and DeepSeek Chat. Bootstrap analyses demonstrate robust, task-dependent performance. Zero-shot prompting performs best for fatigue and stress, while few-shot prompting improves sleep-quality estimation. HybridSense further enhances readiness prediction by combining high-level descriptors with waveform context, and self-consistency and tree-of-thought prompting stabilize predictions for highly variable targets. All evaluated models exhibit low inference cost and practical latency. These results suggest that prompt-driven large language model reasoning, when paired with interpretable signal features, offers a scalable and transparent approach to wellness prediction from consumer wearable data. Full article
Show Figures

Figure 1

27 pages, 1619 KB  
Article
Uncertainty-Aware Multimodal Fusion and Bayesian Decision-Making for DSS
by Vesna Antoska Knights, Marija Prchkovska, Luka Krašnjak and Jasenka Gajdoš Kljusurić
AppliedMath 2026, 6(1), 16; https://doi.org/10.3390/appliedmath6010016 - 20 Jan 2026
Viewed by 81
Abstract
Uncertainty-aware decision-making increasingly relies on multimodal sensing pipelines that must fuse correlated measurements, propagate uncertainty, and trigger reliable control actions. This study develops a unified mathematical framework for multimodal data fusion and Bayesian decision-making under uncertainty. The approach integrates adaptive Covariance Intersection (aCI) [...] Read more.
Uncertainty-aware decision-making increasingly relies on multimodal sensing pipelines that must fuse correlated measurements, propagate uncertainty, and trigger reliable control actions. This study develops a unified mathematical framework for multimodal data fusion and Bayesian decision-making under uncertainty. The approach integrates adaptive Covariance Intersection (aCI) for correlation-robust sensor fusion, a Gaussian state–space backbone with Kalman filtering, heteroskedastic Bayesian regression with full posterior sampling via an affine-invariant MCMC sampler, and a Bayesian likelihood-ratio test (LRT) coupled to a risk-sensitive proportional–derivative (PD) control law. Theoretical guarantees are provided by bounding the state covariance under stability conditions, establishing convexity of the aCI weight optimization on the simplex, and deriving a Bayes-risk-optimal decision threshold for the LRT under symmetric Gaussian likelihoods. A proof-of-concept agro-environmental decision-support application is considered, where heterogeneous data streams (IoT soil sensors, meteorological stations, and drone-derived vegetation indices) are fused to generate early-warning alarms for crop stress and to adapt irrigation and fertilization inputs. The proposed pipeline reduces predictive variance and sharpens posterior credible intervals (up to 34% narrower 95% intervals and 44% lower NLL/Brier score under heteroskedastic modeling), while a Bayesian uncertainty-aware controller achieves 14.2% lower water usage and 35.5% fewer false stress alarms compared to a rule-based strategy. The framework is mathematically grounded yet domain-independent, providing a probabilistic pipeline that propagates uncertainty from raw multimodal data to operational control actions, and can be transferred beyond agriculture to robotics, signal processing, and environmental monitoring applications. Full article
(This article belongs to the Section Probabilistic & Statistical Mathematics)
Show Figures

Figure 1

24 pages, 5196 KB  
Article
An Optical–SAR Remote Sensing Image Automatic Registration Model Based on Multi-Constraint Optimization
by Yaqi Zhang, Shengbo Chen, Xitong Xu, Jiaqi Yang, Yuqiao Suo, Jinchen Zhu, Menghan Wu, Aonan Zhang and Qiqi Li
Remote Sens. 2026, 18(2), 333; https://doi.org/10.3390/rs18020333 - 19 Jan 2026
Viewed by 186
Abstract
Accurate registration of optical and synthetic aperture radar (SAR) images is a fundamental prerequisite for multi-source remote sensing data fusion and analysis. However, due to the substantial differences in imaging mechanisms, optical–SAR image pairs often exhibit significant radiometric discrepancies and spatially varying geometric [...] Read more.
Accurate registration of optical and synthetic aperture radar (SAR) images is a fundamental prerequisite for multi-source remote sensing data fusion and analysis. However, due to the substantial differences in imaging mechanisms, optical–SAR image pairs often exhibit significant radiometric discrepancies and spatially varying geometric inconsistencies, which severely limit the robustness of traditional feature or region-based registration methods in cross-modal scenarios. To address these challenges, this paper proposes an end-to-end Optical–SAR Registration Network (OSR-Net) based on multi-constraint joint optimization. The proposed framework explicitly decouples cross-modal feature alignment and geometric correction, enabling robust registration under large appearance variation. Specifically, a multi-modal feature extraction module constructs a shared high-level representation, while a multi-scale channel attention mechanism adaptively enhances cross-modal feature consistency. A multi-scale affine transformation prediction module provides a coarse-to-fine geometric initialization, which stabilizes parameter estimation under complex imaging conditions. Furthermore, an improved spatial transformer network is introduced to perform structure-preserving geometric refinement, mitigating spatial distortion induced by modality discrepancies. In addition, a multi-constraint loss formulation is designed to jointly enforce geometric accuracy, structural consistency, and physical plausibility. By employing a dynamic weighting strategy, the optimization process progressively shifts from global alignment to local structural refinement, effectively preventing degenerate solutions and improving robustness. Extensive experiments on public optical–SAR datasets demonstrate that the proposed method achieves accurate and stable registration across diverse scenes, providing a reliable geometric foundation for subsequent multi-source remote sensing data fusion. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

