Reactivity Effect of Calcium Carbonate on the Formation of Carboaluminate Phases in Ground Granulated Blast Furnace Slag Blended Cements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement
2.1.2. Ground Granulated Blast Furnace Slag
2.1.3. Limestone Filler
2.1.4. Oyster Shells
2.2. Mixture Proportion
2.3. Methods
2.3.1. Isothermal Calorimetry (IC)
2.3.2. X-ray Diffraction (XRD)
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. Compressive Strength Test
3. Results
3.1. Heat Flow
3.2. Carboaluminate Phases Formation
3.3. Consumption of Calcium Carbonate
3.4. Reaction Degree and Compressive Strength Development
4. Discussion
5. Conclusions
- The cement pastes containing 5% GOS exhibited a higher compressive strength and a higher overall reaction degree compared to that of cement pastes containing 5% LF, indicating the reactivity of calcium carbonate present in GOS.
- The aluminate phase’s reaction followed using IC test and the consumed calcium carbonate calculated using TGA test confirmed that the calcium carbonate present in GOS reacts more with aluminate phases of GGBFS.
- The qualitative XRD analysis indicated that more hemi-and monocarboaluminate phases were formed in binary and ternary mixtures containing 5% GOS as cement replacement. Moreover, the qualitative XRD analysis indicated that the hemicarboaluminate formed firstly, followed by the monocarboaluminate phase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barzgar, S.; Tarik, M.; Ludwig, C.; Lothenbach, B. The Effect of Equilibration Time on Al Uptake in C-S-H. Cem. Concr. Res. 2021, 144, 106438. [Google Scholar] [CrossRef]
- Gartner, E. Industrially Interesting Approaches to “Low-CO2” Cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, M.; Xiang, Y.; Kong, F.; Li, L. A Sustainability Comparison between Green Concretes and Traditional Concrete Using an Emergy Ternary Diagram. J. Clean. Prod. 2020, 256, 120421. [Google Scholar] [CrossRef]
- Song, Z.; Frühwirt, T.; Konietzky, H. Characteristics of Dissipated Energy of Concrete Subjected to Cyclic Loading. Constr. Build. Mater. 2018, 168, 47–60. [Google Scholar] [CrossRef]
- Khan, S.; Maheshwari, N.; Aglave, G.; Arora, R. Experimental Design of Green Concrete and Assessing Its Suitability as a Sustainable Building Material. Mater. Today Proc. 2020, 26, 1126–1130. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, Y.; Wang, Y.; Liu, C. Mechanical Properties and Chloride Permeability of Green Concrete Mixed with Fly Ash and Coal Gangue. Constr. Build. Mater. 2020, 233. [Google Scholar] [CrossRef]
- De Castro, S.; De Brito, J. Evaluation of the Durability of Concrete Made with Crushed Glass Aggregates. J. Clean. Prod. 2013, 41, 7–14. [Google Scholar] [CrossRef]
- Jalal, M.; Nassir, N.; Jalal, H. Waste Tire Rubber and Pozzolans in Concrete: A Trade-off between Cleaner Production and Mechanical Properties in a Greener Concrete. J. Clean. Prod. 2019, 238. [Google Scholar] [CrossRef]
- Teimortashlu, E.; Dehestani, M.; Jalal, M. Application of Taguchi Method for Compressive Strength Optimization of Tertiary Blended Self-Compacting Mortar. Constr. Build. Mater. 2018, 190, 1182–1191. [Google Scholar] [CrossRef]
