Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = monocarboaluminate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4202 KiB  
Article
Binary Supplementary Cementitious Material from Expanded Clay Production Dust and Opoka
by Rimvydas Kaminskas, Irmantas Barauskas, Skomantas Uselis and Brigita Savickaite
Sustainability 2025, 17(2), 794; https://doi.org/10.3390/su17020794 - 20 Jan 2025
Cited by 1 | Viewed by 800
Abstract
Global warming is a critical issue driven largely by the extensive release of greenhouse gases, with the cement industry being one of the biggest contributors to CO2 emissions. A sustainable solution involves the integration of supplementary cementitious materials (SCMs) into cement production, [...] Read more.
Global warming is a critical issue driven largely by the extensive release of greenhouse gases, with the cement industry being one of the biggest contributors to CO2 emissions. A sustainable solution involves the integration of supplementary cementitious materials (SCMs) into cement production, which can mitigate environmental impacts. This study focuses on the effects of binary SCMs, composed of calcined expanded clay kiln dust and opoka, on the hardening and hydration behavior of Portland cement. The analysis used methods such as X-ray diffraction, thermal analysis, calorimetry, and compressive strength testing. The tested dust was thermally activated at 600 °C and the opoka was dried and milled to evaluate its combined influence on the cement properties. Portland cement was substituted with a combination of these two additives. The findings revealed that the two-component mixture exerts a multifaceted impact on the hydration process of Portland cement. The activated expanded clay kiln dust triggers a pozzolanic reaction because of its high reactivity, while the opoka component promotes the development of monocarboaluminates. This binary supplementary cementitious material, derived from opoka and expanded clay kiln dust, proves to be a highly effective substitute, allowing up to 25 wt.% replacement of Portland cement without reducing its compressive strength. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

15 pages, 5314 KiB  
Article
Optimisation of Using Low-Grade Kaolinitic Clays in Limestone Calcined Clay Cement Production (LC3)
by Paola Vargas, María Victoria Borrachero, Jordi Payá, Ana Macián, Jorge Iván Tobón, Fernando Martirena and Lourdes Soriano
Materials 2025, 18(2), 285; https://doi.org/10.3390/ma18020285 - 10 Jan 2025
Viewed by 1749
Abstract
LC3 (limestone calcined clay cement) is poised to become the construction industry’s future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay [...] Read more.
LC3 (limestone calcined clay cement) is poised to become the construction industry’s future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin. This study begins with a physico-chemical characterisation of the starting materials. This is followed by a microstructural analysis of cement pastes, which includes isothermal calorimetry, thermogravimetry, and X-ray diffraction tests at different curing ages. Finally, this study analyses the mechanical performance of standard mortars under compression to observe the evolution of the control mortars and the mortars with calcined clay and metakaolin over time. The results show that the LC3 mortars exhibited higher compressive strength in the mixtures with higher calcined kaolinite contents, achieved by adding metakaolin. Adding 6% metakaolin increased the compressive strength after 90 days, while 10% additions surpassed the control mortar’s compressive strength after 28 days. Mortars with 15% metakaolin exceeded the control mortar’s compressive strength after just 7 curing days. The hydration kinetics showed an acceleration of LC3 hydration with metakaolin additions due to the nucleation effect and the formation of monocarboaluminate and hemicarboaluminate (both AFm phases). The results suggest the potential for combining less reactive materials blended with highly reactive materials. Full article
(This article belongs to the Special Issue Advance in Sustainable Construction Materials, Second Volume)
Show Figures

