Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,205)

Search Parameters:
Keywords = mountain basins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 37263 KB  
Article
Assessing Fire Station Accessibility in Guiyang, a Mountainous City, with Nighttime Light and POI Data: An Application of the Enhanced 2SFCA Approach
by Xindong He, Boqing Wu, Guoqiang Shen, Qianqian Lyu and Grace Ofori
ISPRS Int. J. Geo-Inf. 2025, 14(10), 393; https://doi.org/10.3390/ijgi14100393 - 9 Oct 2025
Viewed by 157
Abstract
Mountainous urban areas like Guiyang face unique fire safety challenges due to rugged terrain and complex road networks, which hinder fire station accessibility. This study proposes a GIS-based framework that integrates nighttime light (NPP/VIIRS) and point of interest (POI) data to assess fire [...] Read more.
Mountainous urban areas like Guiyang face unique fire safety challenges due to rugged terrain and complex road networks, which hinder fire station accessibility. This study proposes a GIS-based framework that integrates nighttime light (NPP/VIIRS) and point of interest (POI) data to assess fire risk and accessibility. Kernel density estimation quantified POI distributions across four risk categories, and the Spatial Appraisal and Valuation of Environment and Ecosystems (SAVEE) model combined these with NPP/VIIRS data to generate a composite fire risk map. Accessibility was evaluated using the enhanced two-step floating catchment area (E2SFCA) method with road network travel times; 80.13% of demand units were covered within the five-minute threshold, while 53.25% of all units exhibited low accessibility. Spatial autocorrelation analysis (Moran’s I) revealed clustered high risk in central basins and service gaps on surrounding hills, reflecting the dominant influence of terrain alongside protected forests and farmlands. The results indicate that targeted road upgrades and station relocations can improve fire service coverage. The approach is scalable and supports more equitable emergency response in mountainous settings. Full article
Show Figures

Figure 1

19 pages, 5201 KB  
Article
Mechanisms of Heavy Rainfall over the Southern Anhui Mountains: Assessment for Disaster Risk
by Mingxin Sun, Hongfang Zhu, Dongyong Wang, Yaoming Ma and Wenqing Zhao
Water 2025, 17(19), 2906; https://doi.org/10.3390/w17192906 - 8 Oct 2025
Viewed by 226
Abstract
Heavy rainfall events in the southern Anhui region are the main meteorological disasters, often leading to floods and secondary disasters. This article explores the mechanisms supporting extreme precipitation by studying the spatiotemporal characteristics of heavy rainfall events during 2022–2024 and their related atmospheric [...] Read more.
Heavy rainfall events in the southern Anhui region are the main meteorological disasters, often leading to floods and secondary disasters. This article explores the mechanisms supporting extreme precipitation by studying the spatiotemporal characteristics of heavy rainfall events during 2022–2024 and their related atmospheric circulation patterns. Using high-resolution precipitation data, ERA5 and GDAS reanalysis datasets, and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model analysis, the main sources and transport pathways of water that cause heavy rainfall in the region were determined. The results indicate that large-scale circulation systems, including the East Asian monsoon (EAM), the Western Pacific subtropical high (WPSH), the South Asian high (SAH), and the Tibetan Plateau monsoon (PM), play a decisive role in regulating water vapor flux and convergence in southern Anhui. Southeast Asia, the South China Sea, the western Pacific, and inland China are the main sources of water vapor, with multi-level and multi-channel transport. The uplift effect of mountainous terrain further enhances local precipitation. The Indian Ocean basin mode (IOBM) and zonal index are also closely related to the spatiotemporal changes in rainfall and disaster occurrence. The rainstorm disaster risk assessment based on principal component analysis, the information entropy weight method, and multiple regression shows that the power index model fitted by multiple linear regression is the best for the assessment of disaster-causing rainstorm events. The research results provide a scientific basis for enhancing early warning and disaster prevention capabilities in the context of climate change. Full article
(This article belongs to the Special Issue Water-Related Disasters in Adaptation to Climate Change)
Show Figures

