Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = moromi fermentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7171 KiB  
Article
Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains
by Li-Hao Wang, Wen-Hui Qu, Ya-Nan Xu, Song-Gang Xia, Qian-Qian Xue, Xiao-Ming Jiang, Hong-Ying Liu, Chang-Hu Xue and Yun-Qi Wen
Foods 2024, 13(9), 1386; https://doi.org/10.3390/foods13091386 - 30 Apr 2024
Cited by 4 | Viewed by 3449
Abstract
The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji [...] Read more.
The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji and moromi fermentation, the fermentation broth was pasteurized and diluted, and then inoculated with three selected microorganisms including Corynebacterium glutamicum, Corynebacterium ammoniagenes, and Lactiplantibacillus plantarum for secondary fermentation. During this ten-day fermentation, the pH, free amino acids, organic acids, nucleotide acids, fatty acids, and volatile compounds were analyzed. The fermentation group inoculated with C. glutamicum accumulated the high content of amino acid nitrogen of 0.92 g/100 mL and glutamic acid of 509.4 mg/100 mL. The C. ammoniagenes group and L. plantarum group were rich in nucleotide and organic acid, respectively. The fermentation group inoculated with three microorganisms exhibited the best sensory attributes, showing the potential to develop a suitable fermentation method. The brewing speed of the proposed process in this study was faster than that of the traditional method, and the umami substances could be significantly accumulated in this low-salt fermented model (7% w/v NaCl). This study provides a reference for the low-salt and rapid fermentation of seasoning. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

12 pages, 1571 KiB  
Proceeding Paper
Impact of Different Raw Materials on Changes in Volatile Compounds during Moromi Fermentation
by Luka Ly, Chansehakpong Te, Monychot Tepy Chanto and Reasmey Tan
Biol. Life Sci. Forum 2023, 26(1), 103; https://doi.org/10.3390/Foods2023-14962 - 13 Oct 2023
Cited by 1 | Viewed by 1530
Abstract
The composition and ratio of volatile compounds in soy sauce have a major impact on its organoleptic properties. Considering the important influence of long-term (3 months) moromi fermentation on the aroma formation of soy sauces from different materials (soybean, rice, black bean, wheat, [...] Read more.
The composition and ratio of volatile compounds in soy sauce have a major impact on its organoleptic properties. Considering the important influence of long-term (3 months) moromi fermentation on the aroma formation of soy sauces from different materials (soybean, rice, black bean, wheat, wheat flour and mungbean), the volatile compounds of 24 samples in total, taken from three different stages of moromi fermentation, were analyzed via solid phase microextraction coupled with gas chromatography–mass spectrometry (SPME–GC–MS). The results show a total of 77 volatile compounds, including acids (4), alcohols (14), phenols (6), aldehydes (12), esters (26), ketones (5), furan(one)s (5) and pyrazines (5), and the majority of the compounds were common. Among all samples, the highest number of volatile compounds (5528.58 ± 1308 µg/L) was detected in the moromi made from the combination of soybean, black bean and wheat flour on the first month of fermentation, and the sample that had the lowest number of volatile compounds (63.25 ± 1.70 µg/L) was detected in the moromi sample made from the combination of soybean and wheat flour on day 0. During the three months of moromi fermentation, the relative contents of acids, alcohols, phenols, aldehydes, esters, ketones, furan(one)s and pyrazines changed gradually. Finally, the total presence of volatile compounds identified in the 24 samples increased from day 0 to 1 month and from month to month perfectly. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Foods)
Show Figures

