Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (230)

Search Parameters:
Keywords = multi-laser forming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4156 KiB  
Article
Numerical and Experimental Study on Deposition Mechanism of Laser-Assisted Plasma-Sprayed Y2O3 Coating
by Hui Zou, Xutao Zhao, Bin Fu, Huabao Yang and Chengda Sun
Coatings 2025, 15(8), 904; https://doi.org/10.3390/coatings15080904 (registering DOI) - 2 Aug 2025
Abstract
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, [...] Read more.
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, the temperature of coating particles under laser loading displays a gradient distribution, with the surface having the highest temperature. The particles deposit on the substrate to form uniform pits of a certain depth. Plastic deformation causes maximum stress to occur at the edges of the pits and maximum strain to occur on the sidewall of the pits. The deposition region had both compressive and tensile stresses, and laser loading greatly reduced the tensile stresses’ magnitude while having less of an impact on the particle strains. Laser assistance promotes further melting of particles, reduces coating thickness, lowers coating porosity to 3.94%, increases hardness to 488 MPa, reduces maximum pore size from 68 µm to 32 µm, and causes particle sputtering to gradually evolve from being disc-shaped to being finger-shaped, creating cavities at the coating edges. The comparison between the surface morphology and the cross-section pores of the experimentally prepared coating verified the rationality and viability of the simulation work. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

14 pages, 2733 KiB  
Article
Study on Microstructure and Wear Resistance of Multi-Layer Laser Cladding Fe901 Coating on 65 Mn Steel
by Yuzhen Yu, Weikang Ding, Xi Wang, Donglu Mo and Fan Chen
Materials 2025, 18(15), 3505; https://doi.org/10.3390/ma18153505 - 26 Jul 2025
Viewed by 246
Abstract
65 Mn is a high-quality carbon structural steel that exhibits excellent mechanical properties and machinability. It finds broad applications in machinery manufacturing, agricultural tools, and mining equipment, and is commonly used for producing mechanical parts, springs, and cutting tools. Fe901 is an iron-based [...] Read more.
65 Mn is a high-quality carbon structural steel that exhibits excellent mechanical properties and machinability. It finds broad applications in machinery manufacturing, agricultural tools, and mining equipment, and is commonly used for producing mechanical parts, springs, and cutting tools. Fe901 is an iron-based alloy that exhibits excellent hardness, structural stability, and wear resistance. It is widely used in surface engineering applications, especially laser cladding, due to its ability to form dense and crack-free metallurgical coatings. To enhance the surface hardness and wear resistance of 65 Mn steel, this study employs a laser melting process to deposit a multi-layer Fe901 alloy coating. The phase composition, microstructure, microhardness, and wear resistance of the coatings are investigated using X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), Vickers hardness testing, and friction-wear testing. The results show that the coatings are dense and uniform, without visible defects. The main phases in the coating include solid solution, carbides, and α-phase. The microstructure comprises dendritic, columnar, and equiaxed crystals. The microhardness of the cladding layer increases significantly, with the multilayer coating reaching 3.59 times the hardness of the 65 Mn substrate. The coatings exhibit stable and relatively low friction coefficients ranging from 0.38 to 0.58. Under identical testing conditions, the wear resistance of the coating surpasses that of the substrate, and the multilayer coating shows better wear performance than the single-layer one. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 7614 KiB  
Article
The Influence of Print Orientation and Discontinuous Carbon Fiber Content on the Tensile Properties of Selective Laser-Sintered Polyamide 12
by Jonathan J. Slager, Joshua T. Green, Samuel D. Levine and Roger V. Gonzalez
Polymers 2025, 17(15), 2028; https://doi.org/10.3390/polym17152028 - 25 Jul 2025
Viewed by 328
Abstract
Discontinuous fibers are commonly added to matrix materials in additive manufacturing to enhance properties, but such benefits may be constrained by print and fiber orientation. The additive processes of forming rasters and layers in powder bed fusion inherently cause anisotropy in printed parts. [...] Read more.
Discontinuous fibers are commonly added to matrix materials in additive manufacturing to enhance properties, but such benefits may be constrained by print and fiber orientation. The additive processes of forming rasters and layers in powder bed fusion inherently cause anisotropy in printed parts. Many print parameters, such as laser, temperature, and hatch pattern, influence the anisotropy of tensile properties. This study characterizes fiber orientation attributed to recoating non-encapsulated fibers and the resulting anisotropic tensile properties. Tensile and fracture properties of polyamide 12 reinforced with 0%, 2.5%, 5%, and 10% discontinuous carbon fibers by volume were characterized in two primary print/tensile loading orientations: tensile loading parallel to the recoater (“horizontal specimens”) and tensile load along the build axis (“vertical specimens”). Density and fractographic analysis indicate a homogeneous mixture with low porosity and primary fiber orientation along the recoating direction for both print orientations. Neat specimens (zero fiber) loaded in either direction have similar tensile properties. However, fiber-reinforced vertical specimens have significantly reduced consistency and tensile strength as fiber content increased, while the opposite is true for horizontal specimens. These datasets and results provide a mechanism to tune material properties and improve the functionality of selectively laser-sintered fiber-reinforced parts through print orientation selection. These datasets could be used to customize functionally graded parts with multi-material selective laser-sintering manufacturing. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