Figure 1

25 pages, 7449 KB  
Article
Influence of Volumetric Geometry on Meteorological Time Series Measurements: Fractality and Thermal Flows
by Patricio Pacheco Hernández, Gustavo Navarro Ahumada, Eduardo Mera Garrido and Diego Zemelman de la Cerda
Fractal Fract. 2025, 9(10), 639; https://doi.org/10.3390/fractalfract9100639 - 30 Sep 2025
Viewed by 269
Abstract
This work analyzes the behavior of the boundary layer subjected to stresses by obstacles using hourly measurements, in the form of time series, of meteorological variables (temperature (T), relative humidity (RH), and magnitude of the wind speed (WS)) in a given period. The [...] Read more.
This work analyzes the behavior of the boundary layer subjected to stresses by obstacles using hourly measurements, in the form of time series, of meteorological variables (temperature (T), relative humidity (RH), and magnitude of the wind speed (WS)) in a given period. The study region is Santiago, the capital of Chile. The measurement location is in a rugged basin geography with a nearly pristine atmospheric environment. The time series are analyzed through chaos theory, demonstrating that they are chaotic through the calculation of the parameters Lyapunov exponent (λ > 0), correlation dimension (DC < 5), Kolmogorov entropy (SK > 0), Hurst exponent (0.5 < H < 1), and Lempel–Ziv complexity (LZ > 0). These series are simultaneous measurements of the variables of interest, before and after, of three different volumetric geometries arranged as obstacles: a parallelepiped, a cylinder, and a miniature mountain. The three geometries are subject to the influence of the wind and present the same cross-sectional area facing the measuring instruments oriented in the same way. The entropies calculated for each variable in each geometry are compared. It is demonstrated, in a first approximation, that volumetric geometry impacts the magnitude of the entropic fluxes associated with the measured variables, which can affect micrometeorology and, by extension, the climate in general. Furthermore, the study examines which geometry favors greater information loss or greater fractality in the measured variables. Full article
(This article belongs to the Special Issue Fractals in Earthquake and Atmospheric Science)
Show Figures

Figure 1

24 pages, 22609 KB  
Article
Terrain-Based High-Resolution Microclimate Modeling for Cold-Air-Pool-Induced Frost Risk Assessment in Karst Depressions
by András Dobos, Réka Farkas and Endre Dobos
Climate 2025, 13(10), 205; https://doi.org/10.3390/cli13100205 - 30 Sep 2025
Viewed by 585
Abstract
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the [...] Read more.
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the formation, structure, and persistence of CAPs in a Central European karst depression. High-resolution terrain-based modeling was conducted using UAV-derived digital surface models combined with multiple GIS tools (Sky-View Factor, Wind Exposition Index, Cold Air Flow, and Diurnal Anisotropic Heat). These models were validated and enriched by multi-level temperature measurements and thermal imaging under various synoptic conditions. Results reveal that temperature inversions frequently form during clear, calm nights, leading to extreme near-surface cold accumulation within the sinkhole. Inversions may persist into the day due to topographic shading and density stratification. Vegetation and basin geometry influence radiative and turbulent fluxes, shaping the spatial extent and intensity of cold-air layers. The CAP is interpreted as part of a broader interconnected multi-sinkhole system. This integrated approach offers a transferable, cost-effective framework for terrain-driven frost hazard assessment, with direct relevance to precision agriculture, mesoscale model refinement, and site-specific climate adaptation in mountainous or frost-sensitive regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

