Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = multi-airport region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5706 KiB  
Article
Improved Dab-Deformable Model for Runway Foreign Object Debris Detection in Airport Optical Images
by Yang Cao, Yuming Wang, Yilin Zhu and Rui Yang
Appl. Sci. 2025, 15(15), 8284; https://doi.org/10.3390/app15158284 - 25 Jul 2025
Viewed by 164
Abstract
Foreign Object Debris (FOD) detection is paramount for airport operations. The precise identification and removal of FOD are critical for ensuring airplane flight safety. This study collected FOD images using optical imaging sensors installed at Urumqi Airport and created a custom FOD dataset [...] Read more.
Foreign Object Debris (FOD) detection is paramount for airport operations. The precise identification and removal of FOD are critical for ensuring airplane flight safety. This study collected FOD images using optical imaging sensors installed at Urumqi Airport and created a custom FOD dataset based on these images. To address the challenges of small targets and complex backgrounds in the dataset, this paper proposes optimizations and improvements based on the advanced detection network Dab-Deformable. First, this paper introduces a Lightweight Deep-Shallow Feature Fusion algorithm (LDSFF), which integrates a hotspot sensing network and a spatial mapping enhancer aimed at focusing the model on significant regions. Second, we devise a Multi-Directional Deformable Channel Attention (MDDCA) module for rational feature weight allocation. Furthermore, a feedback mechanism is incorporated into the encoder structure, enhancing the model’s capacity to capture complex dependencies within sequential data. Additionally, when combined with a Threshold Selection (TS) algorithm, the model effectively mitigates the distraction caused by the serialization of multi-layer feature maps in the Transformer architecture. Experimental results on the optical small FOD dataset show that the proposed network achieves a robust performance and improved accuracy in FOD detection. Full article
Show Figures

Figure 1

36 pages, 11687 KiB  
Article
Macroscopic-Level Collaborative Optimization Framework for IADS: Multiple-Route Terminal Maneuvering Area Scheduling Problem
by Chaoyu Xia, Minghua Hu, Xiuying Zhu, Yi Wen, Junqing Wu and Changbo Hou
Aerospace 2025, 12(7), 639; https://doi.org/10.3390/aerospace12070639 - 18 Jul 2025
Viewed by 178
Abstract
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an [...] Read more.
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an optimization challenge aimed at optimizing TMA interventions, such as rerouting, speed control, time-based metering, dynamic minimum time separation, and holding procedures; the objective function minimizes schedule deviations and the accumulated holding time. Furthermore, the problem is formulated as a mixed-integer linear program (MILP) to facilitate finding solutions. A rolling horizon control (RHC) dynamic optimization framework is also introduced to decompose the large-scale problem into manageable subproblems for iterative resolution. To demonstrate the applicability and effectiveness of the proposed scheduling models, a hub airport—Chengdu Tianfu International Airport (ICAO code: ZUTF) in the Cheng-Yu Metroplex—is selected for validation. Numerical analyses confirm the superiority of the proposed models, which are expected to reduce aircraft delays, shorten airborne and holding times, and improve airspace resource utilization. This study provides intelligent decision support and engineering design ideas for the macroscopic-level collaborative optimization framework of the Integrated Arrival–Departure and Surface (IADS) system. Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
Show Figures

Figure 1

15 pages, 1617 KiB  
Article
A Stochastic Optimization Model for Multi-Airport Flight Cooperative Scheduling Considering CvaR of Both Travel and Departure Time
by Wei Cong, Zheng Zhao, Ming Wei and Huan Liu
Aerospace 2025, 12(7), 631; https://doi.org/10.3390/aerospace12070631 - 14 Jul 2025
Viewed by 216
Abstract
By assuming that both travel and departure time are normally distributed variables, a multi-objective stochastic optimization model for the multi-airport flight cooperative scheduling problem (MAFCSP) with CvaR of travel and departure time is firstly proposed. Herein, conflicts of flights from different airports at [...] Read more.
By assuming that both travel and departure time are normally distributed variables, a multi-objective stochastic optimization model for the multi-airport flight cooperative scheduling problem (MAFCSP) with CvaR of travel and departure time is firstly proposed. Herein, conflicts of flights from different airports at the same waypoint can be avoided by simultaneously assigning an optimal route to each flight between the airport and waypoint and determining its practical departure time. Furthermore, several real-world constraints, including the safe interval between any two aircraft at the same waypoint and the maximum allowable delay for each flight, have been incorporated into the proposed model. The primary objective is minimization of both total carbon emissions and delay times for all flights across all airports. A feasible set of non-dominated solutions were obtained using a two-stage heuristic approach-based NSGA-II. Finally, we present a case study of four airports and three waypoints in the Beijing–Tianjin–Hebei region of China to test our study. Full article
(This article belongs to the Special Issue Flight Performance and Planning for Sustainable Aviation)
Show Figures

