Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = moisture damage resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 273 KiB  
Review
Incorporation of E-Waste Plastics into Asphalt: A Review of the Materials, Methods, and Impacts
by Sepehr Mohammadi, Dongzhao Jin, Zhongda Liu and Zhanping You
Encyclopedia 2025, 5(3), 112; https://doi.org/10.3390/encyclopedia5030112 - 1 Aug 2025
Viewed by 153
Abstract
This paper presents a comprehensive review of the environmentally friendly management and reutilization of electronic waste (e-waste) plastics in flexible pavement construction. The discussion begins with an overview of e-waste management challenges and outlines key recycling approaches for converting plastic waste into asphalt-compatible [...] Read more.
This paper presents a comprehensive review of the environmentally friendly management and reutilization of electronic waste (e-waste) plastics in flexible pavement construction. The discussion begins with an overview of e-waste management challenges and outlines key recycling approaches for converting plastic waste into asphalt-compatible materials. This review then discusses the types of e-waste plastics used for asphalt modification, their incorporation methods, and compatibility challenges. Physical and chemical treatment techniques, including the use of free radical initiators, are then explored for improving dispersion and performance. Additionally, in situations where advanced pretreatment methods are not applicable due to cost, safety, or technical constraints, the application of alternative approaches, such as the use of low-cost complementary additives, is discussed as a practical solution to enhance compatibility and performance. Finally, the influence of e-waste plastics on the conventional and rheological properties of asphalt binders, as well as the performance of asphalt mixtures, is also evaluated. Findings indicate that e-waste plastics, when combined with appropriate pretreatment methods and complementary additives, can enhance workability, cold-weather cracking resistance, high-temperature anti-rutting performance, and resistance against moisture-induced damage while also offering environmental and economic benefits. This review highlights the potential of e-waste plastics as sustainable asphalt modifiers and provides insights across the full utilization pathway, from recovery to in-field performance. Full article
(This article belongs to the Collection Sustainable Ground and Air Transportation)
35 pages, 3170 KiB  
Review
Effects of Moisture Absorption on the Mechanical and Fatigue Properties of Natural Fiber Composites: A Review
by Ana Pavlovic, Lorenzo Valzania and Giangiacomo Minak
Polymers 2025, 17(14), 1996; https://doi.org/10.3390/polym17141996 - 21 Jul 2025
Viewed by 321
Abstract
This review critically examines the effects of moisture absorption on the mechanical and fatigue properties of natural fiber composites (NFCs), with a focus on tensile strength, elastic modulus, and long-term durability. Moisture uptake can cause reductions in tensile strength of up to 40% [...] Read more.
This review critically examines the effects of moisture absorption on the mechanical and fatigue properties of natural fiber composites (NFCs), with a focus on tensile strength, elastic modulus, and long-term durability. Moisture uptake can cause reductions in tensile strength of up to 40% and in elastic modulus by 20–30% depending on fiber type, mass fraction (typically in the range of 30–60%), and surface treatments. The review highlights Ithat while surface modifications (e.g., alkaline and silane treatments) significantly mitigate moisture-induced degradation, their effectiveness is highly sensitive to the processing conditions. Additionally, hybridization strategies and optimized fiber orientations show promise in enhancing fatigue resistance under humid environments. Despite substantial progress, major challenges remain, including the lack of standardized testing protocols and the limited understanding of multiscale aging mechanisms. Future research directions include developing predictive models that couple moisture diffusion and mechanical deterioration, implementing advanced in situ monitoring of damage evolution, and exploring novel bio-based treatments. By addressing these gaps, NFCs can become more reliable and widely adopted as sustainable alternatives in structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

