Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (156)

Search Parameters:
Keywords = multi-input power converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 39341 KB  
Article
Recognition of Wood-Boring Insect Creeping Signals Based on Residual Denoising Vision Network
by Henglong Lin, Huajie Xue, Jingru Gong, Cong Huang, Xi Qiao, Liping Yin and Yiqi Huang
Sensors 2025, 25(19), 6176; https://doi.org/10.3390/s25196176 - 5 Oct 2025
Abstract
Currently, the customs inspection of wood-boring pests in timber still primarily relies on manual visual inspection, which involves observing insect holes on the timber surface and splitting the timber for confirmation. However, this method has significant drawbacks such as long detection time, high [...] Read more.
Currently, the customs inspection of wood-boring pests in timber still primarily relies on manual visual inspection, which involves observing insect holes on the timber surface and splitting the timber for confirmation. However, this method has significant drawbacks such as long detection time, high labor cost, and accuracy relying on human experience, making it difficult to meet the practical needs of efficient and intelligent customs quarantine. To address this issue, this paper develops a rapid identification system based on the peristaltic signals of wood-boring pests through the PyQt framework. The system employs a deep learning model with multi-attention mechanisms, namely the Residual Denoising Vision Network (RDVNet). Firstly, a LabVIEW-based hardware–software system is used to collect pest peristaltic signals in an environment free of vibration interference. Subsequently, the original signals are clipped, converted to audio format, and mixed with external noise. Then signal features are extracted through three cepstral feature extraction methods Mel-Frequency Cepstral Coefficients (MFCC), Power-Normalized Cepstral Coefficients (PNCC), and RelAtive SpecTrAl-Perceptual Linear Prediction (RASTA-PLP) and input into the model. In the experimental stage, this paper compares the denoising module of RDVNet (de-RDVNet) with four classic denoising models under five noise intensity conditions. Finally, it evaluates the performance of RDVNet and four other noise reduction classification models in classification tasks. The results show that PNCC has the most comprehensive feature extraction capability. When PNCC is used as the model input, de-RDVNet achieves an average peak signal-to-noise ratio (PSNR) of 29.8 and a Structural Similarity Index Measure (SSIM) of 0.820 in denoising experiments, both being the best among the comparative models. In classification experiments, RDVNet has an average F1 score of 0.878 and an accuracy of 92.8%, demonstrating the most excellent performance. Overall, the application of this system in customs timber quarantine can effectively improve detection efficiency and reduce labor costs and has significant practical value and promotion prospects. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

15 pages, 4024 KB  
Article
Comparative Analysis of Efficiency and Harmonic Generation in Multiport Converters: Study of Two Operating Conditions
by Francisco J. Arizaga, Juan M. Ramírez, Janeth A. Alcalá, Julio C. Rosas-Caro and Armando G. Rojas-Hernández
World Electr. Veh. J. 2025, 16(10), 566; https://doi.org/10.3390/wevj16100566 - 2 Oct 2025
Abstract
This study presents a comparative analysis of efficiency and harmonic generation in Triple Active Bridge (TAB) converters under two operating configurations: Case I, with one input source and two loads, and Case II, with two input sources and one load. Two modulation strategies, [...] Read more.
This study presents a comparative analysis of efficiency and harmonic generation in Triple Active Bridge (TAB) converters under two operating configurations: Case I, with one input source and two loads, and Case II, with two input sources and one load. Two modulation strategies, Single-Phase Shift (SPS) and Dual-Phase Shift (DPS), are evaluated through frequency-domain modeling and simulations performed in MATLAB/Simulink. The analysis is complemented by experimental validation on a laboratory prototype. The results show that DPS reduces harmonic amplitudes, decreases conduction losses, and improves output waveform quality, leading to higher efficiency compared to SPS. Harmonic current spectra and total harmonic distortion (THD) are analyzed to quantify the impact of each modulation method. The findings highlight that DPS is more suitable for applications requiring stable power transfer and improved efficiency, such as renewable energy systems, electric vehicles, and multi-source DC microgrids. Full article
(This article belongs to the Section Power Electronics Components)
Show Figures