Figure 1

17 pages, 370 KiB  
Article
A Deep Learning Approach for General Aviation Trajectory Prediction Based on Stochastic Processes for Uncertainty Handling
by Houru Hu, Ye Yuan and Qingwen Xue
Appl. Sci. 2025, 15(12), 6810; https://doi.org/10.3390/app15126810 - 17 Jun 2025
Viewed by 445
Abstract
General aviation trajectory prediction plays a crucial role in enhancing safety and operational efficiency at non-towered airports. However, current research faces multiple challenges including variable weather conditions, complex aircraft interactions, and flight pattern constraints specified by general aviation regulations. This paper proposes a [...] Read more.
General aviation trajectory prediction plays a crucial role in enhancing safety and operational efficiency at non-towered airports. However, current research faces multiple challenges including variable weather conditions, complex aircraft interactions, and flight pattern constraints specified by general aviation regulations. This paper proposes a deep learning method based on stochastic processes aimed at addressing uncertainty issues in general aviation trajectory prediction. First, we design a probabilistic encoder–decoder structure enabling the model to output trajectory distributions rather than single paths, with regularization terms based on Lyapunov stability theory to ensure predicted trajectories maintain stable convergence while satisfying flight patterns. Second, we develop a multi-layer attention mechanism that accounts for weather factors, enhancing the model’s responsiveness to environmental changes. Validation using the TrajAir dataset from Pittsburgh-Butler Regional Airport (KBTP) not only advances deep learning applications in general aviation but also provides new insights for solving trajectory prediction problems. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

19 pages, 3983 KiB  
Article
Enhancing UAS Integration in Controlled Traffic Regions Through Reinforcement Learning
by Joaquin Vico Navarro and Juan Antonio Vila Carbó
Drones 2025, 9(6), 412; https://doi.org/10.3390/drones9060412 - 6 Jun 2025
Viewed by 984
Abstract
Controlled Traffic Regions (CTRs) around major airports pose an important challenge to Unmanned Aerial System (UAS) traffic management. Current regulations highly restrict UAS missions in these areas by confining them to segregated areas. This paper makes a proposal to allow more ambitious UAS [...] Read more.
Controlled Traffic Regions (CTRs) around major airports pose an important challenge to Unmanned Aerial System (UAS) traffic management. Current regulations highly restrict UAS missions in these areas by confining them to segregated areas. This paper makes a proposal to allow more ambitious UAS missions inside CTRs, such as paths across the CTR or between heliports inside the CTR, based on self-separation. This proposal faces two important problems: on the one hand, the adaptive response to the dynamic airspace reconfiguration of a CTR without necessarily terminating the flight, and on the other, a self-managed conflict resolution that allows maintaining traffic separations without the intervention of air traffic controllers. This paper proposes a solution named Reinforcement Learning Multi-Agent Separation Management (RL-MASM). It employs a multi-agent reinforcement learning system with a fully decentralized decision-making scheme, although it uses a common information source of the environment. The proposed system is evaluated against classical control algorithms for obstacle avoidance to determine the potential benefits of AI-based methods. Results show that AI-based methods can benefit from knowing the intent of a UAS. This leads to increased performance in intrusions into no-fly zones or collisions, and also solves some challenging scenarios for classical control algorithms. From the aeronautical point of view, the proposed solution also introduces important advantages in terms of efficiency, scalability, and decentralization. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