Figure 1

18 pages, 23726 KiB  
Article
Solidification Mechanism of Bayer Red Mud under the Action of Calcium Hydroxide
by Zhiwei Song, Guoju Ke, Pengju Qin, Suli Han, Xiuhua Guo and Zhiqiang Zhang
Sustainability 2024, 16(11), 4770; https://doi.org/10.3390/su16114770 - 4 Jun 2024
Cited by 3 | Viewed by 1631
Abstract
Because of the strong alkalinity of red mud, it is difficult to recycle, and the long-term accumulation of red mud causes environmental pollution. The study shows that the solidification characteristics of bayer red mud (RM) under the action of Ca(OH)2 (CH) are [...] Read more.
Because of the strong alkalinity of red mud, it is difficult to recycle, and the long-term accumulation of red mud causes environmental pollution. The study shows that the solidification characteristics of bayer red mud (RM) under the action of Ca(OH)2 (CH) are obvious. The mechanical properties of Bayer RM paste with different amounts of CH at different ages were tested. The strength of RMCH gradually increases with the increase in CH content and age, reaching a turning point in strength at 26.4% content of CH, with the highest strength at 28 days, reaching 2.73 MPa. The solidification products were characterized by XRD, FTIR, TG-DTG, and SEM-EDS. The results show that under the action of CH, the main solidification products of RM are C-(A)-S-H, hemicarboaluminate, and monocarboaluminate. In the solidification process, hydroxysodalite and faujasite-Na react with CH to generate C-S-H, Al(OH)4, and Na+, then react to generate hemicarboaluminate, monocarboaluminate and C-(A)-S-H, among which hemicarboaluminate is transformed into monocarboaluminate in the presence of calcite, and further monocarboaluminate decomposes to generate calcite. It provides a basis for the study of the interaction mechanism between a single substance and RM and provides a research basis for the sustainable utilization of red mud. Full article
(This article belongs to the Special Issue Slope Stability Analysis and Landslide Disaster Prevention)
Show Figures

Figure 1

18 pages, 6061 KiB  
Article
The Synergistic Effects of Ultrafine Slag Powder and Limestone on the Rheology Behavior, Microstructure, and Fractal Features of Ultra-High Performance Concrete (UHPC)
by Congqi Luan, Qingchun Yang, Xinru Lin, Xin Gao, Heng Cheng, Yongbo Huang, Peng Du, Zonghui Zhou and Jinbang Wang
Materials 2023, 16(6), 2281; https://doi.org/10.3390/ma16062281 - 12 Mar 2023
Cited by 8 | Viewed by 2297
Abstract
This study investigated the effect of the interaction between ultrafine slag powder (USL) and limestone (LS) on the rheology behavior, microstructure, and fractal features of UHPC. The results indicated that B2 with mass ratio of 2:1 between the USL and LS obtained the [...] Read more.
This study investigated the effect of the interaction between ultrafine slag powder (USL) and limestone (LS) on the rheology behavior, microstructure, and fractal features of UHPC. The results indicated that B2 with mass ratio of 2:1 between the USL and LS obtained the highest compressive strength and the lowest yield stress. The combination of the USL and LS facilitated the cement hydration, ettringite, and monocarboaluminate (Mc) formation, as well as the increase in the polymerization of the C–S–H. The synergistic action between the USL and LS refined the pore structure due to the formation of the Mc, compensating for the consumption of the CH by the pozzolanic reaction, which provided a denser microstructure in the UHPC. The fractal dimension (Ds) of the UHPC was strongly related to the concrete pore structures and the compressive strength, which demonstrated that a new metric called the Ds value may be used to assess the synergistic effect of the UHPC. Full article
Show Figures

