Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = mtHsp70

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5478 KiB  
Article
The Interaction of DMRTA2 with HSP90β Inhibits p53 Ubiquitination and Activates the p53 Pathway to Suppress the Malignant Progression of Non-Small-Cell Lung Cancer
by Shiyang Deng, Ling Li and Jiang Du
Curr. Issues Mol. Biol. 2025, 47(7), 497; https://doi.org/10.3390/cimb47070497 - 28 Jun 2025
Viewed by 384
Abstract
Background: Lung cancer, predominantly NSCLC (80%), has a poor prognosis due to late diagnosis and limited treatment efficacy. DMRTA2 (DMRT5), a transcription factor linked to neural/germ cell development, is overexpressed in NSCLC per TCGA data, indicating its potential role in tumorigenesis and [...] Read more.
Background: Lung cancer, predominantly NSCLC (80%), has a poor prognosis due to late diagnosis and limited treatment efficacy. DMRTA2 (DMRT5), a transcription factor linked to neural/germ cell development, is overexpressed in NSCLC per TCGA data, indicating its potential role in tumorigenesis and as a therapeutic target. Methods: Conduct a comprehensive search of the relevant theoretical foundations. Based on this, differential expression analysis will be performed using the DESeq2 package in R on RNA-seq data from lung adenocarcinoma and lung squamous cell carcinoma in the TCGA database. The research will then employ various methods, including CRISPR genome editing, MTS assay, flow cytometry, Western blot, co-immunoprecipitation, immunofluorescence, and qRT-PCR. Results: Through experimental validation, we found that DMRTA2 mRNA is highly expressed in non-small-cell lung cancer (NSCLC) tissues and is negatively correlated with poor prognosis. DMRTA2 binds to HSP90β, inhibiting the interaction between HSP90β and p53, thereby suppressing p53 ubiquitination and nuclear export. This activates the p53 pathway, inhibiting the proliferation and invasion of lung cancer cells. Conclusions: In NSCLC, DMRTA2 acts as a context-dependent regulator, stabilizing wild-type p53 through competitive HSP90β binding to suppress tumors, while in p53-compromised cells, potentially engaging HSP90β or alternative pathways to promote malignancy. Its dual localization and transport interactions reveal multifunctional, stress-responsive roles beyond transcription. Full article
Show Figures

Figure 1

18 pages, 1537 KiB  
Article
Reduced Expression of UPRmt Proteins HSP10, HSP60, HTRA2, OMA1, SPG7, and YME1L Is Associated with Accelerated Heart Failure in Humans
by Petra Bakovic, Vid Mirosevic, Tomo Svagusa, Ana Sepac, Ana Kulic, Davor Milicic, Hrvoje Gasparovic, Igor Rudez, Marjan Urlic, Suncana Sikiric, Sven Seiwerth, Drazen Belina, Matija Bakos, Monika Karija Vlahovic, Rea Taradi, Rado Zic, Ivana Ilic, Borislav Belev, Bosko Skoric, Dora Fabijanovic, Ivo Planinc, Maja Cikes and Filip Sedlicadd Show full author list remove Hide full author list
Biomedicines 2025, 13(5), 1142; https://doi.org/10.3390/biomedicines13051142 - 8 May 2025
Viewed by 796
Abstract
Background/Objectives: The mitochondrial unfolded protein response (UPRmt) is one of the mitochondrial quality control mechanisms that is responsible for reparation and removal of damaged proteins in mitochondria. Methods: Here we investigated the role of the UPRmt in the myocardium of humans with [...] Read more.
Background/Objectives: The mitochondrial unfolded protein response (UPRmt) is one of the mitochondrial quality control mechanisms that is responsible for reparation and removal of damaged proteins in mitochondria. Methods: Here we investigated the role of the UPRmt in the myocardium of humans with and without heart failure and in the cell culture model. Results: The analysis of myocardial samples by ELISA from patients with ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM), as well as healthy donors, revealed a significantly reduced expression of the UPRmt proteins HSP10, CLPP, LONP1, OMA1, and SPG7 in patients with DCM and ICM. Furthermore, patients with DCM and ICM exhibited elevated levels of myocardial reactive oxygen species (ROS, tested by 4-hydroxynonenal) compared to controls, and a positive correlation between ROS production and mt-HSP70, OMA1, and SPG7 protein expression. The correlation analysis indicated a negative correlation between cardiomyocyte hypertrophy and the expression of several UPRmt genes. The inhibition of four tested UPRmt effector proteins exacerbated the injury of cultured cells under oxidative stress. The patients with ICM, DCM, or both, who showed lower myocardial expression of HSP10, HSP60, HTRA2, OMA1, SPG7, and YME1L, underwent heart transplantation or implantation of a left ventricular assist device earlier in life compared to those with the higher protein expression. Conclusions: In conclusion, our findings indicate that the reduced expression of several UPRmt effector proteins is associated with accelerated heart failure in patients, which, together with other results, indicates that impaired UPRmt may contribute to the pathogenesis of heart failure in humans. Full article
(This article belongs to the Special Issue Advanced Research on Heart Failure and Heart Transplantation)
Show Figures

