Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = multi-angle SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9676 KiB  
Article
A Comparative Analysis of SAR and Optical Remote Sensing for Sparse Forest Structure Parameters: A Simulation Study
by Zhihui Mao, Lei Deng, Xinyi Liu and Yueyang Wang
Forests 2025, 16(8), 1244; https://doi.org/10.3390/f16081244 - 29 Jul 2025
Viewed by 199
Abstract
Forest structure parameters are critical for understanding and managing forest ecosystems, yet sparse forests have received limited attention in previous studies. To address this research gap, this study systematically evaluates and compares the sensitivity of active Synthetic Aperture Radar (SAR) and passive optical [...] Read more.
Forest structure parameters are critical for understanding and managing forest ecosystems, yet sparse forests have received limited attention in previous studies. To address this research gap, this study systematically evaluates and compares the sensitivity of active Synthetic Aperture Radar (SAR) and passive optical remote sensing to key forest structure parameters in sparse forests, including Diameter at Breast Height (DBH), Tree Height (H), Crown Width (CW), and Leaf Area Index (LAI). Using the novel computer-graphics-based radiosity model applicable to porous individual thin objects, named Radiosity Applicable to Porous Individual Objects (RAPID), we simulated 38 distinct sparse forest scenarios to generate both SAR backscatter coefficients and optical reflectance across various wavelengths, polarization modes, and incidence/observation angles. Sensitivity was assessed using the coefficient of variation (CV). The results reveal that C-band SAR in HH polarization mode demonstrates the highest sensitivity to DBH (CV = −6.73%), H (CV = −52.68%), and LAI (CV = −63.39%), while optical data in the red band show the strongest response to CW (CV = 18.83%) variations. The study further identifies optimal acquisition configurations, with SAR data achieving maximum sensitivity at smaller incidence angles and optical reflectance performing best at forward observation angles. This study addresses a critical gap by presenting the first systematic comparison of the sensitivity of multi-band SAR and VIS/NIR data to key forest structural parameters across sparsity gradients, thereby clarifying their applicability for monitoring young and middle-aged sparse forests with high carbon sequestration potential. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

27 pages, 3406 KiB  
Article
MSJosSAR Configuration Optimization and Scattering Mechanism Classification Based on Multi-Dimensional Features of Attribute Scattering Centers
by Shuo Liu, Fubo Zhang, Longyong Chen, Minan Shi, Tao Jiang and Yuhui Lei
Remote Sens. 2025, 17(14), 2515; https://doi.org/10.3390/rs17142515 - 19 Jul 2025
Viewed by 191
Abstract
As a novel system, multi-dimensional space joint-observation SAR (MSJosSAR) can simultaneously acquire target information across multiple dimensions such as frequency, angle, and polarization. This capability facilitates a more comprehensive understanding of the target and enhances subsequent recognition applications. However, current research on the [...] Read more.
As a novel system, multi-dimensional space joint-observation SAR (MSJosSAR) can simultaneously acquire target information across multiple dimensions such as frequency, angle, and polarization. This capability facilitates a more comprehensive understanding of the target and enhances subsequent recognition applications. However, current research on the configuration optimization of multi-dimensional SAR systems is limited, particularly in balancing recognition requirements with observation costs. This limitation has become a major bottleneck restricting the development of MSJosSAR. Moreover, studies on the joint utilization of multi-dimensional information at the scattering center level remain insufficient, which constrains the effectiveness of target component recognition. To address these challenges, this paper proposes a configuration optimization method for MSJosSAR based on the separability of scattering mechanisms. The approach transforms the configuration optimization problem into a vector separability problem commonly addressed in machine learning. Experimental results demonstrate that the multi-dimensional configuration obtained by this method significantly improves the classification accuracy of scattering mechanisms. Additionally, we propose a feature extraction and classification method for scattering centers across frequency and angle-polarization dimensions, and validate its effectiveness through electromagnetic simulation experiments. This study offers valuable insights and references for MSJosSAR configuration optimization and joint feature information processing. Full article
Show Figures

