Unveiling Lithological Diversity and Active Tectonic Processes of the Nabitah Fault Zone, Saudi Arabia: A Remote Sensing and Drainage Analysis Approach to Environmental Sustainability
Abstract
1. Introduction
2. Regional Setting
2.1. Tathlith–Malahah Terrane
2.2. Al Qarah Terrane
2.3. Nabitah Fault Zone
3. Material and Methods
3.1. Rock Strength
3.2. Mountain Front Sinuosity, Smf
3.3. Ratio of Valley Floor Width to Valley Height, Vf
3.4. Hypsometric Integral, Hi
3.5. Asymmetry Factor, Af
3.6. Drinage Basin Shape, Bsh
3.7. Tectonic Activity (TA)
4. Results
4.1. Rock Strength
Lithologies | Strength Level |
---|---|
Basalt | High |
Granite | Very high |
Gabbro | Very high |
Diorite | Very High |
Granodiorite | Very High |
Gneiss | Very high |
Serpentinite | High |
Phanerozoic cover | Low |
Alluvium | Low |
4.2. Mountain Front Sinuosity, Smf
S. | Smf | Class | S. | Smf | Class | S. | Smf | Class | S. | Smf | Class |
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 1.62 | 2 | S17 | 1.3 | 1 | S33 | 1.62 | 2 | S49 | 1.02 | 1 |
S2 | 1.7 | 2 | S18 | 1.1 | 1 | S34 | 1.32 | 1 | S50 | 1.6 | 2 |
S3 | 1.65 | 2 | S19 | 1.23 | 1 | S35 | 1.28 | 1 | S51 | 1.77 | 2 |
S4 | 1.68 | 2 | S20 | 1.24 | 1 | S36 | 1.13 | 1 | S52 | 1.52 | 2 |
S5 | 2.1 | 2 | S21 | 1.62 | 2 | S37 | 1.07 | 1 | S53 | 1.82 | 2 |
S6 | 1.3 | 1 | S22 | 1.64 | 2 | S38 | 1.34 | 1 | S54 | 1.61 | 2 |
S7 | 1.01 | 1 | S23 | 1.69 | 2 | S39 | 1.21 | 1 | S55 | 1.1 | 1 |
S8 | 1 | 1 | S24 | 2.2 | 2 | S40 | 1.62 | 2 | S56 | 1.25 | 1 |
S9 | 1.06 | 1 | S25 | 1.9 | 2 | S41 | 1.66 | 2 | S57 | 1.43 | 1 |
S10 | 1.3 | 1 | S26 | 1.79 | 2 | S42 | 1.23 | 1 | S58 | 1.36 | 1 |
S11 | 1.25 | 1 | S27 | 1.6 | 2 | S43 | 1.39 | 1 | S59 | 1.32 | 1 |
S12 | 1.26 | 1 | S28 | 1.57 | 2 | S44 | 1.03 | 1 | S60 | 1.47 | 1 |
S13 | 1.46 | 1 | S29 | 1.2 | 1 | S45 | 1.02 | 1 | S61 | 1.4 | 1 |
S14 | 1.3 | 1 | S30 | 1.75 | 2 | S46 | 1.12 | 1 | |||
S15 | 1.03 | 1 | S31 | 2.1 | 2 | S47 | 1.98 | 2 | |||
S16 | 1.49 | 1 | S32 | 1.1 | 1 | S48 | 1.78 | 2 |
4.3. Ratio of Valley Floor Width to Valley Height, Vf
C. | Vf | Class | C. | Vf | Class | C. | Vf | Class |
---|---|---|---|---|---|---|---|---|
C1 | 0.78 | 2 | C15 | 0.04 | 1 | C29 | 0.16 | 1 |
C2 | 1.31 | 3 | C16 | 0.02 | 1 | C30 | 0.18 | 1 |
C3 | 0.16 | 1 | C17 | 0.14 | 1 | C31 | 0.25 | 1 |
C4 | 0.51 | 2 | C18 | 0.04 | 1 | C32 | 0.12 | 1 |
C5 | 0.11 | 1 | C19 | 0.09 | 1 | C33 | 0.12 | 1 |
C6 | 0.06 | 1 | C20 | 1.16 | 1 | C34 | 0.07 | 1 |
C7 | 1.10 | 3 | C21 | 0.01 | 1 | C35 | 0.10 | 1 |
C8 | 0.07 | 1 | C22 | 0.08 | 1 | C36 | 0.20 | 1 |
C9 | 0.07 | 1 | C23 | 0.61 | 2 | C37 | 0.66 | 2 |
C10 | 0.07 | 1 | C24 | 0.11 | 1 | C38 | 0.54 | 2 |
C11 | 0.78 | 2 | C25 | 0.51 | 2 | C39 | 0.59 | 2 |
C12 | 0.63 | 2 | C26 | 0.31 | 1 | C40 | 0.66 | 2 |
C13 | 0.18 | 1 | C27 | 0.15 | 1 | C41 | 0.78 | 2 |
C14 | 0.26 | 1 | C28 | 0.14 | 1 |