Figure 1

18 pages, 9015 KiB  
Article
Hesperetin Increases Lifespan and Antioxidant Ability Correlating with IIS, HSP, mtUPR, and JNK Pathways of Chronic Oxidative Stress in Caenorhabditis elegans
by Run-Jia Wang, Ya-Jing Ni and Yan-Qiang Liu
Int. J. Mol. Sci. 2024, 25(23), 13148; https://doi.org/10.3390/ijms252313148 - 6 Dec 2024
Cited by 2 | Viewed by 1342
Abstract
Hesperetin (Hst) is a common citrus fruit flavonoid with antioxidant, anti-inflammatory, and anti-neurodegenerative effects. To explore the antioxidant and anti-aging effects and mechanisms of Hst, we induced chronic oxidative stress in Caenorhabditis elegans (C. elegans) using low-concentration H2O2 and examined [...] Read more.
Hesperetin (Hst) is a common citrus fruit flavonoid with antioxidant, anti-inflammatory, and anti-neurodegenerative effects. To explore the antioxidant and anti-aging effects and mechanisms of Hst, we induced chronic oxidative stress in Caenorhabditis elegans (C. elegans) using low-concentration H2O2 and examined its effects on lifespan, healthy life index, reactive oxygen species (ROS), antioxidant enzymes, and transcriptomic metrics. Hst significantly prolonged lifespan, increased body bending and pharyngeal pumping frequency, decreased ROS accumulation, and increased antioxidant enzyme activity in normal and stressed C. elegans. Hst significantly upregulated daf-18, daf-16, gst-2, gst-3, gst-4, gst-39, hsp-16.11, sip-1, clpp-1, and dve-1 and downregulated ist-1 and kgb-1 mRNAs in stressed C. elegans. These genes are involved in the insulin/insulin-like growth factor-1 signaling (IIS), heat shock protein (HSP), mitochondrial unfolded protein response (mtUPR), and c-Jun N-terminal kinase (JNK) pathways. In summary, Hst increases lifespan and antioxidant ability, correlating with these pathways, during chronic oxidative stress in C. elegans. Full article
(This article belongs to the Special Issue Essential Molecules in Life: Regulation, Defense, and Longevity)
Show Figures