Figure 1

28 pages, 8088 KiB  
Article
Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains
by Fabio Bovenga, Antonella Belmonte, Alberto Refice and Ilenia Argentiero
Remote Sens. 2025, 17(14), 2479; https://doi.org/10.3390/rs17142479 - 17 Jul 2025
Viewed by 276
Abstract
Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DInSAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This [...] Read more.
Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DInSAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This study addresses these issues and explores the use of multi-band SAR data to derive SWE maps in alpine regions characterized by steep terrain, small spatial extent, and a potentially heterogeneous snowpack. We first conducted a performance analysis to assess SWE estimation precision and the maximum unambiguous SWE variation, considering incidence angle, wavelength, and coherence. Based on these results, we selected C-band Sentinel-1 and L-band SAOCOM data acquired over alpine areas and applied tailored DInSAR processing. Atmospheric artifacts were corrected using zenith total delay maps from the GACOS service. Additionally, sensitivity maps were generated for each interferometric pair to identify pixels suitable for reliable SWE estimation. A comparative analysis of the C- and L-band results revealed several critical issues, including significant atmospheric artifacts, phase decorrelation, and phase unwrapping errors, which impact SWE retrieval accuracy. A comparison between our Sentinel-1-based SWE estimations and independent measurements over an instrumented site shows results fairly in line with previous works exploiting C-band data, with an RSME in the order of a few tens of mm. Full article
(This article belongs to the Special Issue Understanding Snow Hydrology Through Remote Sensing Technologies)
Show Figures

Figure 1

21 pages, 6270 KiB  
Article
Cross-Level Adaptive Feature Aggregation Network for Arbitrary-Oriented SAR Ship Detection
by Lu Qian, Junyi Hu, Haohao Ren, Jie Lin, Xu Luo, Lin Zou and Yun Zhou
Remote Sens. 2025, 17(10), 1770; https://doi.org/10.3390/rs17101770 - 19 May 2025
Viewed by 379
Abstract
The rapid progress of deep learning has significantly enhanced the development of ship detection using synthetic aperture radar (SAR). However, the diversity of ship sizes, arbitrary orientations, densely arranged ships, etc., have been hindering the improvement of SAR ship detection accuracy. In response [...] Read more.
The rapid progress of deep learning has significantly enhanced the development of ship detection using synthetic aperture radar (SAR). However, the diversity of ship sizes, arbitrary orientations, densely arranged ships, etc., have been hindering the improvement of SAR ship detection accuracy. In response to these challenges, this study introduces a new detection approach called a cross-level adaptive feature aggregation network (CLAFANet) to achieve arbitrary-oriented multi-scale SAR ship detection. Specifically, we first construct a hierarchical backbone network based on a residual architecture to extract multi-scale features of ship objects from large-scale SAR imagery. Considering the multi-scale nature of ship objects, we then resort to the idea of self-attention to develop a cross-level adaptive feature aggregation (CLAFA) mechanism, which can not only alleviate the semantic gap between cross-level features but also improve the feature representation capabilities of multi-scale ships. To better adapt to the arbitrary orientation of ship objects in real application scenarios, we put forward a frequency-selective phase-shifting coder (FSPSC) module for arbitrary-oriented SAR ship detection tasks, which is dedicated to mapping the rotation angle of the object bounding box to different phases and exploits frequency-selective phase-shifting to solve the periodic ambiguity problem of the rotated bounding box. Qualitative and quantitative experiments conducted on two public datasets demonstrate that the proposed CLAFANet achieves competitive performance compared to some state-of-the-art methods in arbitrary-oriented SAR ship detection. Full article
Show Figures