4.4. Hypsometric Integral, Hi
4.5. Asymmetry Factor, Af
4.6. Drainage Basin Shape, Bsh
4.7. Tectonic Activity (TA)
5. Discussion
5.1. Tectonic Geomorphology and the Synthesis of Geomorphic Indices
5.2. Lithological Framework and Its Influence
5.3. Tectonic Process Proxies in Geomorphic Indices
5.4. Implications for Environmental Sustainability and Seismic Hazard Assessment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalifa, A.; Çakir, Z.; Owen, L.A.; Kaya, Ş. Morphotectonic analysis of the East Anatolian Fault, Turkey. Turk. J. Earth Sci. 2018, 27, 110–126. [Google Scholar] [CrossRef]
- Spyrou, E.; Maroukian, H.; Evelpidou, N. Application of morphotectonic indices for assessing active tectonics: A case study of Acheron river basin. J. Struct. Geol. 2024, 187, 105240. [Google Scholar] [CrossRef]
- Owen, L.A. Tectonic Geomorphology: A Perspective. Treatise Geomorphol. 2022, 2, 1–12. [Google Scholar] [CrossRef]
- Silva, P.G.; Goy, J.L.; Zazo, C.; Bardají, T. Fault-Generated Mountain Fronts in Southeast Spain: Geomorphologic Assessment of Tectonic and Seismic Activity. Geomorphology 2003, 50, 203–225. [Google Scholar] [CrossRef]
- Görüm, T. Tectonic, topographic and rock-type influences on large landslides at the northern margin of the Anatolian Plateau. Landslides 2019, 16, 333–346. [Google Scholar] [CrossRef]
- Kalifa, A.; Çakir, Z.; Owen, L.A.; Kaya, Ş. Evaluation of the relative tectonic activity of the adıyaman fault within the arabian-anatolian plate boundary (Eastern Turkey). Geol. Acta 2019, 17, 1–17. [Google Scholar] [CrossRef]
- Ahmad, S.; Alam, A.; Ahmad, B.; Afzal, A.; Bhat, M.I.; Bhat, M.S.; Ahmad, H.F.; Tectonics and Natural Hazards Research Group. Tectono-geomorphic indices of the Erin basin, NE Kashmir valley, India. J. Asian Earth Sci. 2018, 151, 16–30. [Google Scholar] [CrossRef]
- Topal, S.; Keller, E.; Bufe, A.; Koçyiğit, A. Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey. Geomorphology 2016, 259, 55–69. [Google Scholar] [CrossRef]
- Azor, A.; Keller, E.A.; Yeats, R.S. Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline, Ventura basin, southern California. Bull. Geol. Soc. Am. 2002, 114, 745–753. [Google Scholar] [CrossRef]
- Rockwell, T.K.; Keller, E.A.; Johnson, D.L. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In Tectonic Geomorphology; Allen and Unwin Publishers: Boston, MA, USA, 1985. [Google Scholar]
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azor, A.; Azañón, J.M.; Keller, E.A. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 2010, 119, 74–87. [Google Scholar] [CrossRef]
- Ramírez-Herrera, M.T. Geomorphic assessment of active tectonics in the acambay graben, Mexican volcanic belt. Earth Surf. Process. Landf. 1998, 23, 317–332. [Google Scholar] [CrossRef]