Figure 1

18 pages, 5693 KiB  
Article
Performance of Composite Portland Cements with Calcined Illite Clay and Limestone Filler Produced by Industrial Intergrinding
by Edgardo F. Irassar, Viviana L. Bonavetti, Gisela P. Cordoba, Viviana F. Rahhal, Claudia Cristina Castellano and Horacio A. Donza
Minerals 2023, 13(2), 240; https://doi.org/10.3390/min13020240 - 8 Feb 2023
Cited by 5 | Viewed by 2238
Abstract
The performance of five composite Portland cements (CPCs) with limestone filler (LF = 10%–25% by mass) and calcined illite clay (CIC = 10%–25% by mass) elaborated by intergrinding was analyzed in paste, mortar, and concrete. Hydration was studied by isothermal calorimetry, bound water, [...] Read more.
The performance of five composite Portland cements (CPCs) with limestone filler (LF = 10%–25% by mass) and calcined illite clay (CIC = 10%–25% by mass) elaborated by intergrinding was analyzed in paste, mortar, and concrete. Hydration was studied by isothermal calorimetry, bound water, and XRD. Flow and compressive strength (2 to 90 days) were determined in standard mortar. Concretes (w/b = 0.45; binder content = 350 kg/m3; slump = 15 ± 3 cm) were elaborated to determine compressive and flexural strength, water penetration, and chloride migration. Intergrinding CPCs have a large specific surface area when LF + CIC increases, with a similar size range of clinker particles. Supplementary cementing material replacements decreased the heat rate, prolonged the dormant period, and decreased the acceleration rate at early ages. According to the Fratini test, all CPCs had positive pozzolanicity after 28 days, but XRD analysis showed Ca(OH)2 associated with monocarboaluminate phases. Mortar flow was slightly reduced when the proportion of CIC was increased. Mortar strength decreased when the sum of LF + CIC increased. CPC strength class was limited by compressive strength after 28 days. Concretes were workable, and the compressive strength after 28 days depended on the LF + CIC, and CIC contributed after 90 days. After 28 days, the water penetration depended mainly on the LF + CIC content. The chloride migration coefficient was also reduced when CPC contained more CIC and less LF. Full article
(This article belongs to the Special Issue Blended Cements Incorporating Calcined Clay and Limestone)
Show Figures

Figure 1

19 pages, 4248 KiB  
Article
Effect of Limestone and Quartz Fillers in UHPC with Calcined Clay
by Guillermo Hernández-Carrillo, Alejandro Durán-Herrera and Arezki Tagnit-Hamou
Materials 2022, 15(21), 7711; https://doi.org/10.3390/ma15217711 - 2 Nov 2022
Cited by 6 | Viewed by 2855
Abstract
Ultra-high-performance concrete (UHPC) is a material developed to maximize the engineering characteristics of hydraulic concrete, in terms of durability and mechanical properties, but the adoption of this technology in practice has not turned out as desired, mainly due to the high amounts of [...] Read more.
Ultra-high-performance concrete (UHPC) is a material developed to maximize the engineering characteristics of hydraulic concrete, in terms of durability and mechanical properties, but the adoption of this technology in practice has not turned out as desired, mainly due to the high amounts of cement and silica fume required for its production, and for its consequences on both economic and ecological costs. As an option to improve the impact of UHPC, both on costs and on sustainability, this work evaluates four UHPC series with metakaolin additions of 5%, 10%, 15% and 20%, and the substitution of 37.5% of the Portland cement volume by limestone or quartz filler. The compressive strength, the bulk electrical resistivity and a set of tests for microstructural characterization (TGA, XRD and quantitative EDS) were utilized to better understand the role of calcite on the hydration and pozzolanic reactions in ternary Portland cement-metakaolin-limestone filler. Results indicate that the reaction of calcite is scarce and should be considered as a mere filler, as no increase in AFm phases were found. Nevertheless, the ternary mixture with 15% of metakaolin in addition to cement, and with 37.5% of the Portland cement volume substituted by limestone filler, was the one that presented the best performance in terms of compressive strength and bulk electrical resistivity. The results of the microstructural characterization indicate that the high kaolin content in the metakaolin originated the most significant hydration and pozzolanic reactions development between the ages of 7 and 28 days, as between 28 and 91 the reaction remained dormant. In general, the whole set of results included in this work indicate that limestone filler doesn’t act as a better filler than other kind of powders when used in ternary Portland cement-metakaolin- filler systems. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 4189 KiB  
Article
Effects of Limestone Powder on the Early Hydration Behavior of Ye’elimite: Experimental Research and Thermodynamic Modelling
by Jian Ma, Ting Wang, Hu Shi, Zhuqing Yu and Xiaodong Shen
Materials 2022, 15(19), 6645; https://doi.org/10.3390/ma15196645 - 25 Sep 2022
Cited by 2 | Viewed by 1760
Abstract
To investigate the effects of limestone powder and gypsum on the early hydration of ye’elimite, the hydration behavior of C4A3S¯-LP-CaSO4·2H2O-H2O systems are researched. The hydration behavior of systems are researched by [...] Read more.
To investigate the effects of limestone powder and gypsum on the early hydration of ye’elimite, the hydration behavior of C4A3S¯-LP-CaSO4·2H2O-H2O systems are researched. The hydration behavior of systems are researched by employing isothermal calorimetry, XRD technique and chemical shrinkage. The thermodynamic modelling method is employed to predict the equilibrium phase assemblages. The results show that the system with 5 wt.% LP has a comparable hydration heat evolution to limestone powder-free systems. Limestone powder can take part in the reaction to produce monocarboaluminate in the system with M-value (molar ratio of gypsum to ye’elimite) of 1, but monocarboaluminate is not found in the system with M-value of 2. The level off time of chemical shrinkage shortens with the increase of limestone powder dosage. Thermodynamic modelling results show that monocarboaluminate is no longer formed in all systems when M-value exceeds 1.27, which corresponds to the XRD results. This study can provide theoretical guidance for the rational utilization of limestone powder in calcium sulphoaluminate cement. Full article
(This article belongs to the Special Issue Novel Materials in Buildings: Theoretical and Practical Research)
Show Figures