Figure 1

14 pages, 922 KiB  
Article
Effect of Sequential Inoculation of Tetragenococcus halophilus and Wickerhamomyces anomalus on the Flavour Formation of Early-Stage Moromi Fermented at a Lower Temperature
by Xinzhi Li, Xinyu Xu, Changzheng Wu, Xing Tong and Shiyi Ou
Foods 2023, 12(18), 3509; https://doi.org/10.3390/foods12183509 - 21 Sep 2023
Cited by 5 | Viewed by 2113
Abstract
Microbial inoculation in moromi fermentation has a great influence on the physicochemical and flavour properties of soy sauces. This work investigated the effect of inoculating Tetragenococcus halophilus and Wickerhamomyces anomalus on the flavour formation of early-stage moromi (30 days) fermented at a lower [...] Read more.
Microbial inoculation in moromi fermentation has a great influence on the physicochemical and flavour properties of soy sauces. This work investigated the effect of inoculating Tetragenococcus halophilus and Wickerhamomyces anomalus on the flavour formation of early-stage moromi (30 days) fermented at a lower temperature (22 °C) by determining their physicochemical and aroma changes. The results showed that single yeast or LAB inoculation increased the production of amino nitrogen, lactic acid and acetic acid, as well as free amino acids and key flavour components. Particularly, the sequential inoculation of T. halophilus and W. anomalus produced more free amino acids and aromatic compounds, and there might be synergistic effects between these two strains. More characteristic soy sauce flavour compounds, such as benzaldehyde, HEMF, guaiacol and methyl maltol were detected in the sequentially inoculated moromi, and this sample showed higher scores in savoury, roasted and caramel intensities. These results confirmed that sequential inoculation of T. halophilus and W. anomalus could be a choice for the future production of moromi with good flavour and quality under a lower temperature. Full article
(This article belongs to the Special Issue Current Research on Flavor Compounds in Fermented Food Products)
Show Figures

Graphical abstract

10 pages, 2005 KiB  
Article
Carbohydrate Sources Influence the Microbiota and Flavour Profile of a Lupine-Based Moromi Fermentation
by Rebekka H. Lülf, Karl Selg-Mann, Thomas Hoffmann, Tingting Zheng, Melanie Schirmer and Matthias A. Ehrmann
Foods 2023, 12(1), 197; https://doi.org/10.3390/foods12010197 - 2 Jan 2023
Cited by 1 | Viewed by 2196
Abstract
Lupine-based seasoning sauce is produced similarly to soy sauces and therefore generates a comparable microbiota and aroma profile. While the koji state is dominated by Aspergillus oryzae, the microbiome of the moromi differs to soy moromi, especially in yeast composition due to [...] Read more.
Lupine-based seasoning sauce is produced similarly to soy sauces and therefore generates a comparable microbiota and aroma profile. While the koji state is dominated by Aspergillus oryzae, the microbiome of the moromi differs to soy moromi, especially in yeast composition due to the absence of Zygosaccharomyces rouxii and Debaryomyces hansenii as the dominant yeast. In this study, we monitored the addition of a carbohydrate source on the microbiome and aroma profile of the resulting sauce. Compared to previous studies, the usage of a yeast starter culture resulted in a sparsely diverse microbiota that was dominated by D. hansenii and T. halophilus. This led to a pH below 5 even after four months of incubation and most of the measured aroma compounds were pyrazines and acids. The addition of wheat and buckwheat resulted in a temporary change in the yeast consortium with the appearance of Z. rouxii and additional bacterial genera. The aroma profile differs in the presence of pyrazines and esters. Since no significant differences in the taste and odour of wheat-added and buckwheat-added sauce was sensed, both substrates influence the lupine sauce in a similar way. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 2855 KiB  
Article
Comparative Metabolomic Analysis of Moromi Fermented Using Different Aspergillus oryzae Strains
by Seung Wha Jo, Ji-Hyun An, Dong-Shin Kim, Eun Jung Yim, Hyeon-Jin Kang and Hyun-Jin Kim
Molecules 2022, 27(19), 6182; https://doi.org/10.3390/molecules27196182 - 21 Sep 2022
Cited by 2 | Viewed by 2458
Abstract
Aspergillus oryzae (A. oryzae) is an important starter in the fermentation of koji and moromi. However, the effect of different A. oryzae strains on the quality of moromi has rarely been studied. For this reason, this study analyzed the physicochemical properties, [...] Read more.
Aspergillus oryzae (A. oryzae) is an important starter in the fermentation of koji and moromi. However, the effect of different A. oryzae strains on the quality of moromi has rarely been studied. For this reason, this study analyzed the physicochemical properties, enzyme activity, sensory quality, and metabolite profiles of moromi samples fermented using two strains (A. oryzae KCCM12012P (moromi-1) and KCCM12804P (moromi-2)), which were newly isolated from fermented soy foods, and compared them to those of a commercialized A. oryzae strain (control). Amino-type nitrogen contents of moromi-1 and moromi-2 samples were higher than that of control moromi, and their amylase and protease activities were also higher. Moreover, metabolite profiles of moromi were significantly altered according to strains. In particular, the levels of many amino acids, peptides, nucleotides, and acidic compounds were altered, which resulted in changes in the sensory quality of moromi. Although volatile compounds were not investigated, the results suggested that the quality of moromi was significantly different for newly isolated strains, especially A. oryzae KCCM12804P, and they were superior to the commercial strain in terms of taste-related substances. Therefore, these strains could be used as good starters to produce moromi and soy sauce with good sensory quality. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