- Mahmood, S.A.; Gloaguen, R. Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geosci. Front. 2012, 3, 407–428. [Google Scholar] [CrossRef]
- Han, X.; Dai, J.-G.; Smith, A.G.G.; Xu, S.-Y.; Liu, B.-R.; Wang, C.-S.; Fox, M. Recent uplift of Chomolungma enhanced by river drainage piracy. Nat. Geosci. 2024, 17, 1031–1037. [Google Scholar] [CrossRef]
- Molin, P.; Pazzaglia, F.J.; Dramis, F. Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila Massif, Calabria, southern Italy. Am. J. Sci. 2004, 304, 559–589. [Google Scholar] [CrossRef]
- Biswas, M.; Paul, A. Application of geomorphic indices to Address the foreland Himalayan tectonics and landform deformation- Matiali-Chalsa- Baradighi recess, West Bengal, India. Quat. Int. 2021, 585, 3–14. [Google Scholar] [CrossRef]
- Amine, A.; El Ouardi, H.; Zebari, M.; El Makrini, H.; Habibi, M. Relative landscape maturity in the South Rifian Ridges (NW Morocco): Inferences from DEM-based surface indices analysis. Appl. Comput. Geosci. 2020, 6, 100027. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Naik, S.P.; Nappi, R. Remotely Sensed Data, Morpho-Metric Analysis, and Integrated Method Approach for Flood Risk Assessment: Case Study of Wadi Al-Arish Landscape, Sinai, Egypt. Water 2023, 15, 1797. [Google Scholar] [CrossRef]
- Khan, M.A.; Gupta, V.P.; Moharana, P.C. Watershed prioritization using remote sensing and geographical information system: A case study from Guhiya, India. J. Arid. Environ. 2001, 49, 465–475. [Google Scholar] [CrossRef]
- Patton, P.C.; Baker, V.R. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour. Res. 1976, 12, 941–952. [Google Scholar] [CrossRef]
- Stoeser, D.B.; Frost, C.D. Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem. Geol. 2006, 226, 163–188. [Google Scholar] [CrossRef]
- Flowerdew, M.J.; Whitehouse, M.J.; Stoeser, D.B. The Nabitah fault zone, Saudi Arabia: A Pan-African suture separating juvenile oceanic arcs. Precambrian Res. 2013, 239, 95–105. [Google Scholar] [CrossRef]
- Schmidt, D.L.; Hadley, D.G.; Stoeser, D.B. Late Proterozoic Crustal History of the Arabian Shield, Southern Najd Province, Kingdom of Saudi Arabia. In Evolution and Mineralization of the Arabian-Nubian Shieldvol; Elsevier: Amsterdam, The Netherlands, 1979; Volume 3, pp. 41–58. [Google Scholar]
- Bookstrom, A.A.; Vennum, W.R.; Doebrich, J.L. Geology and Mineral Resources of the Farah Garan-Kutam Mineral Belt, Southeastern Asir, Kingdom of Saudi Arabia; Saudi Arabian Directorate General of Mineral Resources, U.S. Geological Survey: Jeddah, Saudi Arabia, 1989. [Google Scholar]
- Kröner, A.; Pallister, J.S.; Fleck, R.J. Age of initial oceanic magmatism in the Late Proterozoic Arabian Shield. Geology 1992, 20, 803. [Google Scholar] [CrossRef]
- Kröner, A. Ophiolites and the evolution of tectonic boundaries in the late proterozoic Arabian—Nubian shield of northeast Africa and Arabia. Precambrian Res. 1985, 27, 277–300. [Google Scholar] [CrossRef]