16 pages, 4230 KB  
Article
Erosion-Based Classification of Mountainous Watersheds in Greece: A Geospatial Approach
by Stefanos P. Stefanidis, Nikolaos D. Proutsos, Dimitris Tigkas and Chrysoula Chatzichristaki
Sustainability 2025, 17(19), 8710; https://doi.org/10.3390/su17198710 - 28 Sep 2025
Viewed by 308
Abstract
Soil erosion is a key factor in land degradation across Mediterranean mountain regions, yet comprehensive assessments at the national scale are still uncommon. In this study, the Erosion Potential Method (EPM, Gavrilović method) was applied to 1127 mountainous watersheds of Greece in order [...] Read more.
Soil erosion is a key factor in land degradation across Mediterranean mountain regions, yet comprehensive assessments at the national scale are still uncommon. In this study, the Erosion Potential Method (EPM, Gavrilović method) was applied to 1127 mountainous watersheds of Greece in order to classify their erosion severity through the erosion coefficient (Z). Information on relief, geology and vegetation was combined so that each watershed could be assigned to one of five erosion severity classes. The classification revealed that 53.2% of the watersheds fall into the slight category, while 26.0% are moderate and 16.3% are very slight. Severe cases account for 3.9%, and only 0.5% are classified as excessive, though these few basins are locally very important. The distribution is far from uniform: severe watersheds occur more often in North Peloponnese (EL02), Thessaly (EL08), and the Western Sterea Ellada (EL04). By contrast, Crete (EL13) and the Aegean Islands (EL14) include a relatively greater proportion of watersheds in the moderate category. This variation indicates that erosion risk should not be considered a uniform condition across the country. Even watersheds with low overall Z may contain steep or degraded slopes that act as local hotspots. Consequently, effective management should move beyond country-wide averages and instead focus on the sub-areas that are most exposed and susceptible to erosion. Full article
Show Figures

Figure 1

19 pages, 7431 KB  
Article
Weather Regimes of Extreme Wind Speed Events in Xinjiang: A 10–30 Year Return Period Analysis
by Yajie Li, Dagui Liu, Donghan Wang, Sen Xu, Bin Ma, Yueyue Yu, Jianing Li and Yafei Li
Atmosphere 2025, 16(10), 1117; https://doi.org/10.3390/atmos16101117 - 24 Sep 2025
Viewed by 327
Abstract
Xinjiang is a critical wind energy region in China. This study characterizes extreme wind speed (EWS) events in Xinjiang by using ERA5 reanalysis (1979–2023) and station observations (2022–2023). Through k-means clustering and wind power density classification, four distinct regions and representative nodes were [...] Read more.
Xinjiang is a critical wind energy region in China. This study characterizes extreme wind speed (EWS) events in Xinjiang by using ERA5 reanalysis (1979–2023) and station observations (2022–2023). Through k-means clustering and wind power density classification, four distinct regions and representative nodes were identified, aligned with the “Three Mountains and Two Basins” topography: Region #1 (eastern wind-rich corridor), Region #2 (Tarim Basin, west–east increasing wind power density), Region #3 (northern valleys), and Region #4 (mountainous areas with weakest wind power density). Peaks-over-threshold analysis revealed 10~30-year return levels varying regionally, with 10-year return level for Node #1 reaching Beaufort Scale 11 but only Scale 6 for Node #4. Since 2001, EWS occurrences increased, with Nodes #2–4 showing doubled 10-year event occurrences in 2012–2023. Events exhibit consistent afternoon peaks and spring dominance (except Node #2 with summer maxima). Such long-term trends and diurnal and seasonal preferences of EWS could be partly explained by diverging synoptic drivers: orographic effects and enhanced pressure gradients (Node #1 and #3) associated with Ural blocking and polar vortex shifts, both showing intensification trends; thermal lows in the Tarim Basin (Node #2) accounting for their summer prevalence; boundary-layer instability that leads to localized wind intensification (Node #4). The results suggest the necessity of region-specific forecasting strategies for wind energy resilience. Full article
(This article belongs to the Special Issue Cutting-Edge Research in Severe Weather Forecast)
Show Figures