Figure 1

22 pages, 4896 KiB  
Article
Involvement of Melatonin, Oxidative Stress, and Inflammation in the Protective Mechanism of the Carotid Artery over the Torpor–Arousal Cycle of Ground Squirrels
by Ziwei Hao, Yuting Han, Qi Zhao, Minghui Zhu, Xiaoxuan Liu, Yingyu Yang, Ning An, Dinglin He, Etienne Lefai, Kenneth B. Storey, Hui Chang and Manjiang Xie
Int. J. Mol. Sci. 2024, 25(23), 12888; https://doi.org/10.3390/ijms252312888 - 29 Nov 2024
Viewed by 1373
Abstract
Hibernating mammals experience severe hemodynamic changes over the torpor–arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action [...] Read more.
Hibernating mammals experience severe hemodynamic changes over the torpor–arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear. Morphology, hemodynamic, mitochondrial oxidative stress, and inflammatory factors of the carotid artery were assessed in ground squirrels who were sampled during summer active (SA), late torpor (LT), and interbout arousal (IBA) conditions. Changes were assessed by methods including hematoxylin and eosin staining, color Doppler ultrasound, ELISA, Western blots, and qPCR. Changes in arterial blood and serum melatonin were also measured by blood gas analyzer and ELISA, whereas mitochondrial oxidative stress and inflammation factors of primary vascular smooth muscle cells (VSMCs) were assessed by qPCR. (1) Intima-media carotid thickness, peak systolic velocity (PSV), end diastolic blood flow velocity (EDV), maximal blood flow rate (Vmax) and pulsatility index (PI) were significantly decreased in the LT group as compared with the SA group, whereas there were no difference between the SA and IBA groups. (2) PO2, oxygen saturation, hematocrit and PCO2 in the arterial blood were significantly increased, and pH was significantly decreased in the LT group as compared with the SA and IBA groups. (3) The serum melatonin concentration was significantly increased in the LT group as compared with the SA and IBA groups. (4) MT treatment significantly reduced the elevated levels of LONP1, NF-κB, NLRP3 and IL-6 mRNA expression of VSMCs under hypoxic conditions. (5) Protein expression of HSP60 and LONP1 in the carotid artery were significantly reduced in the LT and IBA groups as compared with the SA group. (6) The proinflammatory factors IL-1β, IL-6, and TNF-α were reduced in the carotid artery of the LT group as compared with the SA and IBA groups. The carotid artery experiences no oxidative stress or inflammatory response during the torpor–arousal cycle. In addition, melatonin accumulates during torpor and alleviates oxidative stress and inflammatory responses caused by hypoxia in vitro in VSMCs from ground squirrels. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

32 pages, 5633 KiB  
Review
The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer’s Disease
by Karthikeyan Tangavelou and Kiran Bhaskar
Int. J. Mol. Sci. 2024, 25(22), 12335; https://doi.org/10.3390/ijms252212335 - 17 Nov 2024
Cited by 1 | Viewed by 3147
Abstract
In Alzheimer’s disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, [...] Read more.
In Alzheimer’s disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin–proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD. Full article
(This article belongs to the Special Issue Proteasome Activity Regulation)
Show Figures

Figure 1

15 pages, 1968 KiB  
Article
Susceptibility of Human Spermatozoa to Titanium Dioxide Nanoparticles: Evaluation of DNA Damage and Biomarkers
by Elena Maria Scalisi, Roberta Pecoraro, Agata Scalisi, Jessica Dragotto, Giovanni Bracchitta, Massimo Zimbone, Giuliana Impellizzeri and Maria Violetta Brundo
Life 2024, 14(11), 1455; https://doi.org/10.3390/life14111455 - 9 Nov 2024
Viewed by 2292
Abstract
Nowadays, developing countries have seen a reduction in male reproductive parameters, and it has been linked to the exposure of endocrine disrupting chemicals (EDCs), which are able to mimic or disrupt steroid hormone actions. Also, nanoparticles have shown effects on the male reproductive [...] Read more.
Nowadays, developing countries have seen a reduction in male reproductive parameters, and it has been linked to the exposure of endocrine disrupting chemicals (EDCs), which are able to mimic or disrupt steroid hormone actions. Also, nanoparticles have shown effects on the male reproductive system, in particular the use of TiO2-NPs in drugs, cosmetics, and food as pigment additives, and, thanks to their small size (1–100 nm), provide themselves the opportunity to be internalized by the body and pass the blood–testis barrier (BTB). Therefore, TiO2-NPs can act on spermatogenesis and spermatozoa. In this study, we carried out an in vitro assay on human spermatozoa to evaluate the effects of TiO2-NPs at the concentrations of 500, 250, 100, and 50 ppm. Exposure did not statistically alter sperm parameters (e.g., motility and viability) but induced damage to sperm DNA and the expression of biomarkers by spermatozoa. This immunofluorescence investigation showed a positivity for biomarkers of stress (HSP70 and MTs) on the connecting piece of spermatozoa and also for sex hormone binding globulin (SHBG) biomarkers. The SHBG protein acts as a carrier of androgens and estrogens, regulating their bioavailability; therefore, its expression in the in vitro assay did not rule out the ability of TiO2-NPs to act as endocrine disruptors. Full article
(This article belongs to the Special Issue Clinical Research in Male Reproduction)
Show Figures