- Schmidt, D.L.; Hadley, D.G.; Stoeser, D.B. Geochronology and origin of an early tonalite gneiss of the Wadi Tarib batholith and the formation of syntectonic gneiss complexes in the southeastern Arabian Shield. Bull. Faulty Earth Sci. King Abdulaziz Univ. 1983, 6, 351–364. [Google Scholar]
- Whitehouse, M.J.; Windley, B.F.; Stoeser, D.B.; Al-Khirbash, S.; Ba-Bttat, M.A.O.; Haider, A. Precambrian basement character of Yemen and correlations with Saudi Arabia and Somalia. Precambrian Res. 2001, 105, 357–369. [Google Scholar] [CrossRef]
- Johnson, P.R. Post-amalgamation basins of the NE Arabian shield and implications for Neoproterozoic III tectonism in the northern East African orogen. Precambrian Res. 2003, 123, 321–337. [Google Scholar] [CrossRef]
- Pallister, J.S.; Stacey, J.S.; Fischer, L.B.; Premo, W.R. Arabian Shield ophiolites and Late Proterozoic microplate accretion. Geology 1987, 15, 320. [Google Scholar] [CrossRef]
- Johnson, P. Implications of SHRIMP and Microstructural Data on the Age and Kinematics of Shearing in the Asir Terrane, Southern Arabian Shield, Saudi Arabia. Gondwana Res. 2001, 4, 172–173. [Google Scholar] [CrossRef]
- Stoeser, D.B.; Stacey, J.S. Evolution, U-Pb Geochronology and Isotope Geology of the Pan-African Nabitah Orogenic Belt of Saudi Arabia. In The Pan-African Belt of Northeast Africa and Adjacent Areas: Tectonic Evolution and Economic Aspects of a Late Proterozoic Oregon; El-Gaby, S., Greiling, R.O., Eds.; Friedrich Vieweg: Wiesbaden, Germany, 1988; pp. 227–288. [Google Scholar]
- Johnson, P.R.; Kattan, F. Oblique sinistral transpression in the Arabian shield: The timing and kinematics of a Neoproterozoic suture zone. Precambrian Res. 2001, 107, 117–138. [Google Scholar] [CrossRef]
- Cooper, J.A.; Stacey, J.S.; Stoeser, D.G.; Fleck, R.J. An evaluation of the zircon method of isotopic dating in the Southern Arabian Craton. Contrib. Mineral. Petrol. 1979, 68, 429–439. [Google Scholar] [CrossRef]
- Greenwood, W.R. Geologic Map of the Jibal Al Qahr Quadrangle, Sheet 19G, Kingdom of Saudi Arabia, Saudi Arabian Directorate General of Mineral Resources Geoscience Map GM-76C; Ministry of Petroleum and Mineral Resources: Jidda, Saudi Arabia, 1985.
- Greenwood, W.R.; Jackson, R.O.; Johnson, P.R. Geologic Map of the Al Hasir Quadrangle, Sheet 19F, Kingdom of Saudi Arabia, Saudi Arabian Directorate General of Mineral Resources Geoscience Map GM-94C; Ministry of Petroleum and Mineral Resources: Jidda, Saudi Arabia, 1986.
- Kellogg, K.S.; Janjou, D.; Minoux, L.; Fourniguet, J. Geologic Map of the Wadı Tathlıth Quadrangle, Sheet 20G, Kingdom of Saudi Arabia, Saudi Arabian Directorate General of Mineral Resources Geoscience Map GM-103C; Ministry of Petroleum and Mineral Resources: Jidda, Saudi Arabia, 1986.