Figure 1

22 pages, 5446 KiB  
Article
Dense 3D Reconstruction Based on Multi-Aspect SAR Using a Novel SAR-DAISY Feature Descriptor
by Shanshan Feng, Fei Teng, Jun Wang and Wen Hong
Remote Sens. 2025, 17(10), 1753; https://doi.org/10.3390/rs17101753 - 17 May 2025
Viewed by 477
Abstract
Dense 3D reconstruction from multi-aspect angle synthetic aperture radar (SAR) imagery has gained considerable attention for urban monitoring applications. However, achieving reliable dense matching between multi-aspect SAR images remains challenging due to three fundamental issues: anisotropic scattering characteristics that cause inconsistent features across [...] Read more.
Dense 3D reconstruction from multi-aspect angle synthetic aperture radar (SAR) imagery has gained considerable attention for urban monitoring applications. However, achieving reliable dense matching between multi-aspect SAR images remains challenging due to three fundamental issues: anisotropic scattering characteristics that cause inconsistent features across different aspect angles, geometric distortions, and speckle noise. To overcome these limitations, we introduce SAR-DAISY, a novel local feature descriptor specifically designed for dense matching in multi-aspect SAR images. The proposed method adapts the DAISY descriptor structure to SAR images specifically by incorporating the Gradient by Ratio (GR) operator for robust gradient calculation in speckle-affected imagery and enforcing multi-aspect consistency constraints during matching. We validated our method on W-band airborne SAR data collected over urban areas using circular flight paths. Experimental results demonstrate that SAR-DAISY generates detailed 3D point clouds with well-preserved structural features and high computational efficiency. The estimated heights of urban structures align with ground truth measurements. This approach enables 3D representation of complex urban environments from multi-aspect SAR data without requiring prior knowledge. Full article
(This article belongs to the Special Issue SAR Images Processing and Analysis (2nd Edition))
Show Figures

Graphical abstract

37 pages, 9633 KiB  
Article
Analysis and Modeling of Statistical Distribution Characteristics for Multi-Aspect SAR Images
by Rui Zhu, Fei Teng and Wen Hong
Remote Sens. 2025, 17(7), 1295; https://doi.org/10.3390/rs17071295 - 4 Apr 2025
Viewed by 384
Abstract
Multi-aspect synthetic aperture radar (SAR) is an emerging observation mode in SAR. Through multi-aspect observations, along with coherent and incoherent image processing, multi-aspect SAR effectively addresses issues like layovers, shadows, and foreshortening in conventional SAR. It can obtain multi-aspect scattering images of the [...] Read more.
Multi-aspect synthetic aperture radar (SAR) is an emerging observation mode in SAR. Through multi-aspect observations, along with coherent and incoherent image processing, multi-aspect SAR effectively addresses issues like layovers, shadows, and foreshortening in conventional SAR. It can obtain multi-aspect scattering images of the observed scene. Modeling the statistical distribution characteristics of multi-aspect SAR images is crucial for its processing and applications. Currently, there is no comprehensive and systematic study on the statistical distribution characteristics of multi-aspect SAR images. Therefore, this paper conducts qualitative and quantitative analyses of these characteristics. Furthermore, we investigate the applicability and limitations of five single-parametric models commonly used in conventional SAR for modeling the statistical distribution characteristics of multi-aspect SAR images. The experimental results show that none of these models could accurately model the multi-aspect SAR images. To address this issue, we propose a finite mixture model (FMM) and evaluate its feasibility to accurately model the statistical distribution characteristics of multi-aspect SAR on X-band GOTCHA data and C-band Zhuhai data. The experimental results demonstrate that, compared with the single-parametric models, our method can accurately model the statistical distribution characteristics of various types of targets in multi-aspect SAR images from different observation aspects and aperture angles in various bands. Full article
Show Figures