24 pages, 15825 KB  
Article
Enhancing High-Resolution Land Cover Classification Using Multi-Level Cross-Modal Attention Fusion
by Yangwei Jiang, Ting Liu, Junhao Zhou, Yihan Guo and Tangao Hu
Land 2026, 15(1), 181; https://doi.org/10.3390/land15010181 - 19 Jan 2026
Viewed by 200
Abstract
High-precision land cover classification is fundamental to environmental monitoring, urban planning, and sustainable land-use management. With the growing availability of multimodal remote sensing data, combining spectral and structural information has become an effective strategy for improving classification performance in complex high-resolution scenes. However, [...] Read more.
High-precision land cover classification is fundamental to environmental monitoring, urban planning, and sustainable land-use management. With the growing availability of multimodal remote sensing data, combining spectral and structural information has become an effective strategy for improving classification performance in complex high-resolution scenes. However, most existing methods predominantly rely on shallow feature concatenation, which fails to capture long-range dependencies and cross-modal interactions that are critical for distinguishing fine-grained land cover categories. This study proposes a multi-level cross-modal attention fusion network, Cross-Modal Cross-Attention UNet (CMCAUNet), which integrates a Cross-Modal Cross-Attention Fusion (CMCA) module and a Skip-Connection Attention Gate (SCAG) module. The CMCA module progressively enhances multimodal feature representations throughout the encoder, while the SCAG module leverages high-level semantics to refine spatial details during decoding and improve boundary delineation. Together, these modules enable more effective integration of spectral–textural and structural information. Experiments conducted on the ISPRS Vaihingen and Potsdam datasets demonstrate the effectiveness of the proposed approach. CMCAUNet achieves an mean Intersection over Union (mIoU) ratio of 81.49% and 84.76%, with Overall Accuracy (OA) of 90.74% and 90.28%, respectively. The model also shows superior performance in small object classification, with targets like “Car,” achieving 90.85% and 96.98% OA for the “Car” category. Ablation studies further confirm that the combination of CMCA and SCAG modules significantly improves feature discriminability and leads to more accurate and detailed land cover maps. Full article
Show Figures

Figure 1

13 pages, 3196 KB  
Article
Enhancing Temperature Sensing in Fiber Specklegram Sensors Using Multi-Dataset Deep Learning Models: Data Scaling Analysis
by Francisco J. Vélez Hoyos, Juan D. Arango, Víctor H. Aristizábal, Carlos Trujillo and Jorge A. Herrera-Ramírez
Photonics 2026, 13(1), 84; https://doi.org/10.3390/photonics13010084 - 19 Jan 2026
Viewed by 105
Abstract
This study presents a robust deep learning-based approach for temperature sensing using Fiber Specklegram Sensors (FSS), leveraging an extended experimental framework to evaluate model generalization. A convolutional neural network (CNN), specifically a customized MobileNet architecture (MNet-reg), was trained on multiple experimental datasets to [...] Read more.
This study presents a robust deep learning-based approach for temperature sensing using Fiber Specklegram Sensors (FSS), leveraging an extended experimental framework to evaluate model generalization. A convolutional neural network (CNN), specifically a customized MobileNet architecture (MNet-reg), was trained on multiple experimental datasets to assess the impact of increasing data availability on sensing accuracy. Generalization is evaluated as cross-dataset performance under unseen experimental realizations, rather than under controlled intra-dataset splits. The experimental setup utilized a multi-mode optical fiber (MMF) (core diameter 62.5 µm) subjected to controlled thermal cycles via a PID-regulated heating system. The curated dataset comprises 24,528 specklegram images captured over a temperature range of 25.00 °C to 200.00 °C with increments of ~0.20 °C. The experimental results demonstrate that models trained with an increasing number of datasets (from 1 to 13) significantly improve accuracy, reducing Mean Absolute Error (MAE) from 13.39 to 0.69 °C, and achieving a Root Mean Square Error (RMSE) of 0.90 °C with an R2 score of 0.99. Our systematic analysis establishes that scaling experimental data diversity—through training on multiple independent realizations—is the foundational strategy to overcome domain shift and enable robust cross-dataset generalization. Full article
(This article belongs to the Special Issue Optical Fiber Sensors: Recent Progress and Future Prospects)
Show Figures

Figure 1

Back to TopTop