13 pages, 1388 KiB  
Article
Critical Optimized Conditions for Gamma-Aminobutyric Acid (GABA)-Producing Tetragenococcus Halophilus Strain KBC from a Commercial Soy Sauce Moromi in Batch Fermentation
by Soumaya Sassi, Zul Ilham, Nazzatush Shimar Jamaludin, Sarina Abdul Halim-Lim, Chong Shin Yee, Alan Wong Weng Loen, Ooi Poh Suan, Mohamad Faizal Ibrahim and Wan Abd Al Qadr Imad Wan-Mohtar
Fermentation 2022, 8(8), 409; https://doi.org/10.3390/fermentation8080409 - 19 Aug 2022
Cited by 11 | Viewed by 4025
Abstract
Gamma-aminobutyric acid (GABA) has several health-promoting qualities, leading to a growing demand for natural GABA production via microbial fermentation. The GABA-producing abilities of the new Tetragenococcus halophilus (THSK) isolated from a commercial soy sauce moromi were proven in this investigation. Under aerobic conditions, [...] Read more.
Gamma-aminobutyric acid (GABA) has several health-promoting qualities, leading to a growing demand for natural GABA production via microbial fermentation. The GABA-producing abilities of the new Tetragenococcus halophilus (THSK) isolated from a commercial soy sauce moromi were proven in this investigation. Under aerobic conditions, the isolate produced 293.43 mg/L of GABA after 5 days of cultivation, compared to 217.13 mg/L under anaerobic conditions. Critical parameters such as pH, monosodium glutamate (MSG), and sodium chloride (NaCl) concentrations were examined to improve GABA yield. MSG had the most significant impact on GABA and GABA synthesis was not suppressed even at high NaCl concentrations. Data showed that a pH of 8, MSG content of 5 g/L, and 20% NaCl were the best culture conditions. The ultimate yield was improved to 653.101 mg/L, a 2.22-fold increase (293.43 mg/L). This design shows that the bacteria THSK has industrial GABA production capability and can be incorporated into functional food. Full article
(This article belongs to the Special Issue High Quality Functional Food: Potential of Probiotics)
Show Figures

Figure 1

10 pages, 3586 KiB  
Article
Heme Dependent Catalase Conditionally Contributes to Oxygen Tolerance of Tetragenococcus halophilus Strains Isolated from Soy Sauce Moromi
by Jialian Li, Bo Wang, Jian Chen, Guocheng Du and Fang Fang
Appl. Sci. 2022, 12(16), 8039; https://doi.org/10.3390/app12168039 - 11 Aug 2022
Cited by 4 | Viewed by 2247
Abstract
Tetragenococcus halophilus strains are the halophilic lactic acid bacteria (LAB) that are present in microbial communities during soy sauce or other hyperosmotic foods’ fermentation. This species contributes to the formation of volatiles in fermented foods but may experience harsh conditions such as oxidative [...] Read more.
Tetragenococcus halophilus strains are the halophilic lactic acid bacteria (LAB) that are present in microbial communities during soy sauce or other hyperosmotic foods’ fermentation. This species contributes to the formation of volatiles in fermented foods but may experience harsh conditions such as oxidative stress and osmotic stress during fermentation. The characterization of the oxygen tolerance of T. halophilus and elaboration of its antioxidant mechanism are important for the selection of suitable LAB for food fermentation. In this work, the growth of T. halophilus strains isolated from soy sauce moromi under both aerobic and anaerobic conditions was compared, and the function of their antioxidant enzymes was investigated. These strains showed differences in oxidation resistance, and they all produce antioxidant enzymes including superoxide dismutase, peroxidase and glutathione reductase. Interestingly, genes encoding catalase (CAT) are present in the genome of T. halophilus strains, though some of them are pseudogenes. Catalase produced by T. halophilus belongs to the heme-dependent CAT, and its activity could only be detected in the presence of heme under aerobic condition. The CAT from T. halophilus conditionally contributes to resistance to hydrogen peroxide and oxidative stress. These results elucidated the possible antioxidant mechanism of T. halophilus and revealed the differences in the oxidative stress tolerance of T. halophilus strains. Full article
(This article belongs to the Special Issue New Technologies on Microbiology of Traditionally Fermented Food)
Show Figures