Graphical abstract

20 pages, 1530 KiB  
Article
Assessing the Feasibility of Persistent Scatterer Data for Operational Dam Monitoring in Germany: A Case Study
by Jonas Ziemer, Jannik Jänichen, Carolin Wicker, Daniel Klöpper, Katja Last, Andre Kalia, Thomas Lege, Christiane Schmullius and Clémence Dubois
Remote Sens. 2025, 17(7), 1202; https://doi.org/10.3390/rs17071202 - 28 Mar 2025
Cited by 1 | Viewed by 556
Abstract
Multi-temporal synthetic aperture radar interferometry (MT-InSAR) has evolved from a niche research technique into a powerful global monitoring tool. With the launch of nationwide and continent-wide ground motion services (GMSs), freely available deformation data can now be analyzed on a large scale. However, [...] Read more.
Multi-temporal synthetic aperture radar interferometry (MT-InSAR) has evolved from a niche research technique into a powerful global monitoring tool. With the launch of nationwide and continent-wide ground motion services (GMSs), freely available deformation data can now be analyzed on a large scale. However, their applicability for monitoring critical infrastructure, such as dams, has not yet been thoroughly assessed, and several challenges have hindered the integration of MT-InSAR into existing monitoring frameworks. These challenges include technical limitations, difficulties in interpreting deformation results, and the rigidity of existing safety protocols, which often restrict the adoption of remote sensing techniques for operational dam monitoring. This study evaluates the effectiveness of persistent scatterer (PS) data from the German ground motion service (Bodenbewegungsdienst Deutschland, BBD) in complementing time-consuming in situ techniques. By analyzing a gravity dam in Germany, BBD time series were compared with in situ pendulum data. We propose a two-stage assessment procedure: First, we evaluate the dam’s suitability for PS analysis using the CR-Index to identify areas with good radar visibility. Second, we assess the interpretability of BBD data for radial deformations by introducing a novel index that quantifies the radial sensitivity of individual PS points on the dam. This index is universally applicable and can be transferred to other types of infrastructure. The results revealed a fair correlation between PS deformations and pendulum data for many PS points (up to R2 = 0.7). A priori feasibility assessments are essential, as factors such as topography, land cover, and dam type influence the applicability of the PS technique. The dam’s orientation relative to the look direction of the sensor emerged as a key criterion for interpreting radial deformations. For angle differences (ΔRAD) of up to 20° between the true north radial angle of a PS point and the satellite’s look direction, the line-of-sight (LOS) sensitivity accounts for approximately 50 to 70% of the true radial deformation, depending on the satellite’s incidence angle. This criterion is best fulfilled by dams aligned in a north–south direction. For the dam investigated in this study, the LOS sensitivity to radial deformations was low due to its east–west orientation, resulting in significantly higher errors (6 mm RMSE43 mm) compared to in situ pendulum data. Eliminating PS points with an unfavorable alignment with the sensor should be considered before interpreting radial deformations. For implementation into operational monitoring programs, greater effort must be spent on near-real-time updates of BBD datasets. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

24 pages, 6305 KiB  
Article
Enhancing Ulva prolifera Detection in the South Yellow Sea Using Sentinel-1 SAR Imagery and Advanced Deep Learning Frameworks
by Huize Wang, Yongxue Liu, Xiaoxiao Guo and Peng Liu
Remote Sens. 2025, 17(5), 942; https://doi.org/10.3390/rs17050942 - 6 Mar 2025
Viewed by 1092
Abstract
Recurrent blooms of Ulva prolifera (U. prolifera) in the South Yellow Sea (SYS) have become a significant ecological and socio-economic challenge, disrupting marine ecosystems, aquaculture, and coastal tourism. Traditional methods for detecting and managing these blooms face notable limitations, especially in [...] Read more.
Recurrent blooms of Ulva prolifera (U. prolifera) in the South Yellow Sea (SYS) have become a significant ecological and socio-economic challenge, disrupting marine ecosystems, aquaculture, and coastal tourism. Traditional methods for detecting and managing these blooms face notable limitations, especially in complex marine environments and under adverse observation conditions. To address these issues, this study employs Sentinel-1 synthetic aperture radar (SAR) imagery and deep learning (DL) techniques. A comprehensive dataset, SYSUPD-SAR, was constructed, containing over 440,000 annotated U. prolifera patches alongside lookalike samples. Pre-training was conducted using the Contrastive Mask Image Distillation (CMID) framework, while the Swin Transformer model was enhanced with multi-head self-attention mechanisms and deep supervision strategies to improve segmentation accuracy and robustness. Key results indicate that the refined model achieved an Intersection over Union (IoU) of 93.24% and a Dice loss of 18.13%, demonstrating its effectiveness in reducing false positives and enhancing detection precision. Additionally, the integration of texture features and consideration of incidence angle variations further strengthened the model’s performance. This study provides a robust framework for U. prolifera detection, offering valuable insights and tools for mitigating the environmental and economic impacts of green tides. Full article
Show Figures