Figure 1

19 pages, 5232 KB  
Article
Whole Genome Resequencing Reveals the Genetic Basis of Desert Arid Climate Adaptation in Lop Sheep
by Chenchen Yang, Changhai Gong, Abliz Khamili, Xiaopeng Li, Qifeng Gao, Hong Chen, Xin Xiang, Jieru Wang, Chunmei Han and Qinghua Gao
Animals 2025, 15(18), 2747; https://doi.org/10.3390/ani15182747 - 19 Sep 2025
Viewed by 342
Abstract
The Lop sheep (LOP), a unique local breed from Xinjiang, exhibits remarkable resilience to the harsh conditions of a desert arid climate and frequent sandstorms, alongside notable fecundity characteristics. This study aims to investigate the adaptability of LOP within this challenging environment by [...] Read more.
The Lop sheep (LOP), a unique local breed from Xinjiang, exhibits remarkable resilience to the harsh conditions of a desert arid climate and frequent sandstorms, alongside notable fecundity characteristics. This study aims to investigate the adaptability of LOP within this challenging environment by collecting whole blood samples from 110 LOP individuals in the Lop Nur region of Xinjiang for genome resequencing. The resulting data will be compared with whole genome resequencing information from 22 local sheep breeds worldwide to analyze the origin and evolution of LOP. Additionally, comparisons will be made with HUS sheep from warm and humid regions to identify genomic differences through selection signal analysis, thereby assessing the impact of a desert arid climate on the extreme living conditions of LOP. Finally, qPCR was used to preliminarily analyse the impact of the desert arid climate on the genome of the Bactrian sheep. Genetic diversity results indicate that LOP exhibits a relatively stable genetic structure alongside high genetic diversity. The results of population structure analysis and gene flow indicate that we can tentatively posit that LOP is a breed that originated from the Middle East, subsequently mixing with MGS upon its arrival in Xinjiang. Chinese local sheep breeds trace their origins to AMS, with the gene flow evolving from west to east, progressing through mountainous hills (BSBS), basins (LOP, HTS, CLHS, DLS), plains (MGS, TANS), and coastal areas (HUS). LOP is associated with ALTS, BSBS, HTS, CLHS, and DLS, as well as with MGS, HUS, TANS, WDS, and SSSP, in a context of gene exchange, with the degree of exchange diminishing in that order. Selection signal analysis revealed that the candidate genes identified are closely related to adaptation to desert arid climates and disease resistance (PDGFD, NDUFS3, ATP1B2, ITGB8, and CD79A), using HUS as the reference group. qPCR results demonstrated that LOP was significantly upregulated in cardiac, splenic, and lung tissues compared to HUS, suggesting that LOP plays a crucial role in cardiac function, immune response, and respiratory capacity. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 5089 KB  
Article
The Synergistic Effects of Climate Change and Human Activities on Wetland Expansion in Xinjiang
by Jiaorong Qian, Yaning Chen, Yonghui Wang, Yupeng Li, Zhi Li, Gonghuan Fang, Chuanxiu Liu, Yihan Wang and Zhixiong Wei
Land 2025, 14(9), 1889; https://doi.org/10.3390/land14091889 - 15 Sep 2025
Viewed by 413
Abstract
Wetlands function as crucial transitional zones between land and water ecosystems worldwide, contributing significantly to the stability of local ecosystems. However, there is limited research on landscape changes in Xinjiang’s arid interior regions and the factors driving these changes. This study uses data [...] Read more.
Wetlands function as crucial transitional zones between land and water ecosystems worldwide, contributing significantly to the stability of local ecosystems. However, there is limited research on landscape changes in Xinjiang’s arid interior regions and the factors driving these changes. This study uses data reanalysis techniques to examine the spatial and temporal evolution and landscape patterns of wetlands, as well as their driving forces, in Xinjiang between 1990 and 2023. The results show that over the past three decades, the wetland area in Xinjiang has grown from 18,427 km2 in 1990 to 21,532 km2 in 2023, with an annual increase of about 94 km2. The greatest growth in wetlands, particularly lakes, marshes, and rivers, has occurred around the periphery of the Tarim Basin and the Ili River Basin, while mountainous areas have seen slight reductions. The distribution pattern shows higher wetland coverage in southern Xinjiang and less coverage in the north, with the largest proportion of wetlands found in the south. Additionally, wetland expansion has led to improvements in the number, density, aggregation, and connectivity of wetland patches, while the complexity of their shapes has decreased. The overall habitat quality of wetlands has also improved over time. Attribution analysis highlights that the rise in runoff due to temperature increases over the past 30 years is a major driver of wetland expansion, with warming accounting for the largest share of expansion in lakes (36%) and in rivers (47.9%). Furthermore, the implementation of large-scale engineering measures, such as ecological water diversion, water-saving irrigation, and reservoir management, has contributed significantly to wetland expansion and ecological restoration. These results provide useful insights for the long-term conservation and management of wetland resources in the arid areas of Xinjiang. Full article
Show Figures