14 pages, 3449 KiB  
Article
Superhydrophobic Coating on 6061 Aluminum Alloy Fabricated by Femtosecond Laser Etching and Anodic Oxidation
by Quanlv Liu and Yuxin Wang
Coatings 2025, 15(7), 816; https://doi.org/10.3390/coatings15070816 - 11 Jul 2025
Viewed by 438
Abstract
A superhydrophobic surface with hierarchical micro/nano-array structures was successfully fabricated on 6061 aluminum alloy through a combination of femtosecond laser etching and anodic oxidation. Femtosecond laser etching formed a regularly arranged microscale “pit-protrusion” array on the aluminum alloy surface. After modification with a [...] Read more.
A superhydrophobic surface with hierarchical micro/nano-array structures was successfully fabricated on 6061 aluminum alloy through a combination of femtosecond laser etching and anodic oxidation. Femtosecond laser etching formed a regularly arranged microscale “pit-protrusion” array on the aluminum alloy surface. After modification with a fluorosilane ethanol solution, the surface exhibited superhydrophobicity with a contact angle of 154°. Subsequently, the anodic oxidation process formed an anodic oxide film dominated by an array of aluminum oxide (Al2O3) nanopores at the submicron scale. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that the nanopore structures uniformly and continuously covered the laser-ablated layer. This hierarchical structure significantly increased the surface water contact angle to 162°. Wettability analysis showed that the prepared composite coating formed an air layer accounting for 91% of the surface area. Compared with the sample only treated by femtosecond laser etching, the presence of the Al2O3 nanopore structure significantly enhanced the mechanical durability, superhydrophobic durability, and corrosion resistance of the superhydrophobic surface. The proposed multi-step fabrication strategy offers an innovative method for creating multifunctional, durable superhydrophobic coatings and has important implications for their large-scale industrial use. Full article
(This article belongs to the Special Issue Superhydrophobic Coatings, 2nd Edition)
Show Figures

Figure 1

21 pages, 14023 KiB  
Article
Geomatic Techniques for the Mitigation of Hydrogeological Risk: The Modeling of Three Watercourses in Southern Italy
by Serena Artese and Giuseppe Artese
GeoHazards 2025, 6(3), 34; https://doi.org/10.3390/geohazards6030034 - 2 Jul 2025
Viewed by 269
Abstract
In recent decades, climate change has led to more frequent episodes of extreme rainfall, increasing the risk of river flooding. Streams and rivers characterized by short flow times are subject to rapid and impressive floods; for this reason, the modeling of their beds [...] Read more.
In recent decades, climate change has led to more frequent episodes of extreme rainfall, increasing the risk of river flooding. Streams and rivers characterized by short flow times are subject to rapid and impressive floods; for this reason, the modeling of their beds is of fundamental importance for the execution of hydraulic calculations capable of predicting the flow rates and identifying the points where floods may occur. In the context of studies conducted on three watercourses in Calabria (Italy), different survey and restitution techniques were used (aerial LiDAR, terrestrial laser scanner, GNSS, photogrammetry). By integrating these methodologies, multi-resolution models were generated, featuring a horizontal accuracy of ±16 cm and a vertical accuracy of ±15 cm. These models form the basis for the hydraulic calculations performed. The results demonstrate the feasibility of producing accurate models that are compatible with the memory and processing capabilities of modern computers. Furthermore, the technique set up and implemented for the refined representation of both the models and the effects predicted by hydraulic calculations in the event of exceptional rainfall (such as flow, speed, flooded areas, and critical points along riverbanks) serves as a valuable tool for improving hydrogeological planning, designing appropriate defense works, and preparing evacuation plans in case of emergency, all with the goal of mitigating hydrogeological risk. Full article
Show Figures