Figure 1

21 pages, 3926 KiB  
Article
S4Det: Breadth and Accurate Sine Single-Stage Ship Detection for Remote Sense SAR Imagery
by Mingjin Zhang, Yingfeng Zhu, Longyi Li, Jie Guo, Zhengkun Liu and Yunsong Li
Remote Sens. 2025, 17(5), 900; https://doi.org/10.3390/rs17050900 - 4 Mar 2025
Viewed by 758
Abstract
Synthetic Aperture Radar (SAR) is a remote sensing technology that can realize all-weather and all-day monitoring, and it is widely used in ocean ship monitoring tasks. Recently, many oriented detectors were used for ship detection in SAR images. However, these methods often found [...] Read more.
Synthetic Aperture Radar (SAR) is a remote sensing technology that can realize all-weather and all-day monitoring, and it is widely used in ocean ship monitoring tasks. Recently, many oriented detectors were used for ship detection in SAR images. However, these methods often found it difficult to balance the detection accuracy and speed, and the noise around the target in the inshore scene of SAR images led to a poor detection network performance. In addition, the rotation representation still has the problem of boundary discontinuity. To address these issues, we propose S4Det, a Sinusoidal Single-Stage SAR image detection method that enables real-time oriented ship target detection. Two key mechanisms were designed to address inshore scene processing and angle regression challenges. Specifically, a Breadth Search Compensation Module (BSCM) resolved the limited detection capability issue observed within inshore scenarios. Neural Discrete Codebook Learning was strategically integrated with Multi-scale Large Kernel Attention, capturing context information around the target and mitigating the information loss inherent in dilated convolutions. To tackle boundary discontinuity arising from the periodic nature of the target regression angle, we developed a Sine Fourier Transform Coding (SFTC) technique. The angle is represented using diverse sine components, and the discrete Fourier transform is applied to convert these periodic components to the frequency domain for processing. Finally, the experimental results of our S4Det on the RSSDD dataset achieved 92.2% mAP and 31+ FPS on an RTXA5000 GPU, which outperformed the prevalent mainstream of the oriented detection network. The robustness of the proposed S4Det was also verified on another public RSDD dataset. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

17 pages, 904 KiB  
Article
Apple Detection via Near-Field MIMO-SAR Imaging: A Multi-Scale and Context-Aware Approach
by Yuanping Shi, Yanheng Ma and Liang Geng
Sensors 2025, 25(5), 1536; https://doi.org/10.3390/s25051536 - 1 Mar 2025
Viewed by 1028
Abstract
Accurate fruit detection is of great importance for yield assessment, timely harvesting, and orchard management strategy optimization in precision agriculture. Traditional optical imaging methods are limited by lighting and meteorological conditions, making it difficult to obtain stable, high-quality data. Therefore, this study utilizes [...] Read more.
Accurate fruit detection is of great importance for yield assessment, timely harvesting, and orchard management strategy optimization in precision agriculture. Traditional optical imaging methods are limited by lighting and meteorological conditions, making it difficult to obtain stable, high-quality data. Therefore, this study utilizes near-field millimeter-wave MIMO-SAR (Multiple Input Multiple Output Synthetic Aperture Radar) technology, which is capable of all-day and all-weather imaging, to perform high-precision detection of apple targets in orchards. This paper first constructs a near-field millimeter-wave MIMO-SAR imaging system and performs multi-angle imaging on real fruit tree samples, obtaining about 150 sets of SAR-optical paired data, covering approximately 2000 accurately annotated apple targets. Addressing challenges such as weak scattering, low texture contrast, and complex backgrounds in SAR images, we propose an innovative detection framework integrating Dynamic Spatial Pyramid Pooling (DSPP), Recursive Feature Fusion Network (RFN), and Context-Aware Feature Enhancement (CAFE) modules. DSPP employs a learnable adaptive mechanism to dynamically adjust multi-scale feature representations, enhancing sensitivity to apple targets of varying sizes and distributions; RFN uses a multi-round iterative feature fusion strategy to gradually refine semantic consistency and stability, improving the robustness of feature representation under weak texture and high noise scenarios; and the CAFE module, based on attention mechanisms, explicitly models global and local associations, fully utilizing the scene context in texture-poor SAR conditions to enhance the discriminability of apple targets. Experimental results show that the proposed method achieves significant improvements in average precision (AP), recall rate, and F1 score on the constructed near-field millimeter-wave SAR apple dataset compared to various classic and mainstream detectors. Ablation studies confirm the synergistic effect of DSPP, RFN, and CAFE. Qualitative analysis demonstrates that the detection framework proposed in this paper can still stably locate apple targets even under conditions of leaf occlusion, complex backgrounds, and weak scattering. This research provides a beneficial reference and technical basis for using SAR data in fruit detection and yield estimation in precision agriculture. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