Figure 1

20 pages, 3340 KB  
Article
Infrared Monocular Depth Estimation Based on Radiation Field Gradient Guidance and Semantic Priors in HSV Space
by Rihua Hao, Chao Xu and Chonghao Zhong
Sensors 2025, 25(13), 4022; https://doi.org/10.3390/s25134022 - 27 Jun 2025
Viewed by 695
Abstract
Monocular depth estimation (MDE) has emerged as a powerful technique for extracting scene depth from a single image, particularly in the context of computational imaging. Conventional MDE methods based on RGB images often degrade under varying illuminations. To overcome this, an end-to-end framework [...] Read more.
Monocular depth estimation (MDE) has emerged as a powerful technique for extracting scene depth from a single image, particularly in the context of computational imaging. Conventional MDE methods based on RGB images often degrade under varying illuminations. To overcome this, an end-to-end framework is developed that leverages the illumination-invariant properties of infrared images for accurate depth estimation. Specifically, a multi-task UNet architecture was designed to perform gradient extraction, semantic segmentation, and texture reconstruction from infrared RAW images. To strengthen structural learning, a Radiation Field Gradient Guidance (RGG) module was incorporated, enabling edge-aware attention mechanisms. The gradients, semantics, and textures were mapped to the Saturation (S), Hue (H), and Value (V) channels in the HSV color space, subsequently converted into an RGB format for input into the depth estimation network. Additionally, a sky mask loss was introduced during training to mitigate the influence of ambiguous sky regions. Experimental validation on a custom infrared dataset demonstrated high accuracy, achieving a δ1 of 0.976. These results confirm that integrating radiation field gradient guidance and semantic priors in HSV space significantly enhances depth estimation performance for infrared imagery. Full article
Show Figures

Figure 1

29 pages, 6105 KB  
Review
A Review of Control Strategies for Four-Switch Buck–Boost Converters
by Guanzheng Lin, Yan Li and Zhaoyun Zhang
World Electr. Veh. J. 2025, 16(6), 315; https://doi.org/10.3390/wevj16060315 - 5 Jun 2025
Viewed by 3540
Abstract
In order to meet the demand for high-voltage architectures of 400 V and 800 V in electric vehicle systems, high-power DC-DC converters have become a key focus of research. The Four-Switch Buck–Boost converter has gained widespread application due to its wide voltage conversion [...] Read more.
In order to meet the demand for high-voltage architectures of 400 V and 800 V in electric vehicle systems, high-power DC-DC converters have become a key focus of research. The Four-Switch Buck–Boost converter has gained widespread application due to its wide voltage conversion range, consistent input and output polarity, and the capability of bidirectional power transfer. This paper focuses on the energy conversion requirements in high-voltage scenarios for electric vehicles, analyzing the working principle of this converter and typical control strategies. It summarizes the issues encountered under different control strategies and presents improvements. Hard-switching multi-mode control strategies aim to improve control algorithms and logic to mitigate large duty cycle variations and voltage gain discontinuities caused by dead zones. For control strategies based on controlling the inductor current to achieve soft-switching, the discussion mainly focuses on optimizing the implementation of soft-switching, reducing overall system losses, and improving the computation speed. Finally, the paper summarizes FSBB control strategies and outlines future directions, providing theoretical support for high-voltage fast charging and onboard power supplies in electric vehicles. Full article
(This article belongs to the Special Issue Power Electronics for Electric Vehicles)
Show Figures