- Xuan, M.Y.; Han, Y.; Wang, X.Y. The Hydration, Mechanical, Autogenous Shrinkage, Durability, and Sustainability Properties of Cement–Limestone–Slag Ternary Composites. Sustainability 2021, 13, 1881. [Google Scholar] [CrossRef]
- Panesar, D.K.; Zhang, R. Performance Comparison of Cement Replacing Materials in Concrete: Limestone Fillers and Supplementary Cementing Materials—A Review. Constr. Build. Mater. 2020, 251, 118866. [Google Scholar] [CrossRef]
- Aqel, M.; Panesar, D.K. Hydration Kinetics and Compressive Strength of Steam-Cured Cement Pastes and Mortars Containing Limestone Filler. Constr. Build. Mater. 2016, 113, 359–368. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary Cementitious Materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Deboucha, W.; Leklou, N.; Khelidj, A.; Plé, O.; Alengaram, U.J. Combination Effect of Limestone Filler and Slag on Delayed Ettringite Formation in Heat-Cured Mortar. J. Mater. Civ. Eng. 2020, 32, 04019365. [Google Scholar] [CrossRef]
- Deboucha, W.; Leklou, N.; Khelidj, A. Blast Furnace Slag Addition Effects on Delayed Ettringite Formation in Heat-Cured Mortars. KSCE J. Civ. Eng. 2018, 22, 3484–3490. [Google Scholar] [CrossRef]
- Salvador, R.P.; Rambo, D.A.S.; Bueno, R.M.; Silva, K.T.; De Figueiredo, A.D. On the Use of Blast-Furnace Slag in Sprayed Concrete Applications. Constr. Build. Mater. 2019, 218, 543–555. [Google Scholar] [CrossRef]
- Ren, J.; Guo, S.-Y.; Qiao, X.-L.; Zhao, T.-J.; Zhang, L.-H.; Chen, J.-C.; Wang, Q. A Novel Titania/Graphene Composite Applied in Reinforcing Microstructural and Mechanical Properties of Alkali-Activated Slag. J. Build. Eng. 2021, 41. [Google Scholar] [CrossRef]
- Wei, X.; Li, D.; Ming, F.; Yang, C.; Chen, L.; Liu, Y. Influence of Low-Temperature Curing on the Mechanical Strength, Hydration Process, and Microstructure of Alkali-Activated Fly Ash and Ground Granulated Blast Furnace Slag Mortar. Constr. Build. Mater. 2021, 269. [Google Scholar] [CrossRef]
- Eren, Ö.; Yilmaz, Z. Strength Development of Conceretes with Ordinary Portland Cement, Partially Replaced by Slag or Fly Ash Cured at Different Temperatures 1 †. Tek. Dergi 2004, 15, 3311–3322. [Google Scholar]
- Teng, S.; Lim, T.Y.D.; Divsholi, B.S. Durability and Mechanical Properties of High Strength Concrete Incorporating Ultra Fine Ground Granulated Blast-Furnace Slag. Constr. Build. Mater. 2013, 40, 875–881. [Google Scholar] [CrossRef]
- He, T.; Li, Z.; Zhao, S.; Zhao, X.; Qu, X. Study on the Particle Morphology, Powder Characteristics and Hydration Activity of Blast Furnace Slag Prepared by Different Grinding Methods. Constr. Build. Mater. 2021, 270. [Google Scholar] [CrossRef]
- Ghafari, E.; Ghahari, S.A.; Costa, H.; Júlio, E.; Portugal, A.; Durães, L. Effect of Supplementary Cementitious Materials on Autogenous Shrinkage of Ultra-High Performance Concrete. Constr. Build. Mater. 2016, 127, 43–48. [Google Scholar] [CrossRef]
- Sebaibi, N.; Boutouil, M. Reducing Energy Consumption of Prefabricated Building Elements and Lowering the Environmental Impact of Concrete. Eng. Struct. 2020, 213, 110594. [Google Scholar] [CrossRef]