Graphical abstract

16 pages, 6063 KiB  
Article
Synergistic Effect of MWCNT and CB on the Piezoresistive Properties of Laser Ablation Composites Strain Sensors
by Shikang Yin, Richao Tan, Sitian Wang, Yuan Yuan, Kaiyan Huang, Ziying Wang, Shijie Zhang, Sadaf Bashir Khan, Weifeng Yuan and Ning Hu
Nanomaterials 2025, 15(13), 997; https://doi.org/10.3390/nano15130997 - 26 Jun 2025
Viewed by 353
Abstract
A flexible and highly sensitive piezoresistive strain sensor was fabricated through the application of CO2 laser ablation on a composite film composed of multi-walled carbon nanotubes, carbon black, and polydimethylsiloxane (MWCNT/CB/PDMS). The results of scanning electron microscopy (SEM) surface analysis shows that [...] Read more.
A flexible and highly sensitive piezoresistive strain sensor was fabricated through the application of CO2 laser ablation on a composite film composed of multi-walled carbon nanotubes, carbon black, and polydimethylsiloxane (MWCNT/CB/PDMS). The results of scanning electron microscopy (SEM) surface analysis shows that the “bush-like” conductive structure on the PDMS-based composite material membrane post-laser ablation is formed. Transmission electron microscopy (TEM) images and X-ray diffraction (XRD) spectra of the ablation products indicated the formation of an amorphous carbon layer on the surface of carbon nanomaterials due to laser ablation. Experimental findings revealed that the sensitivity (GF) value of the sensor based on CNT0.6CB1.0-P3.0 is up to 584.7 at 5% strain, which is approximately 14% higher than the sensitivity 513 of the sensor previously prepared by the author using CO2 laser ablation of MWCNT/PDMS composite films. The addition of a very small volume fraction of CB particles significantly enhances the piezoresistive sensitivity of the sensor samples. Combined with the qualitative analysis of microscopic morphology characterization, CB and MWCNT synergistically promote the deposition of amorphous carbon. This phenomenon increases the probability of tunnel effect occurrence in the strain response region of the sensor, which indirectly confirms the synergistic enhancement effect of the combined action of CB and MWCNT on the piezoresistive sensitivity of the sensor. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

11 pages, 2558 KiB  
Article
Highly Efficient Digitized Quasi-3D Photolithography Based on a Modified Golomb Coding via DMD Laser Direct Writing
by Hui Wang, Zhe Huang, Yanting Shen and Shangying Zhou
Photonics 2025, 12(6), 587; https://doi.org/10.3390/photonics12060587 - 9 Jun 2025
Viewed by 376
Abstract
Three-dimensional (3D) photolithography has found wide applications in microelectronics, optoelectronics, biomedicine, etc. Traditionally, it requires repetitive exposure and developing cycles. Meanwhile, a laser direct writing (LDW) system with a digital micromirror device (DMD) enables high-speed maskless lithography with programmable doses. In this paper, [...] Read more.
Three-dimensional (3D) photolithography has found wide applications in microelectronics, optoelectronics, biomedicine, etc. Traditionally, it requires repetitive exposure and developing cycles. Meanwhile, a laser direct writing (LDW) system with a digital micromirror device (DMD) enables high-speed maskless lithography with programmable doses. In this paper, we propose a quasi-3D digitized photolithography via LDW with a DMD to remove multiple developing cycles from the process. This approach quantizes the dose of the 3D geometry and stores it in a grayscale image. And the entire dose distribution can be formed by overlapping the exposures with sliced binary dose maps from the above grayscale dose map. In the image slicing algorithm, a modified Golomb coding is introduced to make full use of the highest available exposure intensity. Both 1D multi-step patterns and diffractive optical devices (DOEs) have been fabricated to verify its feasibility. This type of digitized quasi-3D photolithography can be applied to fabricating DOEs, microlens arrays (MLAs), micro-refractive optical elements (μROEs), etc., and 3D molds for micro-embossing/nano-imprinting. Full article
Show Figures