Figure 1

15 pages, 2450 KB  
Article
Study on High Efficiency Control of Four-Switch Buck-Boost Converter Based on Whale Migration Optimization Algorithm
by Zhencheng Hao, Yu Xu and Jing Bai
Energies 2025, 18(11), 2807; https://doi.org/10.3390/en18112807 - 28 May 2025
Viewed by 538
Abstract
With the growing demand for high-efficiency DC-DC converters with a wide input voltage range for wireless power transmission, four-switch boost converters (FSBBs) are attracting attention due to their low current stress and flexible mode switching characteristics. However, their complex operating modes and nonlinear [...] Read more.
With the growing demand for high-efficiency DC-DC converters with a wide input voltage range for wireless power transmission, four-switch boost converters (FSBBs) are attracting attention due to their low current stress and flexible mode switching characteristics. However, their complex operating modes and nonlinear dynamic characteristics lead to high switching losses and limited efficiency of the system under conventional control. In this paper, an optimization algorithm is combined with the multi-mode control of an FSBB converter for the first time, and a combined optimization and voltage closed-loop control strategy based on the Whale Migration Algorithm (WMA) is proposed. Under the four-mode operation conditions of the FSBB converter, the duty cycle and phase shift parameters of the switching devices are dynamically adjusted by optimizing the values to maximize the efficiency under different operation conditions, with the premise of achieving zero-voltage switching (ZVS) and the optimization objective of minimizing the inductor current as much as possible. Simulation results show that the proposed FSBB switching control strategy combined with the WMA algorithm improves the efficiency significantly over a wide voltage range (120–480 V) and under variable load conditions, and the transfer efficiency is improved by about 1.19% compared with that of the traditional three-mode control, and the maximum transfer efficiency is 99.34%, which verifies the validity and feasibility of the proposed strategy and provides a new approach to the high-efficiency control and application of FSBB converters. Full article
Show Figures

Figure 1

26 pages, 5050 KB  
Article
Research on Energy Regeneration Characteristics of Multi-Link Energy-Fed Suspension
by Xuefeng Zhang, Jianze Liu, Yang Li, Guangzheng Wang, Yu Zou and Jiang Liu
Energies 2025, 18(11), 2743; https://doi.org/10.3390/en18112743 - 25 May 2025
Viewed by 622
Abstract
Inspired by the single-blade hyperboloid, a new type of multi-bar shock absorber was designed, which can recover vibration energy. Its principle is to convert the droop reciprocating vibration of the vehicle in the spatial domain into the reciprocating rotational motion in the plane [...] Read more.
Inspired by the single-blade hyperboloid, a new type of multi-bar shock absorber was designed, which can recover vibration energy. Its principle is to convert the droop reciprocating vibration of the vehicle in the spatial domain into the reciprocating rotational motion in the plane through the trajectory and force characteristics of the single-blade hyperboloid moving along the space. To improve the efficiency of energy regeneration, a mechanical motion filtering mechanism was designed. Through theoretical derivation, the energy regeneration formula of a new type of multi-rod shock absorber was obtained. After simulation analysis and experimental verification, under the input excitation of 1.82 Hz, the maximum instantaneous output voltage can reach 29 V, the maximum excitation current is 0.58 A, and the maximum power is 16.84 W. The efficient recovery and utilization of energy have been achieved, and the ride comfort of the vehicle has been improved. Full article
Show Figures

Figure 1

14 pages, 5299 KB  
Article
Multi-Frequency Solar Rectenna Design for Hybrid Radio Frequency–Solar Energy Harvester
by Xue Luo, Ping Lu, Ce Wang and Kama Huang
Energies 2025, 18(9), 2372; https://doi.org/10.3390/en18092372 - 6 May 2025
Viewed by 588
Abstract
This paper put forward a hybrid energy harvester for collecting RF and solar energy in quad-band (GSM-900/1800, ISM-2400 and WiMAX-3500). By introducing diverse parasitic structures, good impedance matching with unidirectional radiation is achieved in the multi-band. Below the solar antenna, a low-power rectifier [...] Read more.
This paper put forward a hybrid energy harvester for collecting RF and solar energy in quad-band (GSM-900/1800, ISM-2400 and WiMAX-3500). By introducing diverse parasitic structures, good impedance matching with unidirectional radiation is achieved in the multi-band. Below the solar antenna, a low-power rectifier circuit is employed to achieve broadband rectification. Under the input power of 0 dBm, and maximum RF-DC conversion efficiency of 56.94% is realized. Accordingly, the hybrid energy harvester collects RF and solar energy individually or simultaneously, and then converts it into DC for power supply. With a light intensity of 1500 lux, the solar cell obtains 1.732 mW, and the rectenna can harvest additional 0.37–0.405 mW power. The proposed RF–Solar energy harvester has the advantages of multi-frequency operation, high gain, and high energy harvesting conversion efficiency. Full article
(This article belongs to the Special Issue Advances in Wireless Power Transfer Technologies and Applications)
Show Figures