Figure 1

14 pages, 2099 KiB  
Article
Concrete/Glass Construction and Demolition Waste (CDW) Synergies in Ternary Eco-Cement-Paste Mineralogy
by Raquel Vigil de la Villa Mencía, Moises Frías, Sagrario Martínez Ramírez, Lucía Fernandez Carrasco and Rosario García Giménez
Materials 2022, 15(13), 4661; https://doi.org/10.3390/ma15134661 - 2 Jul 2022
Cited by 15 | Viewed by 3365
Abstract
The study described sought further understanding of the synergies in a mix of CDW pozzolans, containing (calcareous and siliceous) concrete and glass waste, used to prepare ternary eco-cement paste bearing 7% of the binary blend at concrete/glass ratios of 2:1 and 1:2. The [...] Read more.
The study described sought further understanding of the synergies in a mix of CDW pozzolans, containing (calcareous and siliceous) concrete and glass waste, used to prepare ternary eco-cement paste bearing 7% of the binary blend at concrete/glass ratios of 2:1 and 1:2. The mineralogical phases in the 2-day, 28-day, and 90-day cement matrices were identified and monitored using XRF, XRD-Rietveld, SEM-EDX, FT-IR, and NMR. The findings showed that changes in the reaction kinetics in the ternary blended pastes relative to OPC pastes depended on the nature of the recycled concrete and the glass content. Adding the binary mix bearing calcareous concrete (at a ratio of 2:1) favoured ettringite, portlandite, and amorphous phase formation, whilst the blends with siliceous concrete favoured C-S-H gel formation. Monocarboaluminate was detected in the 90-day siliceous concrete and glass pastes in amounts similar to those found in the reference OPC paste. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 3127 KiB  
Article
Suitability of Clinker Replacement by a Calcined Common Clay in Self-Consolidating Mortar—Impact on Rheology and Early Age Properties
by Abubakar Muhammad, Karl-Christian Thienel and Ricarda Sposito
Minerals 2022, 12(5), 625; https://doi.org/10.3390/min12050625 - 14 May 2022
Cited by 6 | Viewed by 4438
Abstract
The use of a high amount of calcined clays as cement replacement presents a great challenge in designing self-consolidating concrete. This current attempt evaluates the influence of cement replacement with up to 40 vol.% by a calcined common clay (CC), dominated by 2:1 [...] Read more.
The use of a high amount of calcined clays as cement replacement presents a great challenge in designing self-consolidating concrete. This current attempt evaluates the influence of cement replacement with up to 40 vol.% by a calcined common clay (CC), dominated by 2:1 phyllosilicates in combination with a fixed limestone powder (LP) content on fresh and hardened properties of self-consolidating mortar (SC-M). The fresh properties of SC-M were investigated by mini-slump flow, V-funnel and rotational viscometer measurements. Setting and hardening behavior were observed via dynamic modulus of elasticity and plastic shrinkage. Hydration mechanisms were determined by isothermal calorimetry and thermal analysis. Hardened properties of SC-M were evaluated using compressive strength tests and mercury intrusion porosimetry (MIP). The results revealed a decreased rate of deformability in SC-M when cement is substituted increasingly by CC and a rising superplasticizer (SP) demand, but indicated an improved stability of SC-M even at a higher dosage of SP and hardly any impact on the setting behavior. CC enhanced the precipitation of monocarboaluminate phases and thereby refined the pore size distribution of the binder matrix. SC-M can be produced with up to 40 vol.% CC as cement replacement without having effect on its 28 days mechanical properties. Full article
(This article belongs to the Special Issue Blended Cements Incorporating Calcined Clay and Limestone)
Show Figures