39 pages, 3695 KiB  
Article
Fast Identification and Detection Algorithm for Maneuverable Unmanned Aircraft Based on Multimodal Data Fusion
by Tian Luan, Shixiong Zhou, Yicheng Zhang and Weijun Pan
Mathematics 2025, 13(11), 1825; https://doi.org/10.3390/math13111825 - 30 May 2025
Viewed by 834
Abstract
To address the critical challenges of insufficient monitoring capabilities and vulnerable defense systems against drones in regional airports, this study proposes a multi-source data fusion framework for rapid UAV detection. Building upon the YOLO v11 architecture, we develop an enhanced model incorporating four [...] Read more.
To address the critical challenges of insufficient monitoring capabilities and vulnerable defense systems against drones in regional airports, this study proposes a multi-source data fusion framework for rapid UAV detection. Building upon the YOLO v11 architecture, we develop an enhanced model incorporating four key innovations: (1) A dual-path RGB-IR fusion architecture that exploits complementary multi-modal data; (2) C3k2-DATB dynamic attention modules for enhanced feature extraction and semantic perception; (3) A bilevel routing attention mechanism with agent queries (BRSA) for precise target localization; (4) A semantic-detail injection (SDI) module coupled with windmill-shaped convolutional detection heads (PCHead) and Wasserstein Distance loss to expand receptive fields and accelerate convergence. Experimental results demonstrate superior performance with 99.3% mAP@50 (17.4% improvement over baseline YOLOv11), while maintaining lightweight characteristics (2.54M parameters, 7.8 GFLOPS). For practical deployment, we further enhance tracking robustness through an improved BoT-SORT algorithm within an interactive multiple model framework, achieving 91.3% MOTA and 93.0% IDF1 under low-light conditions. This integrated solution provides cost-effective, high-precision drone surveillance for resource-constrained airports. Full article
Show Figures

Figure 1

11 pages, 4122 KiB  
Proceeding Paper
UKSBAS Testbed Performance Assessment of Two Years of Operations
by Javier González Merino, Fernando Bravo Llano, Michael Pattinson, Madeleine Easom, Juan Ramón Campano Hernández, Ignacio Sanz Palomar, María Isabel Romero Llapa, Sangeetha Priya Ilamparithi, David Hill and George Newton
Eng. Proc. 2025, 88(1), 35; https://doi.org/10.3390/engproc2025088035 - 21 Apr 2025
Viewed by 340
Abstract
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. [...] Read more.
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. The development of operational SBAS systems is in transition due to the extension of L1 SBAS services to new regions and the improvements expected by the introduction of dual frequency multi-constellation (DFMC) services, which allow the use of more core constellations such as Galileo and the use of ionosphere-free L1/L5 signal combination. The UKSBAS Testbed is a demonstration and feasibility project in the framework of ESA’s Navigation Innovation Support Programme (NAVISP), which is sponsored by the UK’s HMG with the participation of the Department for Transport and the UK Space Agency. UKSBAS Testbed’s main objective is to deliver a new L1 SBAS signal in space (SIS) from May 2022 in the UK region using Viasat’s Inmarsat-3F5 geostationary (GEO) satellite and Goonhilly Earth Station as signal uplink over PRN 158, as well as L1 SBAS and DFMC SBAS services through the Internet. SBAS messages are generated by GMV’s magicSBAS software and fed with data from the Ordnance Survey’s station network. This paper provides an assessment of the performance achieved by the UKSBAS Testbed during the last two years of operations at the SIS and user level, including a number of experimentation campaigns performed in the aviation and maritime domains, comprising ground tests at airports, flight tests on aircraft and sea trials on a vessel. This assessment includes, among others, service availability (e.g., APV-I, LPV-200), protection levels (PL), and position errors (PE) statistics over the service area and in a network of receivers. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