22 pages, 7233 KiB  
Article
R-SABMNet: A YOLOv8-Based Model for Oriented SAR Ship Detection with Spatial Adaptive Aggregation
by Xiaoting Li, Wei Duan, Xikai Fu and Xiaolei Lv
Remote Sens. 2025, 17(3), 551; https://doi.org/10.3390/rs17030551 - 6 Feb 2025
Cited by 4 | Viewed by 1226
Abstract
Synthetic Aperture Radar (SAR) is extensively utilized in ship detection due to its robust performance under various weather conditions and its capability to operate effectively both during the day and at night. However, ships in SAR images exhibit various characteristics including complex land [...] Read more.
Synthetic Aperture Radar (SAR) is extensively utilized in ship detection due to its robust performance under various weather conditions and its capability to operate effectively both during the day and at night. However, ships in SAR images exhibit various characteristics including complex land scattering interference, variable scales, and dense spatial arrangements. Existing algorithms are insufficient in effectively addressing these challenges. To enhance detection accuracy, this paper proposes the Rotated model with Spatial Aggregation and a Balanced-Shifted Mechanism (R-SABMNet) built upon YOLOv8. First, we introduce the Spatial-Guided Adaptive Feature Aggregation (SG-AFA) module, which enhances sensitivity to ship features while suppressing land scattering interference. Subsequently, we propose the Balanced Shifted Multi-Scale Fusion (BSMF) module, which effectively enhances local detail information and improves adaptability to multi-scale targets. Finally, we introduce the Gaussian Wasserstein Distance Loss (GWD), which effectively addresses localization errors arising from angle and scale inconsistencies in dense scenes. Our R-SABMNet outperforms other deep learning-based methods on the SSDD+ and HRSID datasets. Specifically, our method achieves a detection accuracy of 96.32%, a recall of 93.13%, and an average level of accuracy of 95.28% on the SSDD+ dataset. Full article
Show Figures

Figure 1

24 pages, 3395 KiB  
Article
Drone-Based Wildfire Detection with Multi-Sensor Integration
by Akmalbek Abdusalomov, Sabina Umirzakova, Makhkamov Bakhtiyor Shukhratovich, Mukhriddin Mukhiddinov, Azamat Kakhorov, Abror Buriboev and Heung Seok Jeon
Remote Sens. 2024, 16(24), 4651; https://doi.org/10.3390/rs16244651 (registering DOI) - 12 Dec 2024
Cited by 10 | Viewed by 3867
Abstract
Wildfires pose a severe threat to ecological systems, human life, and infrastructure, making early detection critical for timely intervention. Traditional fire detection systems rely heavily on single-sensor approaches and are often hindered by environmental conditions such as smoke, fog, or nighttime scenarios. This [...] Read more.
Wildfires pose a severe threat to ecological systems, human life, and infrastructure, making early detection critical for timely intervention. Traditional fire detection systems rely heavily on single-sensor approaches and are often hindered by environmental conditions such as smoke, fog, or nighttime scenarios. This paper proposes Adaptive Multi-Sensor Oriented Object Detection with Space–Frequency Selective Convolution (AMSO-SFS), a novel deep learning-based model optimized for drone-based wildfire and smoke detection. AMSO-SFS combines optical, infrared, and Synthetic Aperture Radar (SAR) data to detect fire and smoke under varied visibility conditions. The model introduces a Space–Frequency Selective Convolution (SFS-Conv) module to enhance the discriminative capacity of features in both spatial and frequency domains. Furthermore, AMSO-SFS utilizes weakly supervised learning and adaptive scale and angle detection to identify fire and smoke regions with minimal labeled data. Extensive experiments show that the proposed model outperforms current state-of-the-art (SoTA) models, achieving robust detection performance while maintaining computational efficiency, making it suitable for real-time drone deployment. Full article
Show Figures