Figure 1

15 pages, 4431 KiB  
Article
Use of CO2 to Cure Steel Slag and Gypsum-Based Material
by Xue Wang, Wen Ni, Jiajie Li, Siqi Zhang, Keqing Li and Wentao Hu
Energies 2021, 14(16), 5174; https://doi.org/10.3390/en14165174 - 21 Aug 2021
Cited by 14 | Viewed by 3106
Abstract
To improve the utilization of steel slag (SS) in CO2 capture and making building materials, the paper mainly discussed the effects of desulphurization gypsum (DG) and w/s ratio on strength development and CO2 capture capability of high Al content SS. It [...] Read more.
To improve the utilization of steel slag (SS) in CO2 capture and making building materials, the paper mainly discussed the effects of desulphurization gypsum (DG) and w/s ratio on strength development and CO2 capture capability of high Al content SS. It showed that 10 wt% DG enhanced the strength of hydration-curing SS by 262% at 28 days. Similarly, adding 6 wt% DG in carbonation-curing SS contributed to increases in strength and CO2 uptake by 283% and 33.54%, reaching 42.68 MPa and 19.12%, respectively. Strength decreases and CO2 uptake increases with w/s. Microanalysis (QXRD, SEM-EDS, TG-DTG, FTIR, XPS, and MIP) revealed that the main hydration products of SS were C-S-H gel and C4AH13, which transformed to ettringite with DG addition. The carbonation products were mainly calcite and aragonite. Additionally, the amount of aragonite, mechanically weaker than calcite, decreased and calcite increased significantly when DG was added in carbonation-curing samples, providing a denser structure and higher strength than those without DG. Furthermore, high Al 2p binding energies revealed the formation of monocarboaluminate in the DG-added carbonation samples, corresponding to higher CO2 uptake. This study provides guidance for the preparation of SS-DG carbide building materials. Full article
(This article belongs to the Special Issue Advances in CO2 Mitigation in Energy and the Environment)
Show Figures

Figure 1

16 pages, 7420 KiB  
Article
Reactivity Effect of Calcium Carbonate on the Formation of Carboaluminate Phases in Ground Granulated Blast Furnace Slag Blended Cements
by Walid Deboucha, Nassim Sebaibi, Yassine El Mendili, Aurélie Fabien, U. Johnson Alengaram, Nordine Leklou, Mahmoud N Hamdadou, Alexandra Bourdot and Stéphanie Gascoin
Sustainability 2021, 13(11), 6504; https://doi.org/10.3390/su13116504 - 7 Jun 2021
Cited by 19 | Viewed by 4414
Abstract
The reactivity effect of calcium carbonate, present in ground oyster shells and limestone filler, on the formation of carboaluminate phases in ground granulated blast furnace slag blended cement pastes was reported in this paper. Six different binary and ternary blended cement pastes were [...] Read more.
The reactivity effect of calcium carbonate, present in ground oyster shells and limestone filler, on the formation of carboaluminate phases in ground granulated blast furnace slag blended cement pastes was reported in this paper. Six different binary and ternary blended cement pastes were prepared using ground granulated blast furnace slag, ground oyster shells and limestone filler with different replacement levels (from 5 to 35%). The carboaluminate formation was assessed and quantified directly using X-ray diffraction (XRD), and indirectly by following the aluminate phase’s reaction (heat flow) and consumed calcium carbonate using Isothermal Calorimetry (IC) and Thermogravimetric Analysis (TGA), respectively. Further, the overall reaction degree calculated based on TGA results and the compressive strength were determined to support the findings obtained. The results revealed that the calcium carbonate present in ground oyster shells is more reactive when compared to that present in limestone filler, where more formed hemi- and monocarboaluminate phases were observed in mixtures containing ground oyster shells. An enhancement in compressive strength and overall reaction degree was observed by adding 5% ground oyster shells as cement replacement. Full article
(This article belongs to the Special Issue Innovative Construction Materials for Sustainable Development)
Show Figures