- Alipoor, R.; Poorkermani, M.; Zare, M.; El Hamdouni, R. Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology 2011, 128, 1–14. [Google Scholar] [CrossRef]
- Selçuk, A.S. Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey. Geomorphology 2016, 270, 9–21. [Google Scholar] [CrossRef]
- Selby, M.J. A rock mass strength classification for geomorphic purposes: With tests from Antarctica and New Zealand. Z. Geomorphol. 1980, 24, 31–51. [Google Scholar] [CrossRef]
- Yildirim, C. Relative tectonic activity assessment of the Tuz Gölü Fault Zone Central Anatolia, Turkey. Tectonophysics 2014, 630, 183–192. [Google Scholar] [CrossRef]
- Bull, W.B.; McFadden, L.D. Tectonic geomorphology north and south of the Garlock fault, California. In Geomorphology in Arid Regions; Routledge: London, UK, 1977. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Bull. Geol. Soc. Am. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Hare, P.W.; Gardner, T.W. Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula Costa Rica. In Tectonic Geomorphology; Allen and Unwin Boston: Boston, MA, USA, 1985; Volume 4, pp. 123–134. [Google Scholar]
- Green, D.J. Active Tectonics Earthquakes, Uplift, and Landscape. Environ. Eng. Geosci. 1997, III, 463–464. [Google Scholar] [CrossRef]
- Gregory, K.J.; Wallingford, D.E. Drainage Basin form and Process—A Geomorphological Approach. Water Res. 1974, 8, 1115. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Bull. Geol. Soc. Am. 1971, 82, 1079–1084. [Google Scholar] [CrossRef]
C. | Af | Class | C. | Vf | Class | C. | Af | Class |
---|---|---|---|---|---|---|---|---|
C1 | 23.62 | 1 | C15 | 41.57 | 2 | C29 | 63.79 | 2 |
C2 | 10.23 | 1 | C16 | 49.37 | 3 | C30 | 36.57 | 2 |
C3 | 84.89 | 1 | C17 | 37.53 | 1 | C31 | 57.32 | 2 |
C4 | 40.80 | 2 | C18 | 45.98 | 3 | C32 | 92.57 | 1 |
C5 | 67.63 | 1 | C19 | 49.34 | 3 | C33 | 31.69 | 1 |
C6 | 51.30 | 3 | C20 | 55.32 | 2 | C34 | 37.22 | 2 |
C7 | 57.10 | 2 | C21 | 43.43 | 2 | C35 | 50.23 | 2 |
C8 | 43.30 | 2 | C22 | 71.72 | 1 | C36 | 47.07 | 3 |
C9 | 37.05 | 2 | C23 | 27.27 | 1 | C37 | 67.43 | 1 |
C10 | 60.74 | 2 | C24 | 46.35 | 3 | C38 | 56.62 | 2 |
C11 | 42.69 | 2 | C25 | 39.10 | 2 | C39 | 62.43 | 2 |
C12 | 25.09 | 1 | C26 | 46.83 | 3 | C40 | 55.48 | 2 |
C13 | 41.86 | 2 | C27 | 56.30 | 2 | C41 | 49.91 | 3 |
C14 | 38.37 | 2 | C28 | 36.43 | 2 |
C. | Bsh | Class | C. | Bsh | Class | C. | Bsh | Class |
---|---|---|---|---|---|---|---|---|
C1 | 2.85 | 2 | C15 | 6.60 | 1 | C29 | 3.64 | 2 |
C2 | 2 | 2 | C16 | 3.10 | 2 | C30 | 5.47 | 1 |
C3 | 2.08 | 2 | C17 | 2.54 | 2 | C31 | 3.50 | 2 |
C4 | 2.50 | 2 | C18 | 6.53 | 1 | C32 | 1.86 | 3 |
C5 | 2.17 | 2 | C19 | 2.49 | 2 | C33 | 2.79 | 2 |
C6 | 2.52 | 2 | C20 | 3.56 | 2 | C34 | 1.77 | 3 |
C7 | 5.03 | 1 | C21 | 4.62 | 1 | C35 | 3.24 | 2 |
C8 | 4.28 | 1 | C22 | 2.73 | 2 | C36 | 2.11 | 3 |
C9 | 0.68 | 3 | C23 | 0.66 | 3 | C37 | 2.56 | 2 |
C10 | 2.96 | 2 | C24 | 0.62 | 3 | C38 | 3.18 | 2 |