Figure 1

21 pages, 10071 KiB  
Article
Deformation Monitoring and Analysis of Baige Landslide (China) Based on the Fusion Monitoring of Multi-Orbit Time-Series InSAR Technology
by Kai Ye, Zhe Wang, Ting Wang, Ying Luo, Yiming Chen, Jiaqian Zhang and Jialun Cai
Sensors 2024, 24(20), 6760; https://doi.org/10.3390/s24206760 - 21 Oct 2024
Cited by 6 | Viewed by 2004
Abstract
Due to the limitations inherent in SAR satellite imaging modes, utilizing time-series InSAR technology to process single-orbit satellite image data typically only yields one-dimensional deformation information along the LOS direction. This constraint impedes a comprehensive representation of the true surface deformation of landslides. [...] Read more.
Due to the limitations inherent in SAR satellite imaging modes, utilizing time-series InSAR technology to process single-orbit satellite image data typically only yields one-dimensional deformation information along the LOS direction. This constraint impedes a comprehensive representation of the true surface deformation of landslides. Consequently, in this paper, after the SBAS-InSAR and PS-InSAR processing of the 30-view ascending and 30-view descending orbit images of the Sentinel-1A satellite, based on the imaging geometric relationship of the SAR satellite, we propose a novel computational method of fusing ascending and descending orbital LOS-direction time-series deformation to extract the landslide’s downslope direction deformation of landslides. By applying this method to Baige landslide monitoring and integrating it with an improved tangential angle warning criterion, we classified the landslide’s trailing edge into a high-speed, a uniform-speed, and a low-speed deformation region, with deformation magnitudes of 7~8 cm, 5~7 cm, and 3~4 cm, respectively. A comparative analysis with measured data for landslide deformation monitoring revealed that the average root mean square error between the fused landslide’s downslope direction deformation and the measured data was a mere 3.62 mm. This represents a reduction of 56.9% and 57.5% in the average root mean square error compared to the single ascending and descending orbit LOS-direction time-series deformations, respectively, indicating higher monitoring accuracy. Finally, based on the analysis of landslide deformation and its inducing factors derived from the calculated time-series deformation results, it was determined that the precipitation, lithology of the strata, and ongoing geological activity are significant contributors to the sliding of the Baige land-slide. This method offers more comprehensive and accurate surface deformation information for dynamic landslide monitoring, aiding relevant departments in landslide surveillance and management, and providing technical recommendations for the fusion of multi-orbital satellite LOS-direction deformations to accurately reconstruct the true surface deformation of landslides. Full article
Show Figures