29 pages, 13314 KiB  
Article
Development of Unfired Clay Bricks with Alumina Waste from Liquid Nitrogen Production: A Sustainable Alternative for Construction Materials
by Noppadol Sangiamsak, Nopanom Kaewhanam, Meesakthana Puapitthayathorn, Seksan Numsong, Kowit Suwannahong, Sukanya Hongthong, Torpong Kreetachat, Sompop Sanongraj and Surachai Wongcharee
Sustainability 2025, 17(14), 6424; https://doi.org/10.3390/su17146424 - 14 Jul 2025
Viewed by 407
Abstract
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and [...] Read more.
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and aggravate environmental damage. By removing the need for high-temperature firing and allowing for the valorization of industrial byproducts including alumina waste and lateritic soil, unfired clay bricks offer a reasonable low-carbon alternative. High silica and alumina contents define the alumina waste, which shows pozzolanic reactivity, thus improving the physicomechanical performance of the bricks. With alumina waste substituting 0–8.57% of the cement content, seven different formulations showed improvements in compressive strength, reduced water absorption, and optimal thermal conductivity. Especially, the mechanical performance was much enhanced with alumina waste inclusion up to 30%, without sacrificing thermal insulation capacity or moisture resistance. Further supporting the environmental and financial sustainability of the suggested brick compositions is the economic viability of using industrial waste and regionally derived soils. A comparative analysis of the conventional fired bricks shows that the unfired substitutes have a much lower environmental impact and show better mechanical properties, including greater compressive strength and modulus of rupture. These results support the more general goals of circular economy systems and low-carbon urban development by highlighting the feasibility of including alumina waste and lateritic soil into sustainable building materials. Using such waste-derived inputs in building fits world initiatives to lower resource consumption, lower greenhouse gas emissions, and build strong infrastructure systems. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Figure 1

15 pages, 2137 KiB  
Article
Performance Evolution and Prediction Model of Dam Polyurethane Insulation Materials Under Multi-Field Coupling Conditions in Hot Summer and Cold Winter Climate Zones
by Lingmin Liao, Hui Liang, Ting Zhao, Wei Han, Yun Dong, Da Zhang and Zhenhua Su
Materials 2025, 18(13), 3208; https://doi.org/10.3390/ma18133208 - 7 Jul 2025
Viewed by 389
Abstract
This study evaluates the performance degradation of spray rigid polyurethane foam (RPUF) insulation on reservoir dam structures under multi-physics coupling conditions. Focusing on characteristic environmental exposures in Hot Summer and Cold Winter (HSCW) climate zones, accelerated aging tests simulating coupled temperature–humidity effects were [...] Read more.
This study evaluates the performance degradation of spray rigid polyurethane foam (RPUF) insulation on reservoir dam structures under multi-physics coupling conditions. Focusing on characteristic environmental exposures in Hot Summer and Cold Winter (HSCW) climate zones, accelerated aging tests simulating coupled temperature–humidity effects were conducted to comparatively analyze the thermal resistance and durability evolution between unprotected and encapsulated RPUF configurations. Scanning electron microscopy (SEM), infrared spectroscopy (IR), and other methods were used to characterize and analyze the structure of RPUF. Research has shown that in HSCW climate zones, the thermal conductivity of RPUF gradually increases with the number of degradation cycles, and the insulation performance decreases, mainly due to the damage of the pore structure caused by temperature aging and the combined effect of moisture absorption aging. In comparison, the RPUF after protection can effectively slow down the rate and degree of decline of its insulation performance. On this basis, a time-varying prediction model for the thermal conductivity of RPUF under long-term service in HSCW climate environments was fitted, providing a scientific basis for the durability evaluation of reservoir dam insulation. Full article
Show Figures