Figure 1

13 pages, 6647 KB  
Article
A Power-Efficient 50 MHz-BW 76.8 dB Signal-to-Noise-and-Distortion Ratio Continuous-Time 2-2 MASH Delta-Sigma Analog-to-Digital Converter with Digital Calibration
by Zhiyu Li, Xueqian Shang, Haigang Feng and Xinpeng Xing
J. Low Power Electron. Appl. 2025, 15(2), 20; https://doi.org/10.3390/jlpea15020020 - 9 Apr 2025
Viewed by 873
Abstract
Continuous-time Sigma-Delta (CTSD) Analog-to-Digital Converter (ADC) is widely used in wireless receivers due to its built-in anti-aliasing and resistive input. In order to achieve a wide bandwidth while ensuring low power consumption, this paper proposes a CT 2-2 Multi-stAge Noise-sHaping (MASH) ADC for [...] Read more.
Continuous-time Sigma-Delta (CTSD) Analog-to-Digital Converter (ADC) is widely used in wireless receivers due to its built-in anti-aliasing and resistive input. In order to achieve a wide bandwidth while ensuring low power consumption, this paper proposes a CT 2-2 Multi-stAge Noise-sHaping (MASH) ADC for wireless communication. In order to reduce power consumption, the loop filter adopts a feedforward structure, and the operational amplifier uses complementary differential input pairs and feedforward compensation. The pseudo-random sequence injection and Least Mean Squares (LMS) algorithm are adopted to calibrate the digital noise cancelation filter to match the analog transfer function. The simulation results obtained in 40 nm CMOS show that the presented 2-2 CT MASH ADC achieves a 76.8 dB signal-to-noise-and-distortion ratio (SNDR) at a 50MHz bandwidth (BW) with a 1.6 GHz sampling rate and consumes 29.7 mW power under 1.2/0.9 V supply, corresponding to an excellent figure of merit (FoM) of 169.1 dB. Full article
Show Figures

Figure 1

14 pages, 5121 KB  
Article
A Single-Phase AC-AC Power Electronic Transformer Without Bulky Energy Storage Elements
by Hui Wang, Shuyang Xie and Liang Yuan
Energies 2025, 18(7), 1769; https://doi.org/10.3390/en18071769 - 1 Apr 2025
Viewed by 541
Abstract
Compared with the line-frequency transformer (LFT), the emerging power electronic transformers (PETs) have gained wide concerns due to the significant merits of higher power density, higher reliability, more flexibility, and multiple functions. However, the need for bulky energy storage elements, multi-stage power conversion [...] Read more.
Compared with the line-frequency transformer (LFT), the emerging power electronic transformers (PETs) have gained wide concerns due to the significant merits of higher power density, higher reliability, more flexibility, and multiple functions. However, the need for bulky energy storage elements, multi-stage power conversion and reduced conversion efficiency, and the intrinsic twice-frequency pulsating power issue are the main disadvantages of the conventional single-phase PETs. To overcome the above shortcomings of conventional single-phase PETs, this paper develops a matrix-type single-phase AC-AC PET without bulky energy storage elements. The proposed PET consists of a line-frequency commutated rectifier, a half-bridge LLC resonant converter with a fixed switching frequency, a boost converter, and a line-frequency commutated inverter. The LLC operates efficiently with unity voltage gain and acts as a high-frequency isolated DC transformer (DCX). The boost converter provides AC output voltage regulation function and the line-frequency commutated inverter unfolds the output voltage of the boost converter to generate the sinusoidal AC output voltage. As a result, high power density, reduced power conversion stages, direct AC-AC power conversion without twice-frequency pulsating power, high conversion efficiency, and high reliability are achieved. The experimental results on a 1kW PET prototype show that sinusoidal input current and output voltage, ZVS of the LLC stage, and output voltage regulation capability are realized. The experimental results verify the correctness and feasibility of the presented methods. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