C11 | 2.78 | 2 | C25 | 3.45 | 2 | C39 | 3.70 | 2 |
C12 | 0.97 | 3 | C26 | 2.29 | 2 | C40 | 4.02 | 1 |
C13 | 6.63 | 1 | C27 | 0.80 | 3 | C41 | 4.62 | 1 |
C14 | 1.57 | 2 | C28 | 6.72 | 1 |
C. | Vf Class | Bsh Class | Hi Class | Af Class | Average | TA | C. | Vf Class | Bsh Class | Hi Class | Af Class | Average | TA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 2 | 3 | 2 | 1 | 2 | 2 | C22 | 1 | 3 | 1 | 1 | 1.5 | 1 |
C2 | 3 | 3 | 2 | 1 | 2.25 | 3 | C23 | 2 | 3 | 1 | 1 | 1.75 | 1 |
C3 | 1 | 3 | 1 | 1 | 1.5 | 1 | C24 | 1 | 3 | 1 | 3 | 2 | 2 |
C4 | 2 | 3 | 1 | 2 | 2 | 2 | C25 | 2 | 2 | 2 | 2 | 2 | 2 |
C5 | 1 | 3 | 1 | 1 | 1.5 | 1 | C26 | 1 | 3 | 3 | 3 | 2.5 | 3 |
C6 | 1 | 3 | 1 | 3 | 2 | 2 | C27 | 1 | 3 | 2 | 2 | 2 | 2 |
C7 | 3 | 1 | 2 | 2 | 2 | 2 | C28 | 1 | 1 | 2 | 2 | 1.5 | 1 |
C8 | 1 | 1 | 1 | 2 | 1.25 | 1 | C29 | 1 | 2 | 3 | 2 | 2 | 2 |
C9 | 1 | 3 | 1 | 2 | 1.75 | 1 | C30 | 1 | 1 | 1 | 2 | 1.25 | 1 |
C10 | 1 | 3 | 1 | 2 | 1.75 | 1 | C31 | 1 | 2 | 2 | 2 | 1.75 | 1 |
C11 | 2 | 3 | 1 | 2 | 2 | 2 | C32 | 1 | 3 | 1 | 1 | 1.5 | 1 |
C12 | 2 | 3 | 1 | 1 | 1.75 | 1 | C33 | 1 | 3 | 1 | 1 | 1.5 | 1 |
C13 | 1 | 1 | 2 | 2 | 1.5 | 1 | C34 | 1 | 3 | 2 | 2 | 2 | 2 |
C14 | 1 | 3 | 2 | 2 | 2 | 2 | C35 | 1 | 2 | 2 | 2 | 1.75 | 1 |
C15 | 1 | 1 | 1 | 2 | 1.25 | 1 | C36 | 1 | 3 | 1 | 3 | 2 | 2 |
C16 | 1 | 2 | 1 | 3 | 1.75 | 1 | C37 | 2 | 3 | 1 | 1 | 1.75 | 1 |
C17 | 1 | 3 | 2 | 1 | 1.75 | 1 | C38 | 2 | 2 | 2 | 2 | 2 | 2 |
C18 | 1 | 1 | 2 | 3 | 1.75 | 1 | C39 | 2 | 2 | 2 | 2 | 2 | 2 |
C19 | 1 | 3 | 2 | 3 | 2.25 | 3 | C40 | 2 | 1 | 2 | 2 | 1.75 | 1 |
C20 | 1 | 2 | 2 | 2 | 1.75 | 1 | C41 | 2 | 1 | 1 | 3 | 1.75 | 1 |
C21 | 1 | 1 | 2 | 2 | 1.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, A.M.; Bashir, B. Unveiling Lithological Diversity and Active Tectonic Processes of the Nabitah Fault Zone, Saudi Arabia: A Remote Sensing and Drainage Analysis Approach to Environmental Sustainability. Appl. Sci. 2025, 15, 10069. https://doi.org/10.3390/app151810069
Alanazi AM, Bashir B. Unveiling Lithological Diversity and Active Tectonic Processes of the Nabitah Fault Zone, Saudi Arabia: A Remote Sensing and Drainage Analysis Approach to Environmental Sustainability. Applied Sciences. 2025; 15(18):10069. https://doi.org/10.3390/app151810069
Chicago/Turabian StyleAlanazi, Abdullah M., and Bashar Bashir. 2025. "Unveiling Lithological Diversity and Active Tectonic Processes of the Nabitah Fault Zone, Saudi Arabia: A Remote Sensing and Drainage Analysis Approach to Environmental Sustainability" Applied Sciences 15, no. 18: 10069. https://doi.org/10.3390/app151810069
APA StyleAlanazi, A. M., & Bashir, B. (2025). Unveiling Lithological Diversity and Active Tectonic Processes of the Nabitah Fault Zone, Saudi Arabia: A Remote Sensing and Drainage Analysis Approach to Environmental Sustainability. Applied Sciences, 15(18), 10069. https://doi.org/10.3390/app151810069