- Li, C.; Jiang, L. Utilization of Limestone Powder as an Activator for Early-Age Strength Improvement of Slag Concrete. Constr. Build. Mater. 2020, 253. [Google Scholar] [CrossRef]
- Arora, A.; Sant, G.; Neithalath, N. Ternary Blends Containing Slag and Interground/Blended Limestone: Hydration, Strength, and Pore Structure. Constr. Build. Mater. 2016, 102, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Adu-Amankwah, S.; Zajac, M.; Stabler, C.; Lothenbach, B.; Black, L. Influence of Limestone on the Hydration of Ternary Slag Cements. Cem. Concr. Res. 2017, 100, 96–109. [Google Scholar] [CrossRef]
- Deboucha, W.; Leklou, N.; Khelidj, A. Combination Effect of Limestone Filler and Slag on Hydration Reactions in Ternary Cements. Eur. J. Environ. Civ. Eng. 2020. [Google Scholar] [CrossRef]
- Naqi, A.; Siddique, S.; Kim, H.K.; Jang, J.G. Examining the Potential of Calcined Oyster Shell Waste as Additive in High Volume Slag Cement. Constr. Build. Mater. 2020, 230. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Lee, S.C.; Goh, W.I.; Yuen, C.W. Recycling of Seashell Waste in Concrete: A Review. Constr. Build. Mater. 2018, 162, 751–764. [Google Scholar] [CrossRef]
- Liu, R.; Chen, D.; Cai, X.; Deng, Z.; Liao, Y. Hardened Properties of Mortar Mixtures Containing Pre-Treated Waste Oyster Shells. J. Clean. Prod. 2020, 266, 121729. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, P.; Pan, T.; Liao, Y.; Zhao, H. Evaluation of the Eco-Friendly Crushed Waste Oyster Shell Mortars Containing Supplementary Cementitious Materials. J. Clean. Prod. 2019, 237, 117811. [Google Scholar] [CrossRef]
- Eziefula, U.G.; Ezeh, J.C.; Eziefula, B.I. Properties of Seashell Aggregate Concrete: A Review. Constr. Build. Mater. 2018, 192, 287–300. [Google Scholar] [CrossRef]
- Her, S.; Park, T.; Zalnezhad, E.; Bae, S. Synthesis and Characterization of Cement Clinker Using Recycled Pulverized Oyster and Scallop Shell as Limestone Substitutes. J. Clean. Prod. 2021, 278. [Google Scholar] [CrossRef]
- Bouasria, M.; Khadraoui, F.; Benzaama, M.-H.; Touati, K.; Chateigner, D.; Gascoin, S.; Pralong, V.; Orberger, B.; Babouri, L.; El Mendili, Y. Partial Substitution of Cement by the Association of Ferronickel Slags and Crepidula Fornicata Shells. J. Build. Eng. 2021, 33, 101587. [Google Scholar] [CrossRef]
- Kuo, W.-T.; Wang, H.-Y.; Shu, C.-Y.; Su, D.-S. Engineering Properties of Controlled Low-Strength Materials Containing Waste Oyster Shells. Constr. Build. Mater. 2013, 46, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.-Y.; Zhou, Q.; Chan, C.-F.; Yu, Y. Structure and Property Characterization of Oyster Shell Cementing Material. Chin. J. Struct. Chem. 2012, 31, 85–92. [Google Scholar]
- Deboucha, W.; Leklou, N.; Khelidj, A.; Oudjit, M.N. Hydration Development of Mineral Additives Blended Cement Using Thermogravimetric Analysis (TGA): Methodology of Calculating the Degree of Hydration. Constr. Build. Mater. 2017, 146, 687–701. [Google Scholar] [CrossRef]
- European standard EN, N.F. 196-1. In Méthodes d’essais Des Ciments-Partie 1: Détermination Des Résistances; Association Française de Normalisation: Paris, France, 2016.