Figure 1

18 pages, 8696 KiB  
Article
In Situ Ceramic Phase Reinforcement via Short-Pulsed Laser Cladding for Enhanced Tribo-Mechanical Behavior of Metal Matrix Composite FeNiCr-B4C (5 and 7 wt.%) Coatings
by Artem Okulov, Olga Iusupova, Alexander Stepchenkov, Vladimir Zavalishin, Elena Marchenkova, Kun Liu, Jie Li, Tushar Sonar, Aleksey Makarov, Yury Korobov, Evgeny Kharanzhevskiy, Ivan Zhidkov, Yulia Korkh, Tatyana Kuznetsova, Pei Wang and Yuefei Jia
Technologies 2025, 13(6), 231; https://doi.org/10.3390/technologies13060231 - 4 Jun 2025
Viewed by 420
Abstract
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced [...] Read more.
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced X-ray diffraction/Raman spectroscopy techniques, provided a comprehensive characterization of the coatings’ behavior under mechanical and scratch testing, shedding light on the mechanisms governing their wear resistance. Specifically, microstructural analysis revealed uniform coatings with a columnar structure and controlled defect density, showcasing an average thickness of 250 ± 20 μm and a transition zone of 80 ± 10 μm. X-ray diffraction and Raman spectroscopy confirmed the presence of α-Fe (Im-3m), γ-FeNiCr (Fm-3m), Fe2B (I-42m), and B4C (R-3m) phases, highlighting the successful incorporation of B4C reinforcement. The addition of 5 and 7 wt.% B4C significantly increased microhardness, showing enhancements up to 201% compared to the B4C-free FeNiCr coating and up to 351% relative to the AISI 1040 steel substrate, respectively. Boron carbide addition promoted a synergistic strengthening effect between the in situ formed Fe2B and the retained B4C phases. Furthermore, scratch test analysis clarified improved wear resistance, excellent adhesion, and a tailored hardness gradient. These findings demonstrated that optimized short-pulsed laser cladding, combined with moderate B4C reinforcement, is a promising route for creating robust, high-strength FeNiCr-B4C MMC coatings suitable for demanding engineering applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

23 pages, 5217 KiB  
Article
Constraints from Geochemistry of Mineralization-Hosting Sandstone and Sulfur Isotopes of Pyrite on Uranium Mineralization in the Liuhuanggou Area, Southern Junggar Basin
by Junyang Li, Yu Zhou, Chunji Xue, Shizhong Chen, Guoxiong Ma, Zuohuai Yang, Min Liu, Le Yang and Jie Gong
Minerals 2025, 15(6), 575; https://doi.org/10.3390/min15060575 - 28 May 2025
Viewed by 405
Abstract
A combination of microstructural, fluid inclusion, and in situ sulfur isotopic analyses of pyrite, along with major and trace element studies of the mineralization-hosting sandstone, reveals the complexity of its genesis from the Jurassic Toutunhe Formation in the Liuhuanggou sandstone-hosted uranium deposit, Southern [...] Read more.
A combination of microstructural, fluid inclusion, and in situ sulfur isotopic analyses of pyrite, along with major and trace element studies of the mineralization-hosting sandstone, reveals the complexity of its genesis from the Jurassic Toutunhe Formation in the Liuhuanggou sandstone-hosted uranium deposit, Southern Junggar Basin. Based on field geological investigations and the geochemical characteristics, it is concluded that the source of the ore-bearing sandstones originates from felsic igneous rocks in the Northern Tianshan and Central Tianshan regions. Through optical microscopy and scanning electron microscopy (SEM), three generations of pyrite were identified: framboidal pyrite, concentric overgrown pyrite, and sub-idiomorphic to idiomorphic cement pyrite. The sulfur isotopes of the pyrite were analyzed using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). The results indicate that each type of pyrite has distinct sulfur isotope compositions (the framboidal pyrite: −16.85‰ to +2.16‰, the concentric overgrown pyrite: −7.86‰ to +10.32‰, the sub-idiomorphic to idiomorphic cement pyrite: +9.16‰ to +16.77‰). The framboidal pyrite and the sub-idiomorphic to idiomorphic cement pyrite were formed through bacterial sulfate reduction (BSR), while the concentric overgrown pyrite was formed through thermochemical sulfate reduction (TSR) triggered by the upward migration of hydrocarbons. The discovery of hydrocarbon inclusions provides evidence for the involvement of deep-seated reducing fluids in uranium mineralization. Uranium mineralization occurred in two distinct stages: (1) The early stage involved the interaction of uranium-bearing fluids with reductants in the mineralization-hosting strata under the influence of groundwater dynamics, leading to initial uranium enrichment. (2) The later stage involved the upward migration of deep-seated hydrocarbons along faults, which enhanced the reducing capacity of the sandstone and resulted in further uranium enrichment and mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