28 pages, 10418 KiB  
Article
Multi-Airport Capacity Decoupling Analysis Using Hybrid and Integrated Surface–Airspace Traffic Modeling
by Lei Yang, Yilong Wang, Sichen Liu, Mengfei Wang, Shuce Wang and Yumeng Ren
Aerospace 2025, 12(3), 237; https://doi.org/10.3390/aerospace12030237 - 14 Mar 2025
Cited by 1 | Viewed by 737
Abstract
The complexity and resource-sharing nature of traffic within multi-airport regions present significant challenges for air traffic management. This paper aims to develop a mesoscopic traffic model for exploring the traffic dynamics under coupled operations, and thus to conduct capacity decoupling analysis. We propose [...] Read more.
The complexity and resource-sharing nature of traffic within multi-airport regions present significant challenges for air traffic management. This paper aims to develop a mesoscopic traffic model for exploring the traffic dynamics under coupled operations, and thus to conduct capacity decoupling analysis. We propose an integrated surface–airspace model. In the surface model, we utilize linear regression and random forest regression to model unimpeded taxiing time and taxiway network delays due to sparsity of ground traffic. In the airspace model, a dualized queuing network topology is constructed including a runway system, where the G(t)/GI/s(t) fluid queuing model is applied, and an inter-node traffic flow transmission mechanism is introduced to simulate airspace network traffic. Based on the hybrid and efficient model, we employ a Monte Carlo approach and use a quantile regression envelope model for capacity decoupling analysis. Using the Shanghai multi-airport region as a case study, the model’s performance is validated from the perspectives of operation time and traffic throughput. The results show that our model accurately represents traffic dynamics and estimates delays within an acceptable margin of error. The capacity decoupling analysis effectively captures the interdependence in traffic flow caused by resource sharing, both within a single airport and between airports. Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
Show Figures

Figure 1

23 pages, 22589 KiB  
Article
Landslide Prediction Validation in Western North Carolina After Hurricane Helene
by Sophia Lin, Shenen Chen, Ryan A. Rasanen, Qifan Zhao, Vidya Chavan, Wenwu Tang, Navanit Shanmugam, Craig Allan, Nicole Braxtan and John Diemer
Geotechnics 2024, 4(4), 1259-1281; https://doi.org/10.3390/geotechnics4040064 - 14 Dec 2024
Cited by 3 | Viewed by 2558
Abstract
Hurricane Helene triggered 1792 landslides across western North Carolina and has caused damage to 79 bridges to date. Helene hit western North Carolina days after a low-pressure system dropped up to 254 mm of rain in some locations of western North Carolina (e.g., [...] Read more.
Hurricane Helene triggered 1792 landslides across western North Carolina and has caused damage to 79 bridges to date. Helene hit western North Carolina days after a low-pressure system dropped up to 254 mm of rain in some locations of western North Carolina (e.g., Asheville Regional Airport). The already waterlogged region experienced devastation as significant additional rainfall occurred during Helene, where some areas, like Asheville, North Carolina received an additional 356 mm of rain (National Weather Service, 2024). In this study, machine learning (ML)-generated multi-hazard landslide susceptibility maps are compared to the documented landslides from Helene. The landslide models use the North Carolina landslide database, soil survey, rainfall, USGS digital elevation model (DEM), and distance to rivers to create the landslide variables. From the DEM, aspect factors and slope are computed. Because recent research in western North Carolina suggests fault movement is destabilizing slopes, distance to fault was also incorporated as a predictor variable. Finally, soil types were used as a wildfire predictor variable. In total, 4794 landslides were used for model training. Random Forest and logistic regression machine learning algorithms were used to develop the landslide susceptibility map. Furthermore, landslide susceptibility was also examined with and without consideration of wildfires. Ultimately, this study indicates heavy rainfall and debris-laden floodwaters were critical in triggering both landslides and scour, posing a dual threat to bridge stability. Field investigations from Hurricane Helene revealed that bridge damage was concentrated at bridge abutments, with scour and sediment deposition exacerbating structural vulnerability. We evaluated the assumed flooding potential (AFP) of damaged bridges in the study area, finding that bridges with lower AFP values were particularly vulnerable to scour and submersion during flood events. Differentiating between landslide-induced and scour-induced damage is essential for accurately assessing risks to infrastructure. The findings emphasize the importance of comprehensive hazard mapping to guide infrastructure resilience planning in mountainous regions. Full article
Show Figures