12 pages, 10567 KB  
Article
A Low-Power, Auto-DC-Suppressed Photoplethysmography Readout System with Differential Current Mirrors and Wide Common-Mode Input Range Successive Approximation Register Analog-to-Digital Converter
by Chanyoung Son, Seok-Tae Koh and Hyuntak Jeon
Micromachines 2025, 16(4), 398; https://doi.org/10.3390/mi16040398 - 29 Mar 2025
Viewed by 597
Abstract
This paper presents a low-power photoplethysmography (PPG) readout system designed for wearable health monitoring. The system employs a differential current mirror (DCM) to convert single-ended PPG currents into differential voltages, inherently suppressing DC components. A wide common-mode input range (WCMIR) SAR ADC processes [...] Read more.
This paper presents a low-power photoplethysmography (PPG) readout system designed for wearable health monitoring. The system employs a differential current mirror (DCM) to convert single-ended PPG currents into differential voltages, inherently suppressing DC components. A wide common-mode input range (WCMIR) SAR ADC processes the differential signals, ensuring accurate analog-to-digital conversion. The DCM eliminates the need for DC cancelation loops, simplifying the design and reducing power consumption. Implemented in a 0.18 µm CMOS process, the system occupies only 0.30 mm2, making it suitable for multi-channel applications. The system achieves over 60 dB DC dynamic range and consumes only 9.6 µW, demonstrating its efficiency for portable devices. The simulation results validate its ability to process PPG signals across various conditions, offering a scalable solution for advanced biomedical sensing platforms. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

18 pages, 7170 KB  
Article
Coordinated Multi-Input and Single-Output Photonic Millimeter-Wave Communication in W-Band Using Neural Network-Based Waveform-To-Symbol Converter
by Kexin Liu, Boyu Dong, Zhongya Li, Yinjun Liu, Yaxuan Li, Fangbing Wu, Yongzhu Hu and Junwen Zhang
Photonics 2025, 12(3), 248; https://doi.org/10.3390/photonics12030248 - 10 Mar 2025
Cited by 2 | Viewed by 710
Abstract
Photonic millimeter-wave communication systems are promising for high-capacity, high-speed wireless networks, and their production is driven by the growing demand from data-intensive applications. However, challenges such as inter-symbol interferences (ISIs), inter-band interferences (IBIs), symbol timing offsets (STOs), and nonlinearity impairments exist, especially in [...] Read more.
Photonic millimeter-wave communication systems are promising for high-capacity, high-speed wireless networks, and their production is driven by the growing demand from data-intensive applications. However, challenges such as inter-symbol interferences (ISIs), inter-band interferences (IBIs), symbol timing offsets (STOs), and nonlinearity impairments exist, especially in non-orthogonal multiband configurations. This paper proposes and demonstrates the neural network-based waveform-to-symbol converter (NNWSC) for a coordinated multi-input and single-output (MISO) photonic millimeter-wave system with multiband multiplexing. The NNWSC replaces conventional matched filtering, down-sampling, and equalization, simplifying the receiver and enhancing interference resilience. Additionally, it reduces computational complexity, improving operational feasibility. As a proof of concept, experiments are conducted in a 16QAM non-orthogonal multiband carrierless amplitude and phase (NM-CAP) modulation system with coordinated MISO configurations in a scenario where two base stations have 5 km and 10 km fiber links, respectively. Data were collected across various roll-off factors, sub-band spacings, and received optical power (ROP) levels. Based on the proposed method, a coordinated MISO photonic millimeter-wave (mmWave) communication system at 91.9 GHz is demonstrated at a transmission speed of 30 Gbps. The results show that the NNWSC-based receiver achieves significant bit error rate (BER) reductions compared to conventional receivers across all configurations. The tolerances to the STO of NNWSC are also studied. These findings highlight NNWSC integration as a promising solution for high-frequency, interference-prone environments, with potential improvements for low-SNR and dynamic STO scenarios. Full article
Show Figures