Figure 1

16 pages, 3939 KiB  
Article
Effect of Different Hydration Time on Carbonation Degree and Strength of Steel Slag Specimens Containing Zeolite
by Xiong Zhang and Jun Chang
Materials 2020, 13(17), 3898; https://doi.org/10.3390/ma13173898 - 3 Sep 2020
Cited by 10 | Viewed by 3436
Abstract
Steel slag partially substituted by zeolite (SZ) was beneficial for improving the compressive strength and carbonation degree of SZ specimens after a combined curing (hydration and then carbonation) process due to pozzolanic reaction between them. By previous work results, the zeolitic substitution ratios [...] Read more.
Steel slag partially substituted by zeolite (SZ) was beneficial for improving the compressive strength and carbonation degree of SZ specimens after a combined curing (hydration and then carbonation) process due to pozzolanic reaction between them. By previous work results, the zeolitic substitution ratios of 5 wt.% and 15 wt.% in steel slag specimens (SZ5 and SZ15) gained the optimum compressive strength and carbonation degree, respectively, after 1 day hydration and then 2 h carbonation. This study investigated the effect of previous hydration time (1, 3, 7, 14, and 196 days) on carbonation degree and strength of SZ specimens after subsequent carbonation curing. Two zeolitic substitution ratios (5 wt.% and 15 wt.%) were selected and pure steel slag specimens were also prepared as controls. Compressive strength results revealed that the optimum hydration curing time was 1 day and the optimum zeolitic substitution ratio was 5 wt.%. The pozzolanic reaction happened in SZ specimens was divided into early and late pozzolanic reaction. In the late hydration, a new mineral, monocarboaluminate (AFmc) was produced in SZ15 specimens, modifying the carbonation degree and strength further. And the mechanism of pozzolanic reaction in early and late hydration in SZ specimens was explained by several microscopic test methods. Full article
Show Figures

Figure 1

12 pages, 4402 KiB  
Article
Effect of Eggshell Powder on the Hydration of Cement Paste
by Natnael Shiferaw, Lulit Habte, Thriveni Thenepalli and Ji Whan Ahn
Materials 2019, 12(15), 2483; https://doi.org/10.3390/ma12152483 - 5 Aug 2019
Cited by 67 | Viewed by 10972
Abstract
Eggshells are one of the solid wastes in the world and are considered hazardous according to European Commission regulations. The utilization of solid wastes, like eggshells, will help create a sustainable environment by minimizing the solid wastes that are disposed into the environment. [...] Read more.
Eggshells are one of the solid wastes in the world and are considered hazardous according to European Commission regulations. The utilization of solid wastes, like eggshells, will help create a sustainable environment by minimizing the solid wastes that are disposed into the environment. The utilization of eggshell powder in cement also helps to reduce the carbon dioxide emissions from cement factories by reducing clinker production. In this study, the effect of eggshell powder on the hydration of cement products was investigated using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Pastes were made with 10% and 20% eggshell powder and examined for 1, 14, and 28 days of hydration. The addition of eggshell powder transformed ettringite to monosulfoaluminate and to monocarboaluminate. In 20% eggshell powder, the formation of monocarboaluminate was detected in the early stages and accelerated the hydration reaction. The CaCO3 from the eggshells reacted with the C3A and changed the hydration products of the pastes. The addition of eggshell powder provided nucleation sites in the hydration products and accelerated cement hydration. Full article
Show Figures