Figure 1

15 pages, 10048 KiB  
Article
Heat Shock Factor HSFA6b Mediates Mitochondrial Unfolded Protein Response in Arabidopsis thaliana
by Guolong Yu, Zhuoran Huang, Chaocheng Guo, Jiahao Li, Xinyuan Wang, Yudong Wang and Xu Wang
Plants 2024, 13(22), 3116; https://doi.org/10.3390/plants13223116 - 5 Nov 2024
Cited by 1 | Viewed by 1657
Abstract
Mitochondria are important organelles in eukaryotes and are involved in various metabolic processes. Mitochondrial proteotoxic stress triggers the mitochondrial unfolded protein response (UPRmt) to restore mitochondrial protein homeostasis and maintain normal life activities. However, the regulatory mechanism of plant UPRmt [...] Read more.
Mitochondria are important organelles in eukaryotes and are involved in various metabolic processes. Mitochondrial proteotoxic stress triggers the mitochondrial unfolded protein response (UPRmt) to restore mitochondrial protein homeostasis and maintain normal life activities. However, the regulatory mechanism of plant UPRmt remains to be revealed in Arabidopsis. Based on the fact that UPRmt activates heat shock protein (HSP) genes, we identified the heat shock transcription factor HSFA6b as a key regulator mediating UPRmt through reverse genetics. HSFA6b responded to mitochondrial proteotoxic stress and regulated mitochondrial heat shock proteins’ genes’ (mtHSPs) expression. HSFA6b translocated to the nuclear after treatment with doxycycline (Dox)—a mitochondrial ribosome translation inhibitor. HSFA6b binds to the mtHSPs promoters and activates mtHSPs expression. The HSFA6b mutation blocked the UPRmt signals to promote root growth under mitochondrial proteotoxic stress and accelerated leaf senescence during development. Our study reveals a novel signal-regulating mechanism in the UPRmt pathways and provides new insights regarding the regulation of plant growth and development and stress resistance by the UPRmt pathways. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

29 pages, 4666 KiB  
Article
Transcriptional Rearrangements Associated with Thermal Stress and Preadaptation in Baikal Whitefish (Coregonus baicalensis)
by Yulia P. Sapozhnikova, Anastasiya G. Koroleva, Tuyana V. Sidorova, Sergey A. Potapov, Alexander A. Epifantsev, Evgenia A. Vakhteeva, Lyubov I. Tolstikova, Olga Yu. Glyzina, Vera M. Yakhnenko, Valeria M. Cherezova and Lyubov V. Sukhanova
Animals 2024, 14(21), 3077; https://doi.org/10.3390/ani14213077 - 25 Oct 2024
Cited by 1 | Viewed by 1763
Abstract
In this work, we describe the transcriptional profiles of preadapted and non-adapted one-month-old juvenile Baikal whitefish after heat shock exposure. Preadapted fish were exposed to a repeated thermal rise of 6 °C above the control temperature every three days throughout their embryonic development. [...] Read more.
In this work, we describe the transcriptional profiles of preadapted and non-adapted one-month-old juvenile Baikal whitefish after heat shock exposure. Preadapted fish were exposed to a repeated thermal rise of 6 °C above the control temperature every three days throughout their embryonic development. One month after hatching, preadapted and non-adapted larvae were either kept at control temperatures (12 °C) or exposed to an acute thermal stress (TS) of 12 °C above the control temperature. In response to this acute stress, an increase in HSP gene expression (HSP-30, HSP-40, HSP-47, HSP-70, and HSP-90) and TRIM16 was detected, independent of preadaptation. The expression levels of genes responsible for the response to oxygen levels, growth factors and the immune response, HBA, HBB, Myosin VI, Myosin VII, MHC, Plumieribetin, TnI, CYP450, and LDB3 were higher in individuals that had previously undergone adaptation. Genes responsible for the regulation of metabolism, MtCK, aFGF, ARF, CRYGB, and D-DT, however, increased their activity in non-adapted individuals. This information on transcriptional profiles will contribute to further understanding of the mechanisms of adaptation of whitefish to their environment. Full article
(This article belongs to the Special Issue Omics in Economic Aquatic Animals)
Show Figures