Figure 1

29 pages, 7650 KB  
Article
Optimal Control Study of CCM SITO Buck Converter Based on Objective Holographic Feedback
by Jiyong Li, Hao Dong, Peiwen Chen and Pengcheng Zhou
Electronics 2025, 14(4), 717; https://doi.org/10.3390/electronics14040717 - 12 Feb 2025
Viewed by 618
Abstract
With the rapid development of new energy sources, distributed power supplies are widely used in DC microgrid systems. The DC–DC converter, as the hub for transmitting energy between the distributed power supply and the DC bus, plays an important role in the stability [...] Read more.
With the rapid development of new energy sources, distributed power supplies are widely used in DC microgrid systems. The DC–DC converter, as the hub for transmitting energy between the distributed power supply and the DC bus, plays an important role in the stability of the whole system performance. Due to the complexity of the actual working environment, the DC bus voltage is often affected by uncertainties such as fluctuations of distributed power supply and random changes in load, so the reliability of DC–DC converters is increasingly required, and it is difficult for traditional linear controllers to ensure that a DC–DC converter operates stably over a wide range. In order to solve this problem, this paper takes the Single-Inductor Triple-Output (SITO) Buck converter, which represents the multi-input and multi-output system, as the research object, analyzes the respective operating characteristics and control difficulties, and proposes Objective Holographic Feedback Nonlinear Control (OHFNC) to improve the stability of the research system. The optimal control based on objective holographic feedback is proposed to address the cross-influence factors between the multiple output branches of the Buck converter and the inability of accurate feedback linearization. Finally, the validity of the model and theoretical analysis is verified by simulation and experimental results. Full article
Show Figures

Figure 1

40 pages, 8054 KB  
Review
Solid State Transformers: A Review—Part I: Stages of Conversion and Topologies
by Dragoș-Mihail Predescu and Ștefan-George Roșu
Technologies 2025, 13(2), 74; https://doi.org/10.3390/technologies13020074 - 10 Feb 2025
Viewed by 5113
Abstract
Solid State Transformers (SSTs) represent an emerging technology that seeks to improve upon traditional Low-Frequency Transformers (LFTs) with Medium-Frequency Transformers (MFTs) of reduced core size while incorporating modular converter structures as their input and output stages. In addition to magnetic circuit reduction, SSTs [...] Read more.
Solid State Transformers (SSTs) represent an emerging technology that seeks to improve upon traditional Low-Frequency Transformers (LFTs) with Medium-Frequency Transformers (MFTs) of reduced core size while incorporating modular converter structures as their input and output stages. In addition to magnetic circuit reduction, SSTs provide enhanced functionalities such as power factor correction, voltage regulation, and the capability to interface with various sources and loads. However, owing to the novelty of SSTs and the various proposed implementations, a general review would difficult to follow and might not be able to adequately analyze each aspect of SST structures. This complexity underscores the need for a new division of information and classification based on the number of conversion stages, which is the main contribution of this study. Converter functionalities are derived based on the number of stages. Utilizing these functionalities along with existing and proposed implementations, converter topologies are identified and then detailed in terms of their respective functionalities, advantages, disadvantages, and control schemes. The subsequent chapters provide a comparative analysis of the different topologies and present existing SST implementations. For this analysis, metrics such as the number of SST stages, power flow, voltage control, power quality, and component count are used. Based on the resulting analysis, single-stage SSTs are a promising solution that emphasize economy and high power density, while multi-stage SSTs are also a viable solution thanks to their ease of control and flexible design. This paper constitutes the first part of a two-part review. The second part will focus on the degrees of design freedom (such as multilevel structures/cells) and provide a generalized approach to modularity within SST systems. Full article
(This article belongs to the Special Issue Next-Generation Distribution System Planning, Operation, and Control)
Show Figures