Figure 1

25 pages, 8212 KB  
Article
Spatiotemporal Variations of Inorganic Carbon Species Along the Langtang–Narayani River System, Central Himalaya
by Maya P. Bhatt and Ganesh B. Malla
Water 2025, 17(18), 2727; https://doi.org/10.3390/w17182727 - 15 Sep 2025
Viewed by 673
Abstract
The production and transport of dissolved inorganic carbon (DIC) is central to weathering reactions and the global carbon cycle. We investigated the spatiotemporal variability and export of inorganic carbon species along the rapidly weathering Langtang–Narayani river system in the central Nepal Himalaya. Over [...] Read more.
The production and transport of dissolved inorganic carbon (DIC) is central to weathering reactions and the global carbon cycle. We investigated the spatiotemporal variability and export of inorganic carbon species along the rapidly weathering Langtang–Narayani river system in the central Nepal Himalaya. Over the course of one year, surface water samples were collected from sixteen stations spanning a wide range of elevations. DIC concentrations generally declined with increasing elevation, except in mid-mountain sites influenced by hot springs. Bicarbonate (HCO3) was identified as the dominant inorganic carbon species, contributing approximately 85% to the total DIC and with a similar dominant export rate of bicarbonate to total DIC export rate, followed by carbon dioxide (CO2) and carbonate (CO32−). The river water exhibited a strong altitudinal gradient in carbonate chemistry, with CO2 supersaturation in the lowlands and undersaturation at higher elevations. Metamorphic activities in the lower mid-mountain sites significantly influenced CO2 concentrations and inorganic carbon dynamics. The partial pressure of CO2 (pCO2) varied widely (56 to 33,869 μatm), reflecting distinct geochemical and seasonal controls. The estimated DIC export rates were 93.66, 37.81, and 12.59 tons km−2 yr−1 from the Narayani River in the lowlands, the Trisuli River in the mid-mountains, and the Langtang River in the high Himalaya region, respectively. These findings highlight the critical role of elevation, seasonality, and geological processes in regulating carbon dynamics in Himalayan river systems, providing new insights into their contribution to regional carbon fluxes. A comprehensive array of significant univariate and multivariate predictive models is presented here, offering versatile applications, including the interpretation of full and partial derivatives explaining inorganic carbon dynamics within the Himalayan basin. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

22 pages, 53569 KB  
Article
Unveiling Lithological Diversity and Active Tectonic Processes of the Nabitah Fault Zone, Saudi Arabia: A Remote Sensing and Drainage Analysis Approach to Environmental Sustainability
by Abdullah M. Alanazi and Bashar Bashir
Appl. Sci. 2025, 15(18), 10069; https://doi.org/10.3390/app151810069 - 15 Sep 2025
Viewed by 387
Abstract
Active tectonics in the Arabian Shield region has substantially influenced the drainage system and geomorphic expressions. The Nabitah Fault Zone (NFZ), located in the southern portion of the Arabian Nubian Shield, is an intra-arc suture that traces the boundary between two young Neoproterozoic [...] Read more.
Active tectonics in the Arabian Shield region has substantially influenced the drainage system and geomorphic expressions. The Nabitah Fault Zone (NFZ), located in the southern portion of the Arabian Nubian Shield, is an intra-arc suture that traces the boundary between two young Neoproterozoic intra-oceanic arc terranes: the Tathlith–Malahah terrane and the Al Qarah terrane. In this study, an active tectonic model was assessed and developed to evaluate the level and distributions of the tectonic activity related to the NFZ in Saudi Arabia. To achieve that, a digital elevation model-derived drainage system and a series of geomorphic indices were used, including mountain front sinuosity, valley floor width-to-valley height ratio, basin shape, hypsometric integral, and basin asymmetry. The average value of each geomorphic index was calculated and assigned. The results extracted were integrated to obtain the Tectonic Activity index (TA). Three classes were defined in this study to indicate the tectonic activity degree: low tectonic activity (class 3; TA > 2.5), moderate tectonic activity (class 2; 1.75 < TA ≤ 2.5), and high tectonic activity (class 1; 0 < TA < 1.75). Based on the results, this paper deduced that the highly deformed regions associated with active tectonics can be recognized and evaluated using this effective integration technique. Therefore, this can be applied to other significant fault zones elsewhere, particularly those whose tectonic activity has not yet been evaluated. Full article
(This article belongs to the Special Issue Risk Assessment for Hazards in Infrastructures)
Show Figures