Figure 1

15 pages, 16627 KiB  
Article
Vesicle-Transported Multidrug Resistance as a Possible Therapeutic Target of Natural Compounds
by Salvatrice Rigogliuso, Alessandra Cusimano, Lucia Condorelli, Manuela Labbozzetta, Gabriella Schiera, Paola Poma and Monica Notarbartolo
Pharmaceuticals 2024, 17(10), 1358; https://doi.org/10.3390/ph17101358 - 11 Oct 2024
Cited by 1 | Viewed by 1336
Abstract
Background/Objectives: A key role of extracellular vesicles (EVs) is mediating both cell–cell and cell–stroma communication in pathological/physiological conditions. EVs from resistant tumor cells can transport different molecules like P-glycoprotein (P-gp), acting as a shuttle between donor and recipient cells, resulting in a phenotypic [...] Read more.
Background/Objectives: A key role of extracellular vesicles (EVs) is mediating both cell–cell and cell–stroma communication in pathological/physiological conditions. EVs from resistant tumor cells can transport different molecules like P-glycoprotein (P-gp), acting as a shuttle between donor and recipient cells, resulting in a phenotypic change. The aim of our work was to isolate, characterize, and inhibit the release of EVs in two multidrug resistance (MDR) cancer models: MCF-7R (breast cancer cell line) and HL-60R (acute myeloid leukemia cell line). Methods: The existence of P-gp in EVs from MDR cells was confirmed by Western blotting assays. The characterization of EVs was carried out by evaluating the size using NTA and the presence of specific markers such as CD63, Hsp70 and Syntenin. The ability of HL-60R and MCF-7R to perform horizontal transfer of P-gp via EVs to sensitive cells was assessed using three different methods. The acquisition of resistance and its inhibition in recipient cells was confirmed by MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Results: Our data showed that cell lines (MDR) release P-gp-loaded EVs, unlike sensitive cells. The acquisition of resistance determined by the incorporation of P-gp into the membrane of sensitive cells was confirmed by the reduced cytotoxic activity of doxorubicin. Natural compounds such as curcumin, lupeol, and heptacosane can block vesicular transfer and restore the sensitivity of HL-60 and MCF-7 cells. Conclusions: Our study demonstrates that natural inhibitors able to reverse this mechanism may represent a new therapeutic strategy to limit the propagation of the resistant phenotype. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