Figure 1

15 pages, 2567 KiB  
Article
Effects of Salt Treatment Time on the Metabolites, Microbial Composition, and Quality Characteristics of the Soy Sauce Moromi Extract
by Sun Lee, Dong-Shin Kim, Yejin Son, Huong-Giang Le, Seung Wha Jo, Jungmi Lee, Yeji Song and Hyun-Jin Kim
Foods 2022, 11(1), 63; https://doi.org/10.3390/foods11010063 - 28 Dec 2021
Cited by 11 | Viewed by 3114
Abstract
Salt is one of the most important factors for fermented foods, but the effect of salt treatment time on the quality of fermented foods has rarely been studied. In this study, the effect of different salt treatment times (0, 48, and 96 h) [...] Read more.
Salt is one of the most important factors for fermented foods, but the effect of salt treatment time on the quality of fermented foods has rarely been studied. In this study, the effect of different salt treatment times (0, 48, and 96 h) after the start of fermentation on the quality of the soy sauce moromi extract (SSME) was investigated. As the salt treatment time was delayed, the population of Aspergillus oryzae, Lactobacillaceae, and Enterococcaecea in SSME increased, whereas the population of Staphylococcaceae and Bacillaceae decreased, leading to changes in the enzymatic activity and metabolite profiles. In particular, the contents of amino acids, peptides, volatile compounds, acidic compounds, sugars, and secondary metabolites were significantly affected by the salt treatment time, resulting in changes in the sensory quality and appearance of SSME. The correlation data showed that metabolites, bacterial population, and sensory parameters had strong positive or negative correlations with each other. Moreover, based on metabolomics analysis, the salt treatment-time-related SSME metabolomic pathway was proposed. Although further studies are needed to elucidate the salt treatment mechanism in fermented foods, our data can be useful to better understand the effect of salt treatment time on the quality of fermented foods. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

18 pages, 3087 KiB  
Article
Functional Microbiota for Polypeptide Degradation during Hypertonic Moromi-Fermentation of Pixian Broad Bean Paste
by Lijie Zhang, Yida Bao, Haifeng Chen, Jiaquan Huang and Yan Xu
Foods 2020, 9(7), 930; https://doi.org/10.3390/foods9070930 - 14 Jul 2020
Cited by 24 | Viewed by 3875
Abstract
Traditional fermented bean pastes are indispensable seasonings in many East Asian countries. They are produced via hypertonic solutions by spontaneous fermentation. Functional, unknown microbiota carry great risks for food safety and stable quality. Thus, analysis and subsequent utilization of functional microbiota will be [...] Read more.
Traditional fermented bean pastes are indispensable seasonings in many East Asian countries. They are produced via hypertonic solutions by spontaneous fermentation. Functional, unknown microbiota carry great risks for food safety and stable quality. Thus, analysis and subsequent utilization of functional microbiota will be a good strategy to resolve these problems. During bean fermentation, the microbial functions were divided into two stages, including first stage-raw material (polypeptide) degradation and second stage-amino acid catabolism. In this study, we aimed to analyze the functional microbiota of first stage. Omics-studies, including high-throughput sequencing, correlation analysis and extracellular proteome, were used to generate candidate functional microbes for polypeptide degradation in this study. Then, we cultured the candidate functional microbes. After the batch fermentation and enzymatic analysis, we found three strains secreted peptidase and resulted amino acid accumulation, involving Aspergillus niger, Candida zeylanoides and Bacillus licheniformis. Thus, A. niger, C. zeylanoides and B. licheniformis conducted the functional microbiota for polypeptide degrading during hypertonic moromi fermentation. This study supplies a strategy for functional microbiota analysis. In addition, this is the first report that C. zeylanoides can secrete proteome and produce amino acids from polypeptide. Full article
Show Figures