Figure 1

24 pages, 6313 KiB  
Article
Lightweight Ship Detection Network for SAR Range-Compressed Domain
by Xiangdong Tan, Xiangguang Leng, Zhongzhen Sun, Ru Luo, Kefeng Ji and Gangyao Kuang
Remote Sens. 2024, 16(17), 3284; https://doi.org/10.3390/rs16173284 - 4 Sep 2024
Cited by 9 | Viewed by 2208
Abstract
The utilization of Synthetic Aperture Radar (SAR) for real-time ship detection proves highly advantageous in the supervision and monitoring of maritime activities. Ship detection in the range-compressed domain of SAR rather than in fully focused SAR imagery can significantly reduce the time and [...] Read more.
The utilization of Synthetic Aperture Radar (SAR) for real-time ship detection proves highly advantageous in the supervision and monitoring of maritime activities. Ship detection in the range-compressed domain of SAR rather than in fully focused SAR imagery can significantly reduce the time and computational resources required for complete SAR imaging, enabling lightweight real-time ship detection methods to be implemented on an airborne or spaceborne SAR platform. However, there is a lack of lightweight ship detection methods specifically designed for the SAR range-compressed domain. In this paper, we propose Fast Range-Compressed Detection (FastRCDet), a novel lightweight network for ship detection in the SAR range-compressed domain. Firstly, to address the distinctive geometric characteristics of the SAR range-compressed domain, we propose a Lightweight Adaptive Network (LANet) as the backbone of the network. We introduce Arbitrary Kernel Convolution (AKConv) as a fundamental component, which enables the flexible adjustment of the receptive field shape and better adaptation to the large scale and aspect ratio characteristics of ships in the range-compressed domain. Secondly, to enhance the efficiency and simplicity of the network model further, we propose an innovative Multi-Scale Fusion Head (MSFH) module directly integrated after the backbone, eliminating the need for a neck module. This module effectively integrates features at various scales to more accurately capture detailed information about the target. Thirdly, to further enhance the network’s adaptability to ships in the range-compressed domain, we propose a novel Direction IoU (DIoU) loss function that leverages angle cost to control the convergence direction of predicted bounding boxes, thereby improving detection accuracy. Experimental results on a publicly available dataset demonstrate that FastRCDet achieves significant reductions in parameters and computational complexity compared to mainstream networks without compromising detection performance in SAR range-compressed images. FastRCDet achieves a low parameter of 2.49 M and a high detection speed of 38.02 frames per second (FPS), surpassing existing lightweight detection methods in terms of both model size and processing rate. Simultaneously, it attains an average accuracy (AP) of 77.12% in terms of its detection performance. This method provides a baseline in lightweight network design for SAR ship detection in the range-compressed domain and offers practical implications for resource-constrained embedded platforms. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition (Second Edition))
Show Figures

Figure 1

20 pages, 11907 KiB  
Article
Precise Motion Compensation of Multi-Rotor UAV-Borne SAR Based on Improved PTA
by Yao Cheng, Xiaolan Qiu and Dadi Meng
Remote Sens. 2024, 16(14), 2678; https://doi.org/10.3390/rs16142678 - 22 Jul 2024
Viewed by 1311
Abstract
In recent years, with the miniaturization of high-precision position and orientation systems (POS), precise motion errors during SAR data collection can be calculated based on high-precision POS. However, compensating for these errors remains a significant challenge for multi-rotor UAV-borne SAR systems. Compared with [...] Read more.
In recent years, with the miniaturization of high-precision position and orientation systems (POS), precise motion errors during SAR data collection can be calculated based on high-precision POS. However, compensating for these errors remains a significant challenge for multi-rotor UAV-borne SAR systems. Compared with large aircrafts, multi-rotor UAVs are lighter, slower, have more complex flight trajectories, and have larger squint angles, which result in significant differences in motion errors between building targets and ground targets. If the motion compensation is based on ground elevation, the motion error of the ground target will be fully compensated, but the building target will still have a large residual error; as a result, although the ground targets can be well-focused, the building targets may be severely defocused. Therefore, it is necessary to further compensate for the residual motion error of building targets based on the actual elevation on the SAR image. However, uncompensated errors will affect the time–frequency relationship; furthermore, the ω-k algorithm will further change these errors, resulting in errors in SAR images becoming even more complex and difficult to compensate for. To solve this problem, this paper proposes a novel improved precise topography and aperture-dependent (PTA) method that can precisely compensate for motion errors in the UAV-borne SAR system. After motion compensation and imaging processing based on ground elevation, a secondary focus is applied to defocused buildings. The improved PTA fully considers the coupling of the residual error with the time–frequency relationship and ω-k algorithm, and the precise errors in the two-dimensional frequency domain are determined through numerical calculations without any approximations. Simulation and actual data processing verify the effectiveness of the method, and the experimental results show that the proposed method in this paper is better than the traditional method. Full article
Show Figures

Figure 1

Back to TopTop