Figure 1

26 pages, 8705 KB  
Article
Hydrochemical Characteristics and Formation Mechanism of Neogene Geothermal Water in the Zhangye–Minle Basin
by Zhen Zhang, Yang Hu, Tao Ren, Xiaodong Han and Xue Wu
Water 2025, 17(17), 2641; https://doi.org/10.3390/w17172641 - 6 Sep 2025
Viewed by 1078
Abstract
Geothermal resources in arid inland basins are important for clean energy development, yet their circulation and geochemical mechanisms remain insufficiently understood. This study investigates the hydrochemical characteristics and formation mechanisms of geothermal water in the Zhangye–Minle Basin, an arid inland region in northwestern [...] Read more.
Geothermal resources in arid inland basins are important for clean energy development, yet their circulation and geochemical mechanisms remain insufficiently understood. This study investigates the hydrochemical characteristics and formation mechanisms of geothermal water in the Zhangye–Minle Basin, an arid inland region in northwestern China. A total of nine geothermal water samples were analyzed using major ion chemistry, stable isotopes (δ2H, δ18O), tritium (3H), and radiocarbon (14C) to determine recharge sources, flow paths, and geochemical evolution. The waters were predominantly of the Cl–Na and Cl·SO4–Na types, with total dissolved solids ranging from 3432.00 to 5810.00 mg/L. Isotopic data indicated that recharge originated from atmospheric precipitation and snowmelt in the Qilian Mountains, with recharge altitudes between 2497 and 5799 m. Tritium and 14C results suggested that most samples were recharged before 1953, with maximum ages exceeding 40,000 years. Gibbs diagrams and ion ratio plots demonstrated that water–rock interaction was the primary geochemical process, while cation exchange was weak. Na+ was mainly derived from halite, albite, and mirabilite, while SO42− originated largely from gypsum. The calculated reservoir temperatures using cation geothermometers ranged from 57 °C to 148 °C. The deep circulation of geothermal water was closely related to NNW-trending fault zones that facilitated infiltration and heat accumulation. These findings provide new insights into the recharge sources, circulation patterns, and geochemical processes of geothermal systems in fault-controlled basins, offering a scientific basis for their sustainable exploration and development. Full article
Show Figures