16 pages, 6724 KiB  
Review
Nanosecond Laser Etching of Surface Drag-Reducing Microgrooves: Advances, Challenges, and Future Directions
by Xulin Wang, Zhenyuan Jia, Jianwei Ma and Wei Liu
Aerospace 2025, 12(6), 460; https://doi.org/10.3390/aerospace12060460 - 23 May 2025
Viewed by 466
Abstract
With the increasing demand for drag reduction, energy consumption reduction, and low weight in civil aircraft, high-precision microgroove preparation technology is being developed internationally to reduce wall friction resistance and save energy. Compared to mechanical processing, chemical etching, roll forming, and ultrafast laser [...] Read more.
With the increasing demand for drag reduction, energy consumption reduction, and low weight in civil aircraft, high-precision microgroove preparation technology is being developed internationally to reduce wall friction resistance and save energy. Compared to mechanical processing, chemical etching, roll forming, and ultrafast laser processing, nanosecond lasers offer processing precision, high efficiency, and controllable thermal effects, enabling low-cost and high-quality preparation of microgrooves. However, the impact of nanosecond laser etching on the fatigue performance of substrate materials remains unclear, leading to controversy over whether high-precision shape control and fatigue performance enhancement in microgrooves can be achieved simultaneously. This has become a bottleneck issue that urgently needs to be addressed. This paper focuses on the current research status of nanosecond laser processing quality control for microgrooves and the research status of laser effects on enhancing the fatigue performance of substrate materials. It identifies the main existing issues: (1) how to induce surface residual compressive stress through the thermo-mechanical coupling effect of nanosecond lasers to suppress micro-defects while ensuring high-precision shape control of fixed microgrooves; and (2) how to quantify the regulation of nanosecond laser process parameters on residual stress distribution and fatigue performance in the microgroove area. To address these issues, this paper proposes a collaborative strategy for high-quality shape control and surface strengthening in fixed microgrooves, an analysis of multi-dimensional fatigue regulation mechanisms, and a new method for multi-objective process optimization. The aim is to control the geometric accuracy error of the prepared surface microgrooves within 5% and to enhance the fatigue life of the substrate by more than 20%, breaking through the technical bottleneck of separating “drag reduction design” from “fatigue resistance manufacturing”, and providing theoretical support for the integrated manufacturing of “drag reduction-fatigue resistance” in aircraft skins. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 12452 KiB  
Article
Simulation Study on the Impact of Melt Track Overlap Rate on the Forming Result During the Selective Laser Melting of Ti-6Al-4V Alloy
by Chen Liu, Weidong Huang, Hui Wang, Zebin Lin and Zhiyuan Lai
Materials 2025, 18(10), 2314; https://doi.org/10.3390/ma18102314 - 15 May 2025
Viewed by 450
Abstract
The melt track overlap rate is a crucial process parameter in selective laser melting (SLM). It exerts a substantial influence on the forming quality of Ti-6Al-4V alloy. This paper investigates the impact of different melt track overlap rates on the quality of Ti-6Al-4V [...] Read more.
The melt track overlap rate is a crucial process parameter in selective laser melting (SLM). It exerts a substantial influence on the forming quality of Ti-6Al-4V alloy. This paper investigates the impact of different melt track overlap rates on the quality of Ti-6Al-4V samples formed by SLM through a combination of simulation and experimentation. The findings reveal that if the overlap rate is overly small (<14.3%), the powder at the bottom of the overlap zone cannot be fully melted, thereby forming pores. Additionally, the densification effect causes the actual powder spreading thickness to be greater than the theoretical one. Consequently, when the overlap rate is less than 20%, it is challenging to ensure a close bond between the upper and lower melt tracks. Both the simulation and experimental results demonstrate that an excessive melt track overlap rate will lead to grain growth in the overlap zone and reduce the tensile properties of the sample. Thus, both excessive and insufficient overlap rates are detrimental to the density and mechanical properties of the formed sample. The multi-layer and multi-track model established in this study effectively replicates the actual processing conditions. The retention of the temperature field of the first layer makes the simulation of the melt tracks of the second layer more realistic and reliable. This provides a reference basis for accurately predicting the forming quality of SLM using numerical models in the future. Full article
(This article belongs to the Special Issue 3D & 4D Printing in Engineering Applications, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 16617 KiB  
Article
Interface Optimization, Microstructural Characterization, and Mechanical Performance of CuCrZr/GH4169 Multi-Material Structures Manufactured via LPBF-LDED Integrated Additive Manufacturing
by Di Wang, Jiale Lv, Zhenyu Liu, Linqing Liu, Yang Wei, Cheng Chang, Wei Zhou, Yingjie Zhang and Changjun Han
Materials 2025, 18(10), 2206; https://doi.org/10.3390/ma18102206 - 10 May 2025
Viewed by 605
Abstract
CuCrZr/GH4169 multi-material structures combine the high thermal conductivity of copper alloys with the high strength of nickel-based superalloys, making them suitable for aerospace components that require efficient heat dissipation and high strength. However, additive manufacturing of such dissimilar metals faces challenges, with each [...] Read more.
CuCrZr/GH4169 multi-material structures combine the high thermal conductivity of copper alloys with the high strength of nickel-based superalloys, making them suitable for aerospace components that require efficient heat dissipation and high strength. However, additive manufacturing of such dissimilar metals faces challenges, with each laser powder bed fusion (LPBF) and laser directed energy deposition (LDED) process having its limitations. This study employed an LPBF-LDED integrated additive manufacturing (LLIAM) approach to fabricate CuCrZr/GH4169 components. CuCrZr segments were first produced by LPBF, followed by LDED deposition of GH4169 layers using optimized laser parameters. The microstructure, composition, and mechanical properties of the fabricated components were analyzed. Results show a sound metallurgical bond at the CuCrZr/GH4169 interface with minimal porosity and cracks (typical defects at the interface), achieved by exceeding a threshold laser energy density. Elemental interdiffusion forms a 100–200 μm transition zone, with a smooth hardness gradient (97 HV0.2 to 240 HV0.2). Optimized specimens exhibit tensile failure in the CuCrZr region (234 MPa), confirming robust interfacial bonding. These findings demonstrate LLIAM’s feasibility for CuCrZr/GH4169 and underscore the importance of balancing thermal conductivity and mechanical strength in multi-material components. These findings provide guidance for manufacturing aerospace components with both high thermal conductivity and high strength. Full article
(This article belongs to the Special Issue Development and Applications of Laser-Based Additive Manufacturing)
Show Figures