20 pages, 6547 KiB  
Article
Transcriptomic Analysis Reveals the Mechanism of MtLOX24 in Response to Methyl Jasmonate Stress in Medicago truncatula
by Lei Xu, Yanchao Xu, Huanhuan Lv, Yanran Xu, Jiangqi Wen, Mingna Li, Junmei Kang, Zhipeng Liu, Qingchuan Yang and Ruicai Long
Agriculture 2024, 14(7), 1076; https://doi.org/10.3390/agriculture14071076 - 4 Jul 2024
Viewed by 1238
Abstract
Lipoxygenase (LOX) is associated with responses to plant hormones, environmental stresses, and signaling substances. Methyl jasmonate (MeJA) treatment triggers the production of LOX, polyphenol oxidase, and protease inhibitors in various plants, producing resistance to herbivory. To examine the response of MtLOX24 to MeJA, [...] Read more.
Lipoxygenase (LOX) is associated with responses to plant hormones, environmental stresses, and signaling substances. Methyl jasmonate (MeJA) treatment triggers the production of LOX, polyphenol oxidase, and protease inhibitors in various plants, producing resistance to herbivory. To examine the response of MtLOX24 to MeJA, the phenotypic and physiological changes in Medicago truncatula MtLOX24 overexpression and lox mutant plants were investigated. Additionally, wild-type R108, the MtLOX24-overexpressing line L4, and the mutant lox-1 were utilized as experimental materials to characterize the differentially expressed genes (DEGs) and metabolic pathways in response to MeJA. The results indicate that after treatment with 200 µM of MeJA, the damage in the mutants lox-1 and lox-2 was more serious than in the overexpressing lines L4 and L6, with more significant leaf wilting, yellowing, and oxidative damage in lox-1 and lox-2. Exogenous application of MeJA induced H2O2 production and POD activity but reduced CAT activity in the lox mutants. Transcriptome analysis revealed 10,238 DEGs in six libraries of normal-growing groups (cR108, cL4, and clox1) and MeJA-treated groups (R108, L4, and lox1). GO and KEGG functional enrichment analysis demonstrated that under normal growth conditions, the DEGs between the cL4 vs. cR108 and the clox-1 vs. cR108 groups were primarily enriched in signaling pathways such as plant–pathogen interactions, flavonoid biosynthesis, plant hormone signal transduction, the MAPK signaling pathway, and glutathione metabolism. The DEGs of the R108 vs. cR108 and L4 vs. cL4 groups after MeJA treatment were mainly enriched in glutathione metabolism, phenylpropanoid biosynthesis, the MAPK signaling pathway, circadian rhythm, and α-linolenic acid metabolism. Among them, under normal growth conditions, genes like PTI5, PR1, HSPs, PALs, CAD, CCoAOMT, and CYPs showed significant differences between L4 and the wild type, suggesting that the expression of these genes is impacted by MtLOX24 overexpression. CDPKs, CaMCMLs, IFS, JAZ, and other genes were also significantly different between L4 and the wild type upon MeJA treatment, suggesting that they might be important genes involved in JA signaling. This study provides a reference for the study of the response mechanism of MtLOX24 under MeJA signaling. Full article
Show Figures

Figure 1

26 pages, 6606 KiB  
Article
Machine Learning Reveals Impacts of Smoking on Gene Profiles of Different Cell Types in Lung
by Qinglan Ma, Yulong Shen, Wei Guo, Kaiyan Feng, Tao Huang and Yudong Cai
Life 2024, 14(4), 502; https://doi.org/10.3390/life14040502 - 13 Apr 2024
Cited by 2 | Viewed by 2258
Abstract
Smoking significantly elevates the risk of lung diseases such as chronic obstructive pulmonary disease (COPD) and lung cancer. This risk is attributed to the harmful chemicals in tobacco smoke that damage lung tissue and impair lung function. Current research on the impact of [...] Read more.
Smoking significantly elevates the risk of lung diseases such as chronic obstructive pulmonary disease (COPD) and lung cancer. This risk is attributed to the harmful chemicals in tobacco smoke that damage lung tissue and impair lung function. Current research on the impact of smoking on gene expression in specific lung cells is limited. This study addresses this gap by analyzing gene expression profiles at the single-cell level from 43,539 lung endothelial cells, 234,349 lung epithelial cells, 189,843 lung immune cells, and 16,031 lung stromal cells using advanced machine learning techniques. The data, categorized by different lung cell types, were classified into three smoking states: active smoker, former smoker, and never smoker. Each cell sample encompassed 28,024 feature genes. Employing an incremental feature selection method within a computational framework, several specific genes have been identified as potential markers of smoking status in different lung cell types. These include B2M, EEF1A1, and TPT1 in lung endothelial cells; FTL and MT-ATP8 in lung epithelial cells; HLA-B and HLA-C in lung immune cells; and HSP90B1 and LCN2 in lung stroma cells. Additionally, this study developed quantitative rules for representing the gene expression patterns related to smoking. This research highlights the potential of machine learning in oncology, enhancing our molecular understanding of smoking’s harm and laying the groundwork for future mechanism-based studies. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