Figure 1

22 pages, 21727 KB  
Article
Ecological Approaches in the Process of Formation of the Bolshoe Toko National Park, Yakutia
by Sophia Barinova, Viktor A. Gabyshev, Olga I. Gabysheva, Anna P. Ivanova and Petro M. Tsarenko
Diversity 2025, 17(9), 625; https://doi.org/10.3390/d17090625 - 5 Sep 2025
Viewed by 373
Abstract
The creation of a new protected area, especially on permafrost territory, along with the adoption of legislative measures, requires a thorough assessment of its ecological diversity and condition. In the planned Bolshoe Toko National Park (Yakutia, Northeastern Russia), the main protected area will [...] Read more.
The creation of a new protected area, especially on permafrost territory, along with the adoption of legislative measures, requires a thorough assessment of its ecological diversity and condition. In the planned Bolshoe Toko National Park (Yakutia, Northeastern Russia), the main protected area will be a unique deep-water mountain lake of glacial origin, Bolshoe Toko Lake. Our aim was to study the species composition of algal communities of Bolshoe Toko Lake by combining our new and previously known data on the flora of algae and cyanobacteria of the lake. For the first time by analyzing environmental parameters, we identified factors and hotspots of diversity of the lake ecosystem. In the planktonic microflora of the lake, 479 species belonging to six taxonomic phyla were identified. This allows us to talk about a biodiversity hotspot at Bolshoe Toko Lake. The presence of rare, new endangered and critically endangered species in the flora of the lake confirms the need to create a national park. Bioindication analysis and contour maps of ecological factors made it possible to assess the current sustainability of the ecosystem when developing a plan for the creation of a new protected area and to identify potential problem areas and factors affecting the ecosystem. One such factor is the development of the coal basin, which is already having a noticeable impact on the lake environment. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

10 pages, 1143 KB  
Proceeding Paper
Remote Sensing and GIS Data Applied to Debris Flow and Debris Flood Susceptibility in the Northeastern Sector of the City of Santiago
by Benjamín Castro-Cancino, Waldo Pérez-Martínez, Paulina Vidal-Páez and Allison Jaña-Sepúlveda
Eng. Proc. 2025, 94(1), 23; https://doi.org/10.3390/engproc2025094023 - 3 Sep 2025
Viewed by 871
Abstract
In the mountainous and foothill areas of Santiago, Chile, debris flows and debris floods have been recurrent over recent decades, triggered by short-duration, high-intensity summer rainfall events. These events have caused significant damage to infrastructure and have affected the population, including loss of [...] Read more.
In the mountainous and foothill areas of Santiago, Chile, debris flows and debris floods have been recurrent over recent decades, triggered by short-duration, high-intensity summer rainfall events. These events have caused significant damage to infrastructure and have affected the population, including loss of human lives. This study assesses the susceptibility to debris flow and debris flood generation in the Arrayán and Gualtatas stream basins, located in the Metropolitan Region, using satellite and cartographic data. A Susceptibility Index (SI) was determined through the analysis of 14 conditioning factors, grouped into three main categories: geology, geomorphology, and soil conditions. The weighting and ranking of each factor’s importance were carried out using the Analytic Hierarchy Process (AHP). The results, presented in a susceptibility map, indicate that 60.78% of the study area exhibits low to very low susceptibility, 24.64% moderate susceptibility, and 14.58% high to very high susceptibility, concentrated in stream headwaters, steep slopes, and areas with unconsolidated deposits. Recent debris flow events that have reached urban areas coincide with high-susceptibility zones, validating the methodology and cartographic products, which can support land-use planning and risk management efforts. Full article
Show Figures