Figure 1

24 pages, 12327 KiB  
Article
Thermomechanical Behavior and Experimental Study of Additive Manufactured Superalloy/Titanium Alloy Horizontal Multi-Material Structures
by Yanlu Huang, Tianyu Wang, Linqing Liu, Yang Li, Changjun Han, Hua Tan, Wei Zhou, Yongqiang Yang and Di Wang
Metals 2025, 15(4), 454; https://doi.org/10.3390/met15040454 - 17 Apr 2025
Cited by 1 | Viewed by 497
Abstract
In laser powder bed fusion (LPBF) forming multi-material structures, the thermal stress mismatch caused by the different thermophysical properties of different materials can cause interface cracking and delamination defects. An in-depth investigation of the complex interfacial thermomechanical behavior caused by it is of [...] Read more.
In laser powder bed fusion (LPBF) forming multi-material structures, the thermal stress mismatch caused by the different thermophysical properties of different materials can cause interface cracking and delamination defects. An in-depth investigation of the complex interfacial thermomechanical behavior caused by it is of great significance for reducing stress concentration, suppressing defects, and enhancing interfacial bond strength. In this study, the effects of scanning strategy and interface shape on the temperature distribution, thermal cycling, and thermal stress distribution at the interface are analyzed by the IN718-Ti6Al4V horizontal multi-material thermally coupled finite element model. The results show that the 45° scanning strategy is helpful for the uniform distribution of energy and the reduction of overheating and residual stress concentration. The maximum residual stress at the interface in the Ti6Al4V/IN718 structure is more than 700 MPa, which is higher than that in the IN718/Ti6Al4V structure. The first formation of Ti6Al4V will likely lead to higher residual stresses at the interface, which are difficult to release in subsequent printing. The analysis of different interface shapes shows that different interface shapes change the crack formation and extension paths. This study contributes to an in-depth understanding of improving the strength of horizontal multi-material interfacial bonding at the LPBF forming. It provides a reference for optimizing LPBF forming of difficult-to-bond materials. Full article
Show Figures