15 pages, 5272 KiB  
Article
Melatonin Application Induced Physiological and Molecular Changes in Carnation (Dianthus caryophyllus L.) under Heat Stress
by Mohamed S. Elmongy and Mohaned M. Abd El-Baset
Horticulturae 2024, 10(2), 122; https://doi.org/10.3390/horticulturae10020122 - 26 Jan 2024
Cited by 7 | Viewed by 1929
Abstract
Carnation is one of the most important ornamental plants worldwide; however, heat stress is a problem, which affects carnation cultivation. The harmful effects of heat stress include impaired vegetative development and reduced floral induction. In this study, to enhance carnation growth under conditions [...] Read more.
Carnation is one of the most important ornamental plants worldwide; however, heat stress is a problem, which affects carnation cultivation. The harmful effects of heat stress include impaired vegetative development and reduced floral induction. In this study, to enhance carnation growth under conditions of heat stress, various concentrations of melatonin were added to in vitro culture media. The mechanism by which melatonin reduced heat stress damage was then studied by taking measurements of morphological parameters, levels of reactive oxygen species (ROS), antioxidant enzymes, and malondialdehyde (MDA), as well as differential gene expression, in carnation plants during in vitro culture. These data revealed that untreated carnation plants were more harmed by conditions of heat stress than plants treated with melatonin. Melatonin at concentrations of 5 and 10 mM increased chlorophyll content, fresh weight, and plant height to a greater extent than other concentrations. Melatonin may, thus, be used to alleviate damage to carnations caused by heat stress. The application of melatonin was also found to reduce oxidative damage and enhance antioxidant defense mechanisms. In addition, the expression of heat-related genes was found to be upregulated; in melatonin-treated plants, an upregulation was recorded in the expression of GAPDH, DcPOD1, DcPOD2, DcPOD3, Gols1, MBF1c, HSF30, HSP101, HSP70, and sHSP (MT) genes. In short, we found that melatonin treatment increased heat tolerance in carnation plants. The data presented here may serve as a reference for those seeking to enhance the growth of plants in conditions of heat stress. Full article
(This article belongs to the Special Issue Tolerance and Response of Ornamental Plants to Abiotic Stress)
Show Figures

Figure 1

12 pages, 2064 KiB  
Article
Toxicity of Titanium Dioxide–Cerium Oxide Nanocomposites to Zebrafish Embryos: A Preliminary Evaluation
by Roberta Pecoraro, Elena Maria Scalisi, Stefania Indelicato, Martina Contino, Giuliana Coco, Ilenia Stancanelli, Fabiano Capparucci, Roberto Fiorenza and Maria Violetta Brundo
Toxics 2023, 11(12), 994; https://doi.org/10.3390/toxics11120994 - 6 Dec 2023
Cited by 6 | Viewed by 2106
Abstract
The widespread use of metal nanoparticles in different fields has raised many doubts regarding their possible toxicity to living organisms and the accumulation and discharge of metals in fish species. Among these nanoparticles, titanium dioxide (TiO2) and cerium oxide (CeO2 [...] Read more.
The widespread use of metal nanoparticles in different fields has raised many doubts regarding their possible toxicity to living organisms and the accumulation and discharge of metals in fish species. Among these nanoparticles, titanium dioxide (TiO2) and cerium oxide (CeO2) nanoparticles have mainly been employed in photocatalysis and water depuration. The aim of this research was to evaluate the potential toxic effects, after a co-exposure of TiO2-3%CeO2 nanoparticles, on zebrafish development, using an acute toxicity test. Increasing concentrations of TiO2-3%CeO2 nanoparticles were used (0.1-1-10-20 mg/L). The heartbeat rate was assessed using DanioscopeTM software (version 1.2) (Noldus, Leesburg, VA, USA), and the responses to two biomarkers of exposure (Heat shock proteins-70 and Metallothioneins) were evaluated through immunofluorescence. Our results showed that the co-exposure to TiO2-3%CeO2 nanoparticles did not affect the embryos’ development compared to the control group; a significant difference (p < 0.05) at 48 hpf heartbeat for the 1, 10, and 20 mg/L groups was found compared to the unexposed group. A statistically significant response (p < 0.05) to Heat shock proteins-70 (Hsp70) was shown for the 0.1 and 1 mg/L groups, while no positivity was observed in all the exposed groups for Metallothioneins (MTs). These results suggest that TiO2-3%CeO2 nanocomposites do not induce developmental toxicity; instead, when considered separately, TiO2 and CeO2 NPs are harmful to zebrafish embryos, as previously shown. Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles on Freshwater Ecosystem)
Show Figures