Figure 1

27 pages, 21954 KiB  
Article
Long-Term Ground Deformation Monitoring and Quantitative Interpretation in Shanghai Using Multi-Platform TS-InSAR, PCA, and K-Means Clustering
by Yahui Chong and Qiming Zeng
Remote Sens. 2024, 16(22), 4188; https://doi.org/10.3390/rs16224188 - 10 Nov 2024
Cited by 2 | Viewed by 1552
Abstract
Ground subsidence in urban areas is mainly due to natural or anthropogenic activities, and it seriously threatens the healthy and sustainable development of the city and the security of individuals’ lives and assets. Shanghai is a megacity of China, and it has a [...] Read more.
Ground subsidence in urban areas is mainly due to natural or anthropogenic activities, and it seriously threatens the healthy and sustainable development of the city and the security of individuals’ lives and assets. Shanghai is a megacity of China, and it has a long history of ground subsidence due to the overexploitation of groundwater and urban expansion. Time Series Synthetic Aperture Radar Interferometry (TS-InSAR) is a highly effective and widely used approach for monitoring urban ground deformation. However, it is difficult to obtain long-term (such as over 10 years) deformation results using single-platform SAR satellite in general. To acquire long-term surface deformation monitoring results, it is necessary to integrate data from multi-platform SAR satellites. Furthermore, the deformations are the result of multiple factors that are superimposed, and relevant studies that quantitatively separate the contributions from different driving factors to subsidence are rare. Moreover, the time series cumulative deformation results of massive measurement points also bring difficulties to the deformation interpretation. In this study, we have proposed a long-term surface deformation monitoring and quantitative interpretation method that integrates multi-platform TS-InSAR, PCA, and K-means clustering. SAR images from three SAR datasets, i.e., 19 L-band ALOS-1 PALSAR, 22 C-band ENVISAT ASAR, and 20 C-band Sentinel-1A, were used to retrieve annual deformation rates and time series deformations in Shanghai from 2007 to 2018. The monitoring results indicate that there is serious uneven settlement in Shanghai, with a spatial pattern of stability in the northwest and settlement in the southeast of the study area. Then, we selected Pudong International Airport as the area of interest and quantitatively analyzed the driving factors of land subsidence in this area by using PCA results, combining groundwater exploitation and groundwater level change, precipitation, temperature, and engineering geological and human activities. Finally, the study area was divided into four sub-regions with similar time series deformation patterns using the K-means clustering. This study helps to understand the spatiotemporal evolution of surface deformation and its driving factors in Shanghai, and provides a scientific basis for the formulation and implementation of precise prevention and control strategies for land subsidence disasters, and it can also provide reference for monitoring in other urban areas. Full article
Show Figures

Figure 1

15 pages, 6433 KiB  
Technical Note
RSPS-SAM: A Remote Sensing Image Panoptic Segmentation Method Based on SAM
by Zhuoran Liu, Zizhen Li, Ying Liang, Claudio Persello, Bo Sun, Guangjun He and Lei Ma
Remote Sens. 2024, 16(21), 4002; https://doi.org/10.3390/rs16214002 - 28 Oct 2024
Cited by 6 | Viewed by 2674
Abstract
Satellite remote sensing images contain complex and diverse ground object information and the images exhibit spatial multi-scale characteristics, making the panoptic segmentation of satellite remote sensing images a highly challenging task. Due to the lack of large-scale annotated datasets for panoramic segmentation, existing [...] Read more.
Satellite remote sensing images contain complex and diverse ground object information and the images exhibit spatial multi-scale characteristics, making the panoptic segmentation of satellite remote sensing images a highly challenging task. Due to the lack of large-scale annotated datasets for panoramic segmentation, existing methods still suffer from weak model generalization capabilities. To mitigate this issue, this paper leverages the advantages of the Segment Anything Model (SAM), which can segment any object in remote sensing images without requiring any annotations and proposes a high-resolution remote sensing image panoptic segmentation method called Remote Sensing Panoptic Segmentation SAM (RSPS-SAM). Firstly, to address the problem of global information loss caused by cropping large remote sensing images for training, a Batch Attention Pyramid was designed to extract multi-scale features from remote sensing images and capture long-range contextual information between cropped patches, thereby enhancing the semantic understanding of remote sensing images. Secondly, we constructed a Mask Decoder to address the limitation of SAM requiring manual input prompts and its inability to output category information. This decoder utilized mask-based attention for mask segmentation, enabling automatic prompt generation and category prediction of segmented objects. Finally, the effectiveness of the proposed method was validated on the high-resolution remote sensing image airport scene dataset RSAPS-ASD. The results demonstrate that the proposed method achieves segmentation and recognition of foreground instances and background regions in high-resolution remote sensing images without the need for prompt input, while providing smooth segmentation boundaries with a panoptic segmentation quality (PQ) of 57.2, outperforming current mainstream methods. Full article
Show Figures