Figure 1

19 pages, 2415 KiB  
Article
Coupled Effects of Polyethylene Microplastics and Cadmium on Soil–Plant Systems: Impact on Soil Properties and Cadmium Uptake in Lettuce
by Zhiqin Zhang and Boyuan Bi
Toxics 2025, 13(7), 555; https://doi.org/10.3390/toxics13070555 - 30 Jun 2025
Viewed by 780
Abstract
Microplastics (MPs) and cadmium (Cd) in the soil environment are expected to pose a serious threat to agricultural production. However, the effect of the interaction between them on the soil–plant system and the mechanism of MPs on plant Cd uptake are still unclear. [...] Read more.
Microplastics (MPs) and cadmium (Cd) in the soil environment are expected to pose a serious threat to agricultural production. However, the effect of the interaction between them on the soil–plant system and the mechanism of MPs on plant Cd uptake are still unclear. Therefore, the effects of different concentrations of polyethylene (PE-MPs, 0, 1.0% and 2.0%), alone or combined with Cd, on soil properties, plant growth and Cd uptake were investigated through pot experiments. The results showed that the single contamination of MPs and Cd and their interaction (MPs + Cd) significantly decreased soil moisture and pH; however, it increased soil organic matter (SOM) and total nitrogen (TN). Soil urease and catalase activities were significantly decreased and sucrase and alkaline phosphatase activities were increased with or without Cd addition. The exposure of PE and Cd, alone or combined, significantly and negatively affected plant biomass, photosynthetic parameters, and caused oxidative damage to plants, and the overall toxicity to plants increases with the increase in PE concentration. Moreover, co-pollution causes greater plant toxicity than the individual pollution of PE or Cd. Plants can resist oxidative stress by increasing superoxide dismutase (SOD) and peroxidase (POD) activities. The heat map showed that soil environmental factors were significantly correlated with plant growth; and the results of redundancy analysis (RDA) indicated that for plant physiological characteristics, soil properties under PE, alone or co-contaminated with Cd, explained a total of 85.77% and 97.45%, respectively. This indicated that the alteration of the soil microenvironment is the key factor influencing plant growth. The results of the partial least squares path model (PLS-PM) indicated that plant oxidative damage and biomass had significant positive and negative direct effects on plant Cd uptake, respectively. The linear model of relative importance (%) further revealed in depth that soil moisture (relative importance: 33.60%) and plant biomass (relative importance: 20.23%) were, respectively, regarded as the most important soil environmental factors and plant indicators affecting their Cd uptake. This study provided theoretical support for assessing the risks of MPs and Cd co-pollution to agricultural ecosystems. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 758
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

17 pages, 1133 KiB  
Article
Effect of Cement Kiln Dust on the Mechanical and Durability Performance of Asphalt Composites
by Anmar Dulaimi, Yasir N. Kadhim, Hussein Ahmed Issa, Raghad Ahmed Hashim, Ghazi Jalal Kashesh, Jorge Miguel de Almeida Andrade and Luís Filipe Almeida Bernardo
J. Compos. Sci. 2025, 9(6), 312; https://doi.org/10.3390/jcs9060312 - 19 Jun 2025
Viewed by 405
Abstract
With increasing traffic loads and the continuous deterioration of asphalt pavements, it has become necessary to explore alternative materials that enhance both performance and sustainability. This study aims to investigate the effect of using cement kiln dust (CKD) as a filler substitute in [...] Read more.
With increasing traffic loads and the continuous deterioration of asphalt pavements, it has become necessary to explore alternative materials that enhance both performance and sustainability. This study aims to investigate the effect of using cement kiln dust (CKD) as a filler substitute in hot mix asphalt composites, focusing on the mechanical and durability properties of pavements. The results indicate that replacing conventional filler with CKD in different proportions (1.5%, 3%, 4.5%, and 6%) positively affects the properties of asphalt mixtures. Marshall stability values increased by 58.4% when using 100% CKD, indicating a significant improvement in the mixture’s ability to withstand traffic loads. Flow tests revealed that replacing CKD by up to 50% enhances the flexibility of the mixture, but exceeding this percentage makes the mixture stiffer, which may lead to premature cracking. In terms of moisture sensitivity, incorporating CKD by 25% improves the mixture’s resistance to water damage, while increasing it to 100% reduces this resistance, highlighting the need to improve the adhesion properties of asphalt. Indirect tensile strength tests have confirmed that CKD enhances the cohesion of the mixture, reducing the likelihood of cracking under pressure and contributing to longer pavement life. Based on these results, it is recommended that CKD be used for up to 50% to achieve a balanced combination of strength, flexibility, and moisture resistance, with further studies being needed to evaluate the long-term performance and potential improvements through additional material modifications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