Figure 1

17 pages, 25721 KB  
Article
Seasonal Characteristics and Source Analysis of Water-Soluble Ions in PM2.5 in Urban and Suburban Areas of Chongqing
by Simei Tang, Jun Wang, Min Fu, Jiayan Yu, Wei Huang and Yu Zhou
Atmosphere 2025, 16(9), 1047; https://doi.org/10.3390/atmos16091047 - 3 Sep 2025
Viewed by 564
Abstract
This study systematically investigated water-soluble inorganic ions (WSIIs) and their sources in PM2.5 in mountainous urban areas of Chongqing City. PM2.5 monitoring was conducted throughout 2023, spanning one year. The two districts under discussion are the Liang Jiang New Area (LJ) and He [...] Read more.
This study systematically investigated water-soluble inorganic ions (WSIIs) and their sources in PM2.5 in mountainous urban areas of Chongqing City. PM2.5 monitoring was conducted throughout 2023, spanning one year. The two districts under discussion are the Liang Jiang New Area (LJ) and He Chuan District (HC). The ion chromatography (Dionex Integrion HPIC) method was utilized to quantify eight ions (Cl, SO42−, NO3, Na+, K+, Mg2+, Ca2+, NH4+). The results obtained were then analyzed in conjunction with the EPA PMF 5.0 source apportionment model. The following key findings are presented: the data demonstrate that there is significant seasonal fluctuation in PM2.5 concentrations. The mean winter concentration (64 ± 27 μg/m3) was found to be 3.25 times higher than the mean summer concentration (19.7 ± 2 μg/m3). These fluctuations were primarily influenced by basin topography and unfavorable meteorological conditions. The proportion of PM2.5 mass attributable to WSII ranges from 31 to 33 percent, with the majority of this mass being attributed to secondary inorganic aerosols (SNA: SO42−, NO3, NH4+; accounting for 47–85% WSII). The annual NO3/SO42− ratio (0.69–0.80, <1) indicates that fixed sources (coal/industry) dominate, but a winter ratio >1 suggests increased contributions from mobile sources under low-temperature conditions. The sulfur oxidation rate (SOR: 0.35–0.37) is significantly higher than the nitrogen oxidation rate (NOR: 0.08–0.13), reflecting the efficient conversion of SO2 through wet, low-temperature pathways. PMF identified six sources, with secondary formation (43.8–44.3%) being the primary contributor to the overall process. In urban LJ, transportation (26.1%) and industry (13.6%) have been found to contribute significantly, while in suburban HC, combustion (15.4%) and dust (8.8%) have been determined to have notable impacts. This study recommends the implementation of synergistic control of SNA precursors (SO2, NOx, NH3), the strengthening of transportation and industrial management in LJ, and the enhancement of biomass combustion and dust control in HC. Full article
(This article belongs to the Special Issue Air Pollution: Emission Characteristics and Formation Mechanisms)
Show Figures

Figure 1

23 pages, 8519 KB  
Article
How Do Climate Change and Deglaciation Affect Runoff Formation Mechanisms in the High-Mountain River Basin of the North Caucasus?
by Ekaterina D. Pavlyukevich, Inna N. Krylenko, Yuri G. Motovilov, Ekaterina P. Rets, Irina A. Korneva, Taisiya N. Postnikova and Oleg O. Rybak
Glacies 2025, 2(3), 10; https://doi.org/10.3390/glacies2030010 - 3 Sep 2025
Viewed by 428
Abstract
This study assesses the impact of climate change and glacier retreat on river runoff in the high-altitude Terek River Basin using the physically based ECOMAG hydrological model. Sensitivity experiments examined the influence of glaciation, precipitation, and air temperature on runoff variability. Results indicate [...] Read more.
This study assesses the impact of climate change and glacier retreat on river runoff in the high-altitude Terek River Basin using the physically based ECOMAG hydrological model. Sensitivity experiments examined the influence of glaciation, precipitation, and air temperature on runoff variability. Results indicate that glacier retreat primarily affects streamflow in upper reaches during peak melt (July–October), while precipitation changes influence both annual runoff and peak flows (May–October). Rising temperatures shift snowmelt to earlier periods, increasing runoff in spring and autumn but reducing it in summer. The increase in autumn runoff is also due to the shift between solid and liquid precipitation, as warmer temperatures cause more precipitation to fall as rain, rather than snow. Scenario-based modeling incorporated projected glacier area changes (GloGEMflow-DD) and regional climate data (CORDEX) under RCP2.6 and RCP8.5 scenarios. Simulated runoff changes by the end of the 21st century (2070–2099) compared to the historical period (1977–2005) ranged from −2% to +5% under RCP2.6 and from −8% to +14% under RCP8.5. Analysis of runoff components (snowmelt, rainfall, and glacier melt) revealed that changes in river flow are largely determined by the elevation of snow and glacier accumulation zones and the rate of their degradation. The projected trends are consistent with current observations and emphasize the need for adaptive water resource management and risk mitigation strategies in glacier-fed catchments under climate change. Full article
Show Figures

Figure 1

Back to TopTop