Graphical abstract

17 pages, 5177 KiB  
Article
A Branched Convolutional Neural Network for Forecasting the Occurrence of Hazes in Paris Using Meteorological Maps with Different Characteristic Spatial Scales
by Chien Wang
Atmosphere 2024, 15(10), 1239; https://doi.org/10.3390/atmos15101239 - 17 Oct 2024
Cited by 1 | Viewed by 944
Abstract
A convolutional neural network (CNN) has been developed to forecast the occurrence of low-visibility events or hazes in the Paris area. It has been trained and validated using multi-decadal daily regional maps of many meteorological and hydrological variables alongside surface visibility observations. The [...] Read more.
A convolutional neural network (CNN) has been developed to forecast the occurrence of low-visibility events or hazes in the Paris area. It has been trained and validated using multi-decadal daily regional maps of many meteorological and hydrological variables alongside surface visibility observations. The strategy is to make the machine learn from available historical data to recognize various regional weather and hydrological regimes associated with low-visibility events. To better preserve the characteristic spatial information of input features in training, two branched architectures have recently been developed. These architectures process input features firstly through several branched CNNs with different kernel sizes to better preserve patterns with certain characteristic spatial scales. The outputs from the first part of the network are then processed by the second part, a deep non-branched CNN, to further deliver predictions. The CNNs with new architectures have been trained using data from 1975 to 2019 in a two-class (haze versus non-haze) classification mode as well as a regression mode that directly predicts the value of surface visibility. The predictions of regression have also been used to perform the two-class classification forecast using the same definition in the classification mode. This latter procedure is found to deliver a much better performance in making class-based forecasts than the direct classification machine does, primarily by reducing false alarm predictions. The branched architectures have improved the performance of the networks in the validation and also in an evaluation using the data from 2021 to 2023 that have not been used in the training and validation. Specifically, in the latter evaluation, branched machines captured 70% of the observed low-visibility events during the three-year period at Charles de Gaulle Airport. Among those predicted low-visibility events by the machines, 74% of them are true cases based on observation. Full article
(This article belongs to the Special Issue Data Analysis in Atmospheric Research)
Show Figures

Figure 1

22 pages, 1765 KiB  
Article
An Application Using ELECTRE and MOORA Methods in the Selection of International Airport Transfer Center (Hub) in Türkiye
by Olcay Kalan, Melek Işık and Fatma Şeyma Yüksel
Appl. Sci. 2024, 14(17), 7678; https://doi.org/10.3390/app14177678 - 30 Aug 2024
Viewed by 1256
Abstract
In today’s world, air transport has become a favored choice for enhancing the value of a national economy, driven by advancing technology, escalating volumes of national and international trade, and population growth. The proliferation of airport transfer centers, particularly within air transport, plays [...] Read more.
In today’s world, air transport has become a favored choice for enhancing the value of a national economy, driven by advancing technology, escalating volumes of national and international trade, and population growth. The proliferation of airport transfer centers, particularly within air transport, plays a pivotal role in fostering the advancement of the aviation sector. Therefore, the selection of these hubs is of great importance. This study evaluated the New Çukurova, Antalya, Sivas Nuri Demirağ, Erzurum and Muğla Airports in Türkiye for the selection of a new airport transfer center in terms of criteria such as airport costs, airport terminal and apron facilities, airport passenger transportation services, airport operating capacity, airport location, demand factors in the service region and other factors. The study employed three methods for evaluating alternative international airports: AHP (Analytic Hierarchy Process), MOORA (Multi-Objective Optimization by Ratio Analysis) and ELECTRE (Elimination and Choice Translating Reality). In the initial phase, the priority ranking of criteria was established based on expert opinions. Subsequently, Antalya Airport was the most suitable airport transfer center according to the ELECTRE method, while New Çukurova Airport emerged as the preferred choice according to the MOORA method. Both airports secured top rankings in both evaluation methods. Full article
Show Figures