36 pages, 4774 KiB  
Review
Exploring the Role of Advanced Composites and Biocomposites in Agricultural Machinery and Equipment: Insights into Design, Performance, and Sustainability
by Ehsan Fartash Naeimi, Kemal Çağatay Selvi and Nicoleta Ungureanu
Polymers 2025, 17(12), 1691; https://doi.org/10.3390/polym17121691 - 18 Jun 2025
Viewed by 745
Abstract
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers [...] Read more.
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers (FRPs)—offer appealing alternatives due to their high specific strength and stiffness, corrosion resistance, and design flexibility. Meanwhile, increasing environmental awareness has triggered interest in biocomposites, which contain natural fibers (e.g., flax, hemp, straw) and/or bio-based resins (e.g., PLA, biopolyesters), aligned with circular economy principles. This review offers a comprehensive overview of synthetic composites and biocomposites for agricultural machinery and equipment (AME). It briefly presents their fundamental constituents—fibers, matrices, and fillers—and recapitulates relevant mechanical and environmental properties. Key manufacturing processes such as hand lay-up, compression molding, resin transfer molding (RTM), pultrusion, and injection molding are discussed in terms of their applicability, benefits, and limits for the manufacture of AME. Current applications in tractors, sprayers, harvesters, and planters are covered in the article, with advantages such as lightweighting, corrosion resistance, flexibility and sustainability. Challenges are also reviewed, including the cost, repairability of damage, and end-of-life (EoL) issues for composites and the moisture sensitivity, performance variation, and standardization for biocomposites. Finally, principal research needs are outlined, including material development, long-term performance testing, sustainable and scalable production, recycling, and the development of industry-specific standards. This synthesis is a practical guide for researchers, engineers, and manufacturers who want to introduce innovative material solutions for more efficient, longer lasting, and more sustainable agricultural machinery. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging and Agricultural Applications)
Show Figures

Figure 1

18 pages, 3628 KiB  
Article
Processing Suitability of Physical Modified Non-GMO High-Amylose Wheat Flour as a Resistant Starch Ingredient in Cookies
by Yujin Moon and Meera Kweon
Molecules 2025, 30(12), 2619; https://doi.org/10.3390/molecules30122619 - 17 Jun 2025
Viewed by 351
Abstract
High-amylose wheat (HAW), developed through non-genetic modification, addresses the growing demand for clean-label and nutritionally enhanced food products. This study systematically investigated the effects of heat-moisture treatment (HMT; 20% and 25% moisture levels) on the physicochemical properties and cookie-making performance of HAW flour [...] Read more.
High-amylose wheat (HAW), developed through non-genetic modification, addresses the growing demand for clean-label and nutritionally enhanced food products. This study systematically investigated the effects of heat-moisture treatment (HMT; 20% and 25% moisture levels) on the physicochemical properties and cookie-making performance of HAW flour (HAWF) and soft wheat flour (SWF). HMT promoted moisture-induced agglomeration, leading to increased particle size, reduced damaged starch content, and enhanced water and sucrose solvent retention capacities. Although the amylose content remained largely unchanged, pasting behavior was differentially affected, with increased viscosities in SWF and slight decreases in HAWF. Thermal analyses demonstrated elevated gelatinization temperatures, indicating improved thermal stability, while X-ray diffraction revealed alterations in starch crystallinity. Furthermore, HMT weakened gluten strength and modified dough rheology, effects more pronounced in HAWF. Cookies prepared from HMT-treated flours exhibited larger diameters, greater spread ratios, and reduced heights. In vitro digestibility assays showed a marked reduction in rapidly digestible starch and increases in slowly digestible and resistant starch fractions, particularly in HAWF cookies. Collectively, these findings establish HMT as an effective strategy for modulating flour functionality and enhancing cookie quality, while concurrently improving the nutritional profile through the alteration of starch digestibility characteristics. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