Figure 1

16 pages, 5995 KiB  
Article
Carbonation-Induced Mineralogical Changes in Coal Mining Waste Blended Cement Pastes and Their Influence on Mechanical and Microporosity Properties
by Moisés Frías, Raquel Vigil De la Villa, Rosario García, Olga Rodríguez, Lucía Fernández-Carrasco and Sagrario Martínez-Ramírez
Minerals 2018, 8(4), 169; https://doi.org/10.3390/min8040169 - 20 Apr 2018
Cited by 5 | Viewed by 4851
Abstract
The worldwide pursuit of new eco-efficient pozzolans is ongoing. Kaolinite-based waste is an eco-friendly source of recycled metakaolinite, a highly pozzolanic product. In this study, a blended cement paste containing 20% activated coal waste (ACW) was exposed to a 100% CO2 atmosphere [...] Read more.
The worldwide pursuit of new eco-efficient pozzolans is ongoing. Kaolinite-based waste is an eco-friendly source of recycled metakaolinite, a highly pozzolanic product. In this study, a blended cement paste containing 20% activated coal waste (ACW) was exposed to a 100% CO2 atmosphere at 65% RH for 7 days. The variations in its phase composition and strength were studied and compared to an OPC control. Both pastes were cured for 28 days prior to the carbonation test. Reaction kinetics were assessed using XRD, SEM/EDX, TG/DTG, FT-IR, Micro-Raman spectroscopy, pore solution pH and the cumulative carbonated fraction. The blended cement carbonated 68% faster than the control. While portlandite carbonation was the main reaction in both cements, decalcification was also observed (more intensely in the 20% ACW paste) in other hydraulic calcium phases (C-S-H gel, monocarboaluminate (C4AcH12), ettringite and tetracalcium aluminate (C4AH13). The end product of this reaction was calcium carbonate, mainly in the form of calcite, although traces of aragonite and amorphous carbonate were also detected. Compressive strength values rose with accelerated carbonation time and pore size reduction in both cement pastes. Full article
Show Figures

Figure 1

18 pages, 2934 KiB  
Article
Effect of Calcium Carbonate Fineness on Calcium Sulfoaluminate-Belite Cement
by Yeonung Jeong, Craig W. Hargis, Sungchul Chun and Juhyuk Moon
Materials 2017, 10(8), 900; https://doi.org/10.3390/ma10080900 - 3 Aug 2017
Cited by 63 | Viewed by 8146
Abstract
This study investigated the hydration characteristics and strength development of calcium sulfoaluminate-belite (CSAB) cements incorporating calcium carbonate (CC) powders with various particle size distributions and different gypsum amounts. In general, the CSAB hydration was accelerated by the CC powder, but the acceleration and [...] Read more.
This study investigated the hydration characteristics and strength development of calcium sulfoaluminate-belite (CSAB) cements incorporating calcium carbonate (CC) powders with various particle size distributions and different gypsum amounts. In general, the CSAB hydration was accelerated by the CC powder, but the acceleration and resulting strength improvement were more effective with finer CC powder. Regardless of the fineness of the CC powder, it took part in the hydration of CSAB cement, forming hemicarboaluminate and monocarboaluminate phases. These hydration and nucleation effects compensated for the strength reduction from decreased cementing components (i.e., dilution effect) when finer CC powders were used, while they did not overcome the strength reduction when coarser CC powder was used. On the other hand, increasing the amount of gypsum for a given CC content improved the strength. The strength of CSAB cement had a clear inverse relationship with its total pore volume measured by mercury intrusion porosimetry (MIP). Thermodynamic modeling for CSAB cement hydration showed that the use of CC powder increased total volume of solid phases up to 6 wt % at a given amount of gypsum. Full article
Show Figures

Figure 1

Back to TopTop