Figure 1

21 pages, 22426 KiB  
Article
Intelligent Surveillance of Airport Apron: Detection and Location of Abnormal Behavior in Typical Non-Cooperative Human Objects
by Jun Li and Xiangqing Dong
Appl. Sci. 2024, 14(14), 6182; https://doi.org/10.3390/app14146182 - 16 Jul 2024
Cited by 1 | Viewed by 1746
Abstract
Most airport surface surveillance systems focus on monitoring and commanding cooperative objects (vehicles) while neglecting the location and detection of non-cooperative objects (humans). Abnormal behavior by non-cooperative objects poses a potential threat to airport security. This study collects surveillance video data from civil [...] Read more.
Most airport surface surveillance systems focus on monitoring and commanding cooperative objects (vehicles) while neglecting the location and detection of non-cooperative objects (humans). Abnormal behavior by non-cooperative objects poses a potential threat to airport security. This study collects surveillance video data from civil aviation airports in several regions of China, and a non-cooperative abnormal behavior localization and detection framework (NC-ABLD) is established. As the focus of this paper, the proposed framework seamlessly integrates a multi-scale non-cooperative object localization module, a human keypoint detection module, and a behavioral classification module. The framework uses a serial structure, with multiple modules working in concert to achieve precise position, human keypoints, and behavioral classification of non-cooperative objects in the airport field. In addition, since there is no publicly available rich dataset of airport aprons, we propose a dataset called IIAR-30, which consists of 1736 images of airport surfaces and 506 video clips in six frequently occurring behavioral categories. The results of experiments conducted on the IIAR-30 dataset show that the framework performs well compared to mainstream behavior recognition methods and achieves fine-grained localization and refined class detection of typical non-cooperative human abnormal behavior on airport apron surfaces. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

18 pages, 2540 KiB  
Article
Preventive Maintenance Decision-Making Optimization Method for Airport Runway Composite Pavements
by Jianming Ling, Zengyi Wang, Shifu Liu and Yu Tian
Appl. Sci. 2024, 14(9), 3850; https://doi.org/10.3390/app14093850 - 30 Apr 2024
Cited by 3 | Viewed by 1889
Abstract
Long-term preventive maintenance planning using finite annual budgets is vital for maintaining the service performance of airport runway composite pavements. Using the pavement condition index (PCI) to quantify composite pavement performance, this study investigated the PCI deterioration tendencies of middle runways, [...] Read more.
Long-term preventive maintenance planning using finite annual budgets is vital for maintaining the service performance of airport runway composite pavements. Using the pavement condition index (PCI) to quantify composite pavement performance, this study investigated the PCI deterioration tendencies of middle runways, terminal runways, and taxiways and developed prediction models related to structural thickness and air traffic. Performance jump (PJ) and deterioration rate reduction (DRR) were used to measure maintenance benefits. Based on 112 composite pavement sections in the Long-term Pavement Performance Program, this study analyzed the influences of five typical preventive maintenance technologies on PJ, DRR, and PCI deterioration rates. The logarithmic regression relationship between PJ and PCI was obtained. For sections treated with crack sealing and crack filling, the DRR was nearly 0. For sections treated with fog seal, thin HMA overlay, and hot-mix recycled AC, the DRR was 0.2, 0.7, and 0.8, respectively. To solve the multi-objective maintenance problem, this study proposed a decision-making optimization method based on dynamic programming, and the solution algorithm was optimized, which was applied in a five-year maintenance plan. Considering different PCI deterioration tendencies of airport regions, as well as PJ, DRR, and costs of maintenance technologies, the preventive maintenance decision-making optimization method meets performance and financial requirements sufficiently. Full article
(This article belongs to the Special Issue New Technology for Road Surface Detection)
Show Figures

Figure 1

Back to TopTop