Graphical abstract

16 pages, 2914 KiB  
Article
Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress
by Silvia Maiullari, Antonella Cicirelli, Angela Picerno, Francesca Giannuzzi, Loreto Gesualdo, Angela Notarnicola, Fabio Sallustio and Biagio Moretti
Int. J. Mol. Sci. 2023, 24(23), 16631; https://doi.org/10.3390/ijms242316631 - 23 Nov 2023
Cited by 8 | Viewed by 4518
Abstract
Pulsed electromagnetic fields (PEMF) are employed as a non-invasive medicinal therapy, especially in the orthopedic field to stimulate bone regeneration. However, the effect of PEMF on skeletal muscle cells (SkMC) has been understudied. Here, we studied the potentiality of 1.5 mT PEMF to [...] Read more.
Pulsed electromagnetic fields (PEMF) are employed as a non-invasive medicinal therapy, especially in the orthopedic field to stimulate bone regeneration. However, the effect of PEMF on skeletal muscle cells (SkMC) has been understudied. Here, we studied the potentiality of 1.5 mT PEMF to stimulate early regeneration of human SkMC. We showed that human SkMC stimulated with 1.5 mT PEMF for four hours repeated for two days can stimulate cell proliferation without inducing cell apoptosis or significant impairment of the metabolic activity. Interestingly, when we simulated physical damage of the muscle tissue by a scratch, we found that the same PEMF treatment can speed up the regenerative process, inducing a more complete cell migration to close the scratch and wound healing. Moreover, we investigated the molecular pattern induced by PEMF among 26 stress-related cell proteins. We found that the expression of 10 proteins increased after two consecutive days of PEMF stimulation for 4 h, and most of them were involved in response processes to oxidative stress. Among these proteins, we found that heat shock protein 70 (HSP70), which can promote muscle recovery, inhibits apoptosis and decreases inflammation in skeletal muscle, together with thioredoxin, paraoxonase, and superoxide dismutase (SOD2), which can also promote skeletal muscle regeneration following injury. Altogether, these data support the possibility of using PEMF to increase SkMC regeneration and, for the first time, suggest a possible molecular mechanism, which consists of sustaining the expression of antioxidant enzymes to control the important inflammatory and oxidative process occurring following muscle damage. Full article
(This article belongs to the Special Issue Advanced Research on Regenerative Medicine)
Show Figures

Figure 1

14 pages, 1593 KiB  
Article
The C-Terminal Tail of Mitochondrial Transcription Factor A Is Dispensable for Mitochondrial DNA Replication and Transcription In Situ
by Natalya Kozhukhar and Mikhail F. Alexeyev
Int. J. Mol. Sci. 2023, 24(11), 9430; https://doi.org/10.3390/ijms24119430 - 29 May 2023
Cited by 5 | Viewed by 2024
Abstract
Mitochondrial transcription factor A (TFAM) is one of the widely studied but still incompletely understood mitochondrial protein, which plays a crucial role in the maintenance and transcription of mitochondrial DNA (mtDNA). The available experimental evidence is often contradictory in assigning the same function [...] Read more.
Mitochondrial transcription factor A (TFAM) is one of the widely studied but still incompletely understood mitochondrial protein, which plays a crucial role in the maintenance and transcription of mitochondrial DNA (mtDNA). The available experimental evidence is often contradictory in assigning the same function to various TFAM domains, partly owing to the limitations of those experimental systems. Recently, we developed the GeneSwap approach, which enables in situ reverse genetic analysis of mtDNA replication and transcription and is devoid of many of the limitations of the previously used techniques. Here, we utilized this approach to analyze the contributions of the TFAM C-terminal (tail) domain to mtDNA transcription and replication. We determined, at a single amino acid (aa) resolution, the TFAM tail requirements for in situ mtDNA replication in murine cells and established that tail-less TFAM supports both mtDNA replication and transcription. Unexpectedly, in cells expressing either C-terminally truncated murine TFAM or DNA-bending human TFAM mutant L6, HSP1 transcription was impaired to a greater extent than LSP transcription. Our findings are incompatible with the prevailing model of mtDNA transcription and thus suggest the need for further refinement. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

Back to TopTop