Figure 1

12 pages, 2597 KiB  
Article
Isolation, Identification, and Optimization of γ-Aminobutyric Acid (GABA)-Producing Bacillus cereus Strain KBC from a Commercial Soy Sauce moromi in Submerged-Liquid Fermentation
by Wan Abd Al Qadr Imad Wan-Mohtar, Mohamad Nor Azzimi Sohedein, Mohamad Faizal Ibrahim, Safuan Ab Kadir, Ooi Poh Suan, Alan Wong Weng Loen, Soumaya Sassi and Zul Ilham
Processes 2020, 8(6), 652; https://doi.org/10.3390/pr8060652 - 30 May 2020
Cited by 29 | Viewed by 9302
Abstract
A new high γ-aminobutyric acid (GABA) producing strain of Bacillus cereus was successfully isolated from soy sauce moromi. This B. cereus strain named KBC shared similar morphological characteristics (Gram-positive, rod-shaped) with the reference B. cereus. 16S rRNA sequence of B. cereus [...] Read more.
A new high γ-aminobutyric acid (GABA) producing strain of Bacillus cereus was successfully isolated from soy sauce moromi. This B. cereus strain named KBC shared similar morphological characteristics (Gram-positive, rod-shaped) with the reference B. cereus. 16S rRNA sequence of B. cereus KBC was found to be 99% similar with B. cereus strain OPWW1 under phylogenetic tree analysis. B. cereus KBC cultivated in unoptimized conditions using De Man, Rogosa, Sharpe (MRS) broth was capable of producing 523.74 mg L−1 of GABA within five days of the cultivation period. By using response surface methodology (RSM), pH level, monosodium glutamate (MSG) concentration and temperature were optimized for a high concentration of GABA production. The pH level significantly influenced the GABA production by B. cereus KBC with p-value = 0.0023. GABA production by B. cereus KBC under the optimized condition of pH 7, MSG concentration of 5 g L−1 and temperature of 40 °C resulted in GABA production of 3393.02 mg L−1, which is 6.37-fold higher than under unoptimized conditions. Overall, this study has shown that B. cereus KBC isolated from soy sauce moromi is capable of producing a high concentration of GABA together with the optimal fermentation conditions that have been statistically analysed using RSM. Full article
(This article belongs to the Special Issue Biotechnology for Sustainability and Social Well Being)
Show Figures

Figure 1

11 pages, 2612 KiB  
Article
Formation of Ethyl Carbamate during the Production Process of Cantonese Soy Sauce
by Kai Zhou, Lorenzo Siroli, Francesca Patrignani, Yuanming Sun, Rosalba Lanciotti and Zhenlin Xu
Molecules 2019, 24(8), 1474; https://doi.org/10.3390/molecules24081474 - 15 Apr 2019
Cited by 21 | Viewed by 5433
Abstract
The aim of this work was to clarify the formation of ethyl carbamate (EC) and its influence factors throughout the production process of Cantonese soy sauce. The results showed that EC was not detected in the koji-making and early moromi fermentation stages, [...] Read more.
The aim of this work was to clarify the formation of ethyl carbamate (EC) and its influence factors throughout the production process of Cantonese soy sauce. The results showed that EC was not detected in the koji-making and early moromi fermentation stages, but started to be generated when pH of the moromi decreased to about 4.9—at the same time, the levels of ethanol, urea and citrulline increased significantly. Most EC was formed during raw soy sauce hot extraction (40.6%) and sterilization (42.9%) stages. The EC content exhibited the highest correlation with ethanol throughout the whole production process (R = 0.97). The simulation soy sauce produced in laboratory led the same conclusion—moreover, the contents of EC, ethanol and citrulline were higher in soy sauce fermented at 30 °C than in soy sauce fermented at 15 °C. Extraction of raw soy sauce by squeezing contributed little to EC formation. Further research showed that citrulline and ethanol led to significant increases in EC levels in raw soy sauce upon heating. These results indicate that ethanol and citrulline are two critical precursors of EC and that EC is mainly formed during the heat treatment stage of soy sauce. Full article
(This article belongs to the Special Issue Advanced Analysis of Contaminants of Emerging Concern )
Show Figures

Figure 1

Back to TopTop