- Caglioti, G.; Paoletti, A.T.; Ricci, F.P. Choice of Collimators for a Crystal Spectrometer for Neutron Diffraction. Nucl. Instrum. 1958, 3, 223–228. [Google Scholar] [CrossRef]
- Gražulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quiros, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; Le Bail, A. Crystallography Open Database (COD): An Open-Access Collection of Crystal Structures and Platform for World-Wide Collaboration. Nucleic Acids Res. 2012, 40, D420–D427. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.-R.; Schultz, A.S.; Richardson, J.W., Jr. Combined Texture and Structure Analysis of Deformed Limestone from Time-of-Flight Neutron Diffraction Spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- European standard EN, N.F. 206-1. In Béton—Partie 1: Spécification, Performances, Production et Conformité; Association Française de Normalisation: Paris, France, 2004; p. 206.
Chemical Composition (%) | OPC | GGBFS |
---|---|---|
SiO2 | 21.57 | 37.3 |
Al2O3 | 3.50 | 10.7 |
Fe2O3 | 5.27 | 0.2 |
CaO | 64.31 | 43 |
MgO | 1.44 | 6.5 |
SO3 | 2.25 | 0.1 |
K2O | / | 0.35 |
Na2O | 0.55 | 0.23 |
LOI | 0.86 | 1.5 |
Physical properties | ||
Density (g/cm2) | 3.22 | 2.9 |
Initial setting time (min) | 215 | / |
Final setting time (min) | / | 335 |
Expansion (mm) | 1 | / |
Mix | Cement kg/m3 | GGBFS kg/m3 | LF kg/m3 | GOS kg/m3 | Water kg/m3 |
---|---|---|---|---|---|
PREF | 1265 | / | / | / | 607 |
P5LF | 1200 | / | 63.2 | / | 606 |
P5GOS | 1200 | / | / | 63.2 | 606 |
P5LF20BFS | 1001 | 253 | 63.2 | / | 632.7 |
P5LF30BFS | 925.4 | 379.4 | 63.2 | / | 656.7 |
P5GOS20BFS | 1001 | 253 | / | 63.2 | 632.7 |
P5GOS30BFS | 925.4 | 379.4 | / | 63.2 | 656.7 |
Material | Phase | COD Reference | Lattice Type + Space Group | Lattice Parameters (Å) | ⟨D⟩ (nm) | ⟨ε2⟩1/2 | Texture |
---|---|---|---|---|---|---|---|
LF | Calcite CaCO3 | 1547347 | Trigonal R-3c:H | a = 4.986 (1) c = 17.051 (2) | 403 (20) | 8. 10-4 | Harmonic |
GOS | Calcite CaCO3 | 1547347 | Trigonal R-3c:H | a = 4.989 (1) c = 17.077 (2) | 237 (5) | 5. 10-3 | Harmonic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deboucha, W.; Sebaibi, N.; El Mendili, Y.; Fabien, A.; Alengaram, U.J.; Leklou, N.; Hamdadou, M.N.; Bourdot, A.; Gascoin, S. Reactivity Effect of Calcium Carbonate on the Formation of Carboaluminate Phases in Ground Granulated Blast Furnace Slag Blended Cements. Sustainability 2021, 13, 6504. https://doi.org/10.3390/su13116504
Deboucha W, Sebaibi N, El Mendili Y, Fabien A, Alengaram UJ, Leklou N, Hamdadou MN, Bourdot A, Gascoin S. Reactivity Effect of Calcium Carbonate on the Formation of Carboaluminate Phases in Ground Granulated Blast Furnace Slag Blended Cements. Sustainability. 2021; 13(11):6504. https://doi.org/10.3390/su13116504
Chicago/Turabian StyleDeboucha, Walid, Nassim Sebaibi, Yassine El Mendili, Aurélie Fabien, U. Johnson Alengaram, Nordine Leklou, Mahmoud N Hamdadou, Alexandra Bourdot, and Stéphanie Gascoin. 2021. "Reactivity Effect of Calcium Carbonate on the Formation of Carboaluminate Phases in Ground Granulated Blast Furnace Slag Blended Cements" Sustainability 13, no. 11: 6504. https://doi.org/10.3390/su13116504