24 pages, 2856 KiB  
Article
Comprehensive Evaluation of Soil Quality Reconstruction in Agroforestry Ecosystems of High-Altitude Areas: A Case Study of the Jiangcang Mining Area, Qinghai–Tibet Plateau
by Liya Yang, Shaohua Feng, Xusheng Shao, Jinde Zhang, Tianxiang Wang and Shuisheng Xiong
Agronomy 2025, 15(6), 1390; https://doi.org/10.3390/agronomy15061390 - 5 Jun 2025
Viewed by 547
Abstract
This study focuses on the alpine meadow ecosystem of the Qinghai–Tibet Plateau, which plays a vital role in carbon sequestration and water resource protection. However, mining activities have severely damaged the ecosystem, posing challenges for ecological restoration. The study selected the Jiangcang mining [...] Read more.
This study focuses on the alpine meadow ecosystem of the Qinghai–Tibet Plateau, which plays a vital role in carbon sequestration and water resource protection. However, mining activities have severely damaged the ecosystem, posing challenges for ecological restoration. The study selected the Jiangcang mining area and analyzed the physical, chemical, and carbon characteristics and heavy metal content of soil samples from the slag platforms and slopes (0–20 cm), which were restored in 2015 and 2020 to explore the effects of different soil reconstruction methods on soil function and ecological resilience. The results show that the minimum data set (MDS) can effectively replace the total data set (TDS) in assessing soil quality. The assessment indicates good restoration effects in 2020, with some areas rated high in soil quality. Although issues such as high bulk density, high electrical conductivity, low moisture content, nitrogen deficiency, and low organic matter limit ecological restoration, the carbon sequestration capacity of the restored soil is strong. This study provides scientific evidence for ecological restoration in cold mining areas, indicating that capping measures can enhance soil resistance to erosion, nutrient retention, and carbon sink functions. Full article
Show Figures

Figure 1

15 pages, 4155 KiB  
Article
Performance Characterization and Antibacterial Activity of a Composite Hydrogel Composed of Oxidized κ-Carrageenan, Acrylamide, and Silver-Based Metal–Organic Frameworks
by Bo Qi, Zhaoyu Li, Chuang Pan, Yongqiang Zhao, Xiaoshan Long, Chunsheng Li, Yueqi Wang, Xiao Hu, Di Wang and Shaoling Yang
Gels 2025, 11(6), 407; https://doi.org/10.3390/gels11060407 - 29 May 2025
Viewed by 391
Abstract
To advance seaweed polysaccharide applications in hydrogel wound dressings, five antibacterial composite hydrogels (groups A~E) were synthesized using oxidized κ-carrageenan (OKC), acrylamide (AM), and progressively increasing concentrations of silver-based metal–organic frameworks (Ag-MOFs). Systematic characterization revealed concentration-dependent effects: (1) positive correlations were obtained for [...] Read more.
To advance seaweed polysaccharide applications in hydrogel wound dressings, five antibacterial composite hydrogels (groups A~E) were synthesized using oxidized κ-carrageenan (OKC), acrylamide (AM), and progressively increasing concentrations of silver-based metal–organic frameworks (Ag-MOFs). Systematic characterization revealed concentration-dependent effects: (1) positive correlations were obtained for the moisture content (MC, maximized at 82.70% in E) and antibacterial efficacy (dose-dependent enhancement); (2) negative impacts were obtained for the swelling ratio (SR, E: 479% vs. A: 808%); and (3) high-dose drawbacks but low-dose benefits in terms of water resistance (WR), tensile strength (TS), elongation at break (EB), and microstructure were obtained. Group B demonstrated optimal Ag-MOFs loading, enhancing TS and EB, while excessive Ag-MOFs loading in C~E significantly degraded them (p < 0.05). Microstructural analysis showed severe 3D spatial damage in D~E. Furthermore, cytocompatibility assessments revealed that all groups maintained a cell viability exceeding 90%, demonstrating excellent biocompatibility. Among them, A~C showed a viability statistically equivalent to the control (p > 0.05) and were significantly higher than D~E (p < 0.05). In conclusion, group B emerged as the optimal Ag-MOFs formulation and exhibited superior WR, enhanced mechanical strength (TS and EB), and potent antibacterial activity while maintaining microstructural integrity and excellent biosafety. This Ag-MOFs/OKC/PAM hydrogel provides dual infection prevention and tissue support, maximizing seaweed polysaccharide benefits with excellent biocompatibility. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Figure 1

20 pages, 2216 KiB  
Article
Assessing the Physico-Mechanical Properties of Three Date Fruit Varieties for Conserving the Keeping and Appearance Qualities
by Mohamed Ghonimy, Raed Alayouni, Garsa Alshehry, Hassan Barakat and Mohamed M. Ibrahim
Foods 2025, 14(11), 1838; https://doi.org/10.3390/foods14111838 - 22 May 2025
Cited by 1 | Viewed by 501
Abstract
The physico-mechanical properties of date fruit varieties can indicate their quality and freshness. These properties, which include firmness, moisture content, and mechanical resistance, are closely linked to the fruit’s overall quality and can be used to assess its ripeness and suitability for consumption. [...] Read more.
The physico-mechanical properties of date fruit varieties can indicate their quality and freshness. These properties, which include firmness, moisture content, and mechanical resistance, are closely linked to the fruit’s overall quality and can be used to assess its ripeness and suitability for consumption. Therefore, the current study evaluated the physico-mechanical properties of three date varieties—Sukkari, Khalas, and Saqie—across different ripening stages to enhance food quality and optimize postharvest handling. The study uniquely focused on how ripening stages affect the stress–strain behavior of dates, offering new insights into their mechanical resistance, deformability, and structural stability, all of which are critical parameters for maintaining food quality during storage, transportation, and processing. Significant changes in physical characteristics, including size, mass, moisture content, and density, were observed as the fruit progressed through ripening stages. Sukkari showed the most notable decrease in moisture content, from 61.8% at the Khalal stage to 17.3% at the Tamar stage, resulting in softening and reduced mechanical resistance, potentially impacting shelf life and consumer acceptance. Khalas exhibited a more gradual decline in mechanical properties, with moisture content dropping to 24.6%. At the same time, Saqie demonstrated minimal changes in mechanical properties and moisture content, suggesting better structural and nutritional quality retention. Additionally, the dynamic coefficient of friction increased with temperature and pressure at the Tamr stage, with Sukkari showing the highest values (up to 0.496), followed by Khalas (up to 0.451) and Saqie (up to 0.406). This study introduced the concept of variety-specific differences in frictional behavior, providing valuable insights for improving mechanical processing, reducing physical damage, and preserving date fruits’ nutritional and sensory quality. In conclusion, findings highlight the importance of variety-specific mechanical profiling in improving processing protocols, reducing postharvest losses, and maintaining the nutritional and sensory quality of date fruits for industrial-scale operations. Full article
Show Figures

Figure 1

23 pages, 6820 KiB  
Article
Anti-Erosion Mechanism of Biological Crusts and Eco-Protection Technology Using Composite Biofilms for Traditional Rammed Earth Dwellings in Songyang County
by Jiahui Yang, Ning Wang, Zebiao Huang, Yue Huang, Weilu Lv and Shuai Yang
Coatings 2025, 15(5), 608; https://doi.org/10.3390/coatings15050608 - 20 May 2025
Viewed by 612
Abstract
A typical county for traditional village conservation in China is Songyang County. It is renowned for its ancient rammed earth dwellings, which exhibit a unique microclimate and possess significant historical value. However, high precipitation and acid rain under the subtropical monsoon climate have [...] Read more.
A typical county for traditional village conservation in China is Songyang County. It is renowned for its ancient rammed earth dwellings, which exhibit a unique microclimate and possess significant historical value. However, high precipitation and acid rain under the subtropical monsoon climate have caused severe surface erosion, including cracking and spalling. This study focuses on traditional rammed earth dwellings in Chenjiapeng Village, Songyang County, combining field surveys, experimental analysis, and microscopic characterization to systematically investigate erosion mechanisms and protection strategies. Techniques, such as drone aerial photography, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and microbial diversity detection, were employed to elucidate the anti-erosion mechanisms of gray–green biological crusts on rammed earth surfaces. The results indicate that algal crusts enhance surface compressive strength and shear resistance through macroscopic coverage (reducing raindrop kinetic energy and moisture retention) and microscopic extracellular polysaccharide-cemented soil particles forming a three-dimensional network. However, acidic environments induce metabolic acid release from algae, dissolving cementing materials and creating a “surface protection-internal damage” paradox. To address this, a “transparent film-biofiber-acid inhibition layer” composite biofilm design is proposed, integrating a biodegradable polylactic acid (PLA) mesh, algal attachment substrates, and calcium carbonate microparticles to dynamically neutralize acidic substances, achieving synergistic ecological protection and cultural heritage authenticity. This study provides innovative solutions for the anti-erosion protection of traditional rammed earth structures, emphasizing environmental compatibility and sustainability. Full article
Show Figures

Graphical abstract

37 pages, 1436 KiB  
Review
A State-of-the-Practice Review on the Challenges of Asphalt Binder and a Roadmap Towards Sustainable Alternatives—A Call to Action
by Swathi Malluru, Sk Md Imdadul Islam, Ahmed Saidi, Anil Kumar Baditha, Gordon Chiu and Yusuf Mehta
Materials 2025, 18(10), 2312; https://doi.org/10.3390/ma18102312 - 15 May 2025
Cited by 1 | Viewed by 1743
Abstract
Increasing traffic loads, extreme climatic conditions, and environmental regulations highlight the need to re-evaluate the use of existing asphalt binders in pavement construction. This paper examines the limitations of conventional and modified asphalt binders by incorporating a comprehensive literature review that focuses on [...] Read more.
Increasing traffic loads, extreme climatic conditions, and environmental regulations highlight the need to re-evaluate the use of existing asphalt binders in pavement construction. This paper examines the limitations of conventional and modified asphalt binders by incorporating a comprehensive literature review that focuses on performance, environmental impact, and economic issues. Studies show that binder grade selection, mixing and compaction temperatures, and ageing affect pavement performance and may reduce pavement service life by 10% to 30%. Although modifiers such as polymers and nanomaterials can improve rutting and moisture damage resistance by up to 50%, they have limited effects on fatigue and thermal cracking resistance. Moreover, these modifiers can affect the asphalt mixture production process due to source variability, leading to complex mixing methods, increased cost, and higher emissions. Additionally, high-temperature asphalt mixture production increases air pollution by 250%, causing health risks. Furthermore, asphalt binder and mixture production account for over 50% of the total pavement costs, and the rising asphalt binder prices place a burden on highway budgets. This review highlights the critical research gaps including source variability, testing and mixing methods, and environmental impact of modifiers and provides a future roadmap for developing cost-effective and sustainable alternatives and their practical implementation. Full article
Show Figures

Figure 1

20 pages, 12322 KiB  
Article
A Case Study of Pavement Construction Materials for Wet-Freeze Regions: The Application of Waste Glass Aggregate and High-Content Rubber Modified Asphalt
by Kai Xin, Meng Wu, Dongzhao Jin and Zhanping You
Buildings 2025, 15(10), 1637; https://doi.org/10.3390/buildings15101637 - 13 May 2025
Viewed by 449
Abstract
Pavement systems in wet-freeze regions are prone to cracking, rutting, and moisture damage, making it challenging to incorporate recycled materials into asphalt mixtures in a way that enhances sustainability while maintaining performance and constructability. This study investigates and demonstrates the combined benefits of [...] Read more.
Pavement systems in wet-freeze regions are prone to cracking, rutting, and moisture damage, making it challenging to incorporate recycled materials into asphalt mixtures in a way that enhances sustainability while maintaining performance and constructability. This study investigates and demonstrates the combined benefits of using processed waste glass in a leveling course and high-content crumb rubber in a surface course, focusing on both laboratory and full-scale field assessments in a wet-freeze region of northern Michigan. A leveling course containing 10% waste glass aggregate and a surface course using 16% crumb rubber (by binder weight) modified asphalt were designed with low air voids (3.0–3.5%) to promote thicker asphalt binder films for improved crack resistance. Laboratory results demonstrated that the combination of a 10% glass aggregate leveling course and a 16% rubber-modified surface course significantly enhanced low-temperature fracture energy while maintaining robust rut resistance and moisture durability. Full-scale construction in northern Michigan corroborated these findings; field cores from rubber and glass sections surpassed performance thresholds for rutting, cracking, and noise reduction. This study demonstrates that integrating crumb rubber and waste glass into asphalt pavements offers both environmental and performance benefits. The approach presents a scalable solution for enhancing pavement durability in wet-freeze regions. Full article
Show Figures

Figure 1

Back to TopTop