Figure 1

13 pages, 2840 KB  
Article
Experimental Investigation of a Hybrid S-Band Amplifier Based on Two Parametric Wavelength Converters and an Erbium-Doped Fiber Amplifier
by Cheng Guo, Afshin Shamsshooli, Michael Vasilyev, Youichi Akasaka, Paparao Palacharla, Ryuichi Sugizaki and Shigehiro Takasaka
Photonics 2025, 12(2), 100; https://doi.org/10.3390/photonics12020100 - 23 Jan 2025
Viewed by 1290
Abstract
Multi-band optical communication presents a promising avenue for the significant enhancement of fiber-optic transmission capacity without incurring additional costs related to new cable deployment via the utilization of the bandwidth beyond the established C&L bands. However, a big challenge in its field implementation [...] Read more.
Multi-band optical communication presents a promising avenue for the significant enhancement of fiber-optic transmission capacity without incurring additional costs related to new cable deployment via the utilization of the bandwidth beyond the established C&L bands. However, a big challenge in its field implementation lies in the high cost and suboptimal performance of optical amplifiers, stemming from the underdeveloped state of rare-earth-doped fiber-optic amplifier technologies for these bands. Fiber-optic parametric amplifiers provide an alternative for wideband optical amplification, yet their low power efficiency limits their practical use in the field. In this paper, we study a hybrid optical amplifier that combines the excellent power efficiency of rare-earth-doped amplifiers with broadband wavelength conversion capability of parametric amplifiers. It uses wavelength converters to shift signals between the S- and L-bands, amplifying them with an L-band erbium-doped fiber amplifier, and converting them back to the S-band. We experimentally demonstrate such a hybrid S-band amplifier, characterize its performance with 16-QAM input signals, and evaluate its power efficiency and four-wave-mixing-induced crosstalk. This hybrid approach paves the way for scalable expansion of optical communication bands without waiting for advancements in rare-earth-doped amplifier technology. Full article
Show Figures

Figure 1

13 pages, 3957 KB  
Article
Pass-Transistor-Enabled Split Input Voltage Level Shifter for Ultra-Low-Power Applications
by Chakali Chandrasekhar, Mohammed Mahaboob Basha, Sari Mohan Das, Oruganti Hemakesavulu, Mohan Dholvan and Javed Syed
Micromachines 2025, 16(1), 64; https://doi.org/10.3390/mi16010064 - 5 Jan 2025
Cited by 1 | Viewed by 1585
Abstract
In modern ICs, sub-threshold voltage management plays a significant role due to its perspective on energy efficiency and speed performance. Level shifters (LSs) play a critical role in signal exchange among multiple voltage domains by ensuring signal integrity and the reliable operation of [...] Read more.
In modern ICs, sub-threshold voltage management plays a significant role due to its perspective on energy efficiency and speed performance. Level shifters (LSs) play a critical role in signal exchange among multiple voltage domains by ensuring signal integrity and the reliable operation of ICs. In this article, a Pass-Transistor-Enabled Split Input Voltage Level Shifter (PVLS) is designed for area, delay, and power-efficient applications with a wide voltage conversion range. The represented low-power LS structure is a general blend of both pull-up and pull-down networks that perform level-up or level-down shifts. The proposed PVLS is incorporated with the multi-threshold CMOS technique and a load-balancing driving split inverter to limit high static current, leakage power, and performance degradation. The schematic structure could be able to convert voltages from low to high as well as high to low. The architecture design has the lowest silicon area. The implementation of the proposed design was taken under 55 nm CMOS technology. The represented LS could be able to convert voltage ranges between 0.3 V and 1.3 V, which has a dynamic power of 2.00 nW. The overall propagation delay of the LS is 90 ps and an area of 7.66 µm2 for an input frequency of 1 MHz. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

Back to TopTop