Figure 1

16 pages, 1200 KiB  
Review
Three-Dimensional Printing and Its Impact on the Diagnosis and Treatment of Neurodegenerative Disease
by Sameer Patil, Ami Thakkar, Ginpreet Kaur, Amisha Vora, Ritu Chauhan, Seema Ramniwas, Abhishek Chauhan, Damandeep Kaur and Hardeep Singh Tuli
Biophysica 2025, 5(2), 13; https://doi.org/10.3390/biophysica5020013 - 16 Apr 2025
Viewed by 1039
Abstract
Neurodegenerative disorders include Alzheimer’s and Parkinson’s, both of which lead to progressive loss of neurons resulting in the severe loss of cognitive and motor functions. These diseases are among the heavy burdens on global healthcare systems largely because there is no cure, and [...] Read more.
Neurodegenerative disorders include Alzheimer’s and Parkinson’s, both of which lead to progressive loss of neurons resulting in the severe loss of cognitive and motor functions. These diseases are among the heavy burdens on global healthcare systems largely because there is no cure, and current treatments apply almost entirely to controlling symptoms rather than disease progression. Recent advances in 3D printing and bioprinting technologies now open the way to overcome these challenges and form patient-specific models and therapeutical tools closely simulating the complex environment of the human brain. It then further illustrates how this technological integration with the aid of 3D printing, coupled with microfabrication and biosensing technologies, transforms drug-screening platforms as well as develops customization in medicine. For example, one can form highly intricate and multi-materially composed structures to better facilitate one’s study or test into some new therapeutic possibilities using methodologies of stereolithography and selective laser sintering. Moreover, 3D printing allows the creation of organ-on-a-chip models that simulate brain-like conditions, which may help identify specific biomarkers and evaluate new options of therapy. On the other hand, bioprinting methods based on neural cells combined with scaffolds mimicking native tissue dramatically transform regenerative medicine. New pathways in neural tissue development and implantable devices are now being brought forth, which can be tailored to the needs of individual patients. These advances bring not only greater precision in terms of the therapy that can be delivered but also 3D printing of implantable microelectrodes able to determine real-time biomarkers responsible for neurodegenerative diseases. Thus, this review highlights the robust impact that might be brought forth on the diagnosis and treatment of these neurodegenerative diseases via 3D printing technologies toward more effective management and personal solutions for healthcare. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

25 pages, 1980 KiB  
Review
UAV-Based Soil Water Erosion Monitoring: Current Status and Trends
by Beatriz Macêdo Medeiros, Bernardo Cândido, Paul Andres Jimenez Jimenez, Junior Cesar Avanzi and Marx Leandro Naves Silva
Drones 2025, 9(4), 305; https://doi.org/10.3390/drones9040305 - 14 Apr 2025
Cited by 1 | Viewed by 1929
Abstract
Soil erosion affects land productivity, water quality, and ecosystem resilience. Traditional monitoring methods are often time-consuming, labor-intensive, and resource-demanding, while unmanned aerial vehicles (UAVs) provide high-resolution, near-real-time data, improving accuracy. This study conducts a bibliometric analysis of UAV-based soil erosion research to explore [...] Read more.
Soil erosion affects land productivity, water quality, and ecosystem resilience. Traditional monitoring methods are often time-consuming, labor-intensive, and resource-demanding, while unmanned aerial vehicles (UAVs) provide high-resolution, near-real-time data, improving accuracy. This study conducts a bibliometric analysis of UAV-based soil erosion research to explore trends, technologies, and challenges. A systematic review of Web of Science and Scopus articles identified 473 relevant studies after filtering for terms that refer to types of soil erosion. Analysis using R’s bibliometrix package shows research is concentrated in Asia, Europe, and the Americas, with 304 publications following a surge. Multi-rotor UAVs with RGB sensors are the most common. Gully erosion is the most studied form of the issue, followed by landslides, rills, and interrill and piping erosion. Significant gaps remain in rill and interrill erosion research. The integration of UAVs with satellite data, laser surveys, and soil properties is limited but crucial. While challenges such as data accuracy and integration persist, UAVs offer cost-effective, near-real-time monitoring capabilities, enabling rapid responses to erosion changes. Future work should focus on multi-source data fusion to enhance conservation strategies. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop