Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = moderate altitude training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5373 KiB  
Article
Multi-Source Satellite Imagery and Machine Learning for Detecting Geological Formations in Cameroon’s Western Highlands
by Kacoutchy Jean Ayikpa, Valère-Carin Jofack Sokeng, Abou Bakary Ballo, Pierre Gouton and Koffi Fernand Kouamé
Signals 2025, 6(1), 12; https://doi.org/10.3390/signals6010012 - 11 Mar 2025
Viewed by 1815
Abstract
Accurate identification of geological formations is essential for understanding tectonic structures, planning mining activities, and sustainably managing natural resources. It goes beyond the scientific framework to play a key role in economic development, environmental preservation, and population security. This article proposes a study [...] Read more.
Accurate identification of geological formations is essential for understanding tectonic structures, planning mining activities, and sustainably managing natural resources. It goes beyond the scientific framework to play a key role in economic development, environmental preservation, and population security. This article proposes a study using machine learning to analyze different parameters from various sources of satellite imagery: multispectral optics (Landsat-8), radar (ALOS PALSAR), and soil and morphometric parameters (soil, altitude, slope, curvature, and shady). The data were preprocessed to remove atmospheric biases and harmonize spatial resolutions. Techniques such as principal component analysis, band ratios, and image fusion have made it possible to enrich imagery by highlighting spectral and textural characteristics. Finally, classifiers such as Random Forest, Gradient Boosting, and XGBoost (version 1.6.2) were used to evaluate the impact of each parameter on the classification. The results show that geographic parameters combined with PCA provide the best overall performance with Random Forest, achieving an accuracy of 55.29% and an MCC of 45.12% while ensuring a rapid training speed (3.6 s). The geographic parameters associated with the OLI spectrometric data show a good balance, with XGBoost achieving a slightly higher MCC (40.3%) with a moderate training time (7.9 s). On the other hand, the OLI spectrometric parameters coupled with PCA display significantly lower performance, with an accuracy of 45.05% and an MCC of 31.81% for Random Forest. These observations highlight the potential of geographic and geological parameters associated with suitable models to improve classification. The multi-source approach thus proves optimal for more robust and precise results. Full article
Show Figures

Figure 1

22 pages, 7788 KiB  
Article
Extracting Features from Oblique Ground-Based Multispectral Images for Monitoring Cotton Physiological Response to Nitrogen Treatments
by Vaishali Swaminathan, J. Alex Thomasson, Nithya Rajan and Robert G. Hardin
Remote Sens. 2025, 17(4), 579; https://doi.org/10.3390/rs17040579 - 8 Feb 2025
Viewed by 627
Abstract
Early detection of nitrogen deficiency in cotton requires timely identification of stress symptoms like leaf chlorosis (yellowing) and canopy stunting. Chlorosis initially appears in older, lower-canopy leaves, which are often not visible in conventional nadir-looking imaging. This study investigates oblique ground-based multispectral imaging [...] Read more.
Early detection of nitrogen deficiency in cotton requires timely identification of stress symptoms like leaf chlorosis (yellowing) and canopy stunting. Chlorosis initially appears in older, lower-canopy leaves, which are often not visible in conventional nadir-looking imaging. This study investigates oblique ground-based multispectral imaging to estimate plant height and capture spectral details from the upper (UC) and lower (LC) cotton canopy layers. Images were collected from four camera pitch and height configurations: set 1 (30°, 2 m), set 2 (55°, 2 m), set 3 (68°, 3 m), and set 4 (70°, 1.5 m). A pre-trained monocular depth estimation model (MiDaS) was used to estimate plant height from aligned RGB images and an empirically derived tangential model corrected for perspective distortion. Further, the lower and upper vertical halves of the plants were categorized as LC and UC, with vegetation indices (CIgreen, CIrededge) calculated for each. The aligned images in set 1 had the best sharpness and quality. The plant height estimates from set 1 had the highest correlation (r = 0.64) and lowest root mean squared error (RMSE = 0.13 m). As the images became more oblique, alignment and monocular depth/height accuracy decreased. Also, the effects of perspective and object-scale ambiguity in monocular depth estimation were prominent in the high oblique and relatively low altitude images. The spectral vegetation indices (VIs) were affected by band misalignment and shadows. VIs from the different canopy layers demonstrated moderate correlation with leaf nitrogen concentration, and sets 2 and 3 specifically showed high and low differences in VIs from the UC and LC layers for the no and high-nitrogen treatments, respectively. However, improvements in the multispectral alignment process, extensive data collection, and ground-truthing are needed to conclude whether the LC spectra are useful for early nitrogen stress detection in field cotton. Full article
Show Figures

Figure 1

13 pages, 2739 KiB  
Article
Exploring the Impact of Resistance Training at Moderate Altitude on Metabolic Cytokines in Humans: Implications for Adipose Tissue Dynamics
by Sergio Pérez-Regalado, Josefa Leon, Paulino Padial, Cristina Benavente, Filipa Almeida, Juan Bonitch-Góngora, Blanca de la Fuente and Belén Feriche
Int. J. Mol. Sci. 2024, 25(21), 11418; https://doi.org/10.3390/ijms252111418 - 24 Oct 2024
Cited by 3 | Viewed by 1336
Abstract
Hypobaric hypoxia (HH) limits oxygen supply to tissues and increases metabolic demands, especially during exercise. We studied the influence of HH exposure on the subcutaneous adipose tissue (SAT) thickness and circulating metabolic-related cytokines levels after a resistance training (RT) program. Twenty [...] Read more.
Hypobaric hypoxia (HH) limits oxygen supply to tissues and increases metabolic demands, especially during exercise. We studied the influence of HH exposure on the subcutaneous adipose tissue (SAT) thickness and circulating metabolic-related cytokines levels after a resistance training (RT) program. Twenty trained men participated in a traditional hypertrophy RT for 8 weeks (three sessions/week) under intermittent terrestrial HH (2320 m) or normoxia (N, 690 m) conditions. Before, at week 6, and after the RT, SAT, and vastus lateralis (VL) muscle thickness were measured by ultrasound. Blood samples were taken to analyse serum cytokines (IL-6, IL-15, irisin, and myostatin) by multiplex immunoassay. Our findings revealed a moderate reduction in IL-6 and irisin in HH following the RT (ES < −0.64; p < 0.05). Additionally, RT in HH promoted serum IL-15 release (ES = 0.890; p = 0.062), which exhibited a trivial inverse association with the reductions observed on SAT (−17.69%; p < 0.001) compared with N. RT in HH explained ~50% of SAT variance (p < 0.001). These results highlight the benefit of stressor factors linked to RT in HH on SAT through the modulation of serum metabolic cytokine profiles, suggesting a potential effect on overall body composition. Full article
Show Figures

Figure 1

17 pages, 5113 KiB  
Article
The Impact of Normobaric Hypoxia and Intermittent Hypoxic Training on Cardiac Biomarkers in Endurance Athletes: A Pilot Study
by Jakub Goliniewski, Miłosz Czuba, Kamila Płoszczyca, Małgorzata Chalimoniuk, Robert Gajda, Adam Niemaszyk, Katarzyna Kaczmarczyk and Józef Langfort
Int. J. Mol. Sci. 2024, 25(9), 4584; https://doi.org/10.3390/ijms25094584 - 23 Apr 2024
Viewed by 3194
Abstract
This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the [...] Read more.
This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the myocardium during acute exercise and altitude/hypoxic training remains less understood. We aimed to determine how a single bout of intense interval exercise and a four-week period of high-intensity endurance training under normobaric hypoxia affect cardiac marker activity in swimmers. Sixteen young male swimmers were divided into two groups: one undergoing training in hypoxia and the other in normoxia. Cardiac markers, including troponin I and T (cTnI and cTnT), heart-type fatty acid-binding protein (H-FABP), creatine kinase-MB isoenzyme (CK-MB), and myoglobin (Mb), were analyzed to assess the myocardium’s response. We found no significant differences in the physiological response of the cardiac muscle to intense physical exertion between hypoxia and normoxia. Four weeks of IHT did not alter the resting levels of cTnT, cTnI, and H-FABP, but it resulted in a noteworthy decrease in the resting concentration of CK-MB, suggesting enhanced cardiac muscle adaptation to exercise. In contrast, a reduction in resting Mb levels was observed in the control group training in normoxia. These findings suggest that IHT at moderate altitudes does not adversely affect cardiac muscle condition and may support cardiac muscle adaptation, affirming the safety and efficacy of IHT as a training method for athletes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

11 pages, 1917 KiB  
Article
The Effect of Contrast Water Therapy on Dehydration during Endurance Training Camps in Moderate-Altitude Environments
by Takayuki Inami, Shota Yamaguchi, Takuya Nishioka, Kenta Chida, Kosaku Hoshina, Osamu Ito, Takeshi Hashimoto and Mitsuyoshi Murayama
Sports 2023, 11(12), 232; https://doi.org/10.3390/sports11120232 - 22 Nov 2023
Viewed by 2963
Abstract
The effects of contrast water therapy (CWT) on dehydration at moderate altitudes during training camps remain unknown. We hypothesized that CWT reduces dehydration resulting from training at moderate altitudes and improves performance, akin to conditions at sea level. A 13-day endurance training camp [...] Read more.
The effects of contrast water therapy (CWT) on dehydration at moderate altitudes during training camps remain unknown. We hypothesized that CWT reduces dehydration resulting from training at moderate altitudes and improves performance, akin to conditions at sea level. A 13-day endurance training camp was held at a moderate altitude of 1100 m and included 22 university athletes, who were divided into two groups (CWT group, n = 12; control (CON) group, n = 10). The sample size was calculated based on an α level of 0.05, power (1 β) of 0.8, and effect size of 0.25 based on two-way ANOVA. Longitudinal changes over 13 days were compared using a two-group comparison model. Additionally, 16 athletes participated in an additional performance verification analysis. Subjective fatigue, body mass, and water content (total body water (TBW), extracellular water (ECW), and intracellular water) were measured using bioimpedance analysis every morning, and the titin N-terminal fragment in urine (UTF) was measured as an index of muscle damage. For performance verification, 10 consecutive jump performances (with the reactive strength index (RSI) as an indicator) were evaluated as neuromuscular function indices. The results indicated that the UTF did not significantly differ between the two groups. Moreover, the ECW/TBW values, indicative of dehydration, on days 4 and 5 in the CWT group were significantly lower than those in the CON group. However, there was no significant difference in RSI between the two groups. Therefore, although CWT reduces dehydration in the early stages of the training camp, it may not affect performance. Full article
Show Figures

Figure 1

18 pages, 4237 KiB  
Article
Chemical Variability of Essential Oils from Corsican Hops and Highlighting Their Influence on Hops’ Aroma
by Axel Dabbous-Wach, Jean-Valère Lorenzetti, Julien Paolini and Jean Costa
Foods 2023, 12(13), 2613; https://doi.org/10.3390/foods12132613 - 6 Jul 2023
Cited by 3 | Viewed by 1490
Abstract
Essential oils from wild Corsican hops have never been described before. Following selective harvesting and extraction of plant material, chemical analysis was performed by GC–FID and GC–MS. Subsequent quantitative analysis demonstrated significant inter-stations variability due to pedoclimatic conditions. These singularities produce organoleptic differences, [...] Read more.
Essential oils from wild Corsican hops have never been described before. Following selective harvesting and extraction of plant material, chemical analysis was performed by GC–FID and GC–MS. Subsequent quantitative analysis demonstrated significant inter-stations variability due to pedoclimatic conditions. These singularities produce organoleptic differences, especially within Italian hops, which are the current benchmark for the Mediterranean hops’ population. Corsican wild hops are no exception. Accordingly, three olfactive bouquets were identified by a panel of selected and trained sensory analysts: woody herbaceous ginger notes, herbaceous citrus notes, and common notes. These bouquets appeared to be correlated to pedoclimatic parameters mentioned earlier such as altitude and proximity to the sea. A very rare and appreciated bouquet was associated with high levels of zingiberene in hops growing at moderate altitude and relatively far from the coastline. This study shows the importance of growing sites and pedoclimatic conditions to produce hops with the desired organoleptic notes during the beer making process and provides detailed identification of essential oils from Corsican wild hops. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

11 pages, 958 KiB  
Article
The Effects of Napping on Wakefulness and Endurance Performance in Athletes: A Randomized Crossover Study
by Felix Willmer, Claire Reuter, Stephan Pramsohler, Martin Faulhaber, Anja Burkhardt and Nikolaus Netzer
Life 2023, 13(6), 1414; https://doi.org/10.3390/life13061414 - 19 Jun 2023
Cited by 2 | Viewed by 5738
Abstract
Background: Athletes often experience poor sleep quality due to stress, altitude exposure, travel across different time zones, and pre-competition nervousness. Coaches use daytime naps to counteract the negative effects of fragmented nighttime sleep. Napping before competitions has also been used to enhance performance [...] Read more.
Background: Athletes often experience poor sleep quality due to stress, altitude exposure, travel across different time zones, and pre-competition nervousness. Coaches use daytime naps to counteract the negative effects of fragmented nighttime sleep. Napping before competitions has also been used to enhance performance in athletes without sleep problems, with mixed results in previous studies, particularly for endurance performance. Thus, we investigated the effects of napping after partial sleep deprivation (PSD) on endurance performance and wakefulness in athletes. Methods: We recruited 12 healthy and trained participants (seven female and five male) for a randomized crossover study design. The participants underwent two test sessions: a five-hour night of sleep without a nap (noNap) and a five-hour night of sleep with a 30-min nap opportunity (Nap30). Participants recorded their sleep-wake rhythm one week before and during the study using the Consensus Sleep Diary-Core and the Morningness–Eveningness Questionnaire to examine their circadian rhythm type. We quantified PSD and the nap with pupillography (pupil unrest index, PUI), a subjective level of sleepiness questionnaire (Karolinska Sleepiness Scale, KSS), and polysomnography. After each night, participants performed a maximal cycling ergometry test to determine time to exhaustion (TTE) and maximal oxygen uptake (VO 2max). Results: Participants had an average sleep duration of 7.2 ± 0.7 h and were identified as moderately morning types (n = 5), neither type (n = 5), and moderately evening types (n = 2). There was a significant difference in both sleepiness parameters between the two conditions, with the PUI (p = 0.015) and KSS (p ≤ 0.01) significantly decreased at 5 h and nap compared with only 5 h of sleep. The PUI (p ≤ 0.01) and KSS (p ≤ 0.01) decreased significantly from before to after the nap. However, there was no significant difference in physical exercise test results between the conditions for TTE (p = 0.367) or VO 2max (p = 0.308). Conclusions: Our results suggest that napping after light PSD does not significantly influence endurance performance. We conclude that aerobic performance is a multidimensional construct, and napping after PSD may not enhance it. However, napping is an effective method to increase wakefulness and vigilance, which can be beneficial for sports competitions. Full article
(This article belongs to the Special Issue Sleep and Sleep Disorders in Sports and Advanced Physical Exercise)
Show Figures

Figure 1

19 pages, 2231 KiB  
Article
Modulation of the Circulating Extracellular Vesicles in Response to Different Exercise Regimens and Study of Their Inflammatory Effects
by Serena Maggio, Barbara Canonico, Paola Ceccaroli, Emanuela Polidori, Andrea Cioccoloni, Luca Giacomelli, Carlo Ferri Marini, Giosuè Annibalini, Marco Gervasi, Piero Benelli, Francesco Fabbri, Laura Del Coco, Francesco Paolo Fanizzi, Anna Maria Giudetti, Francesco Lucertini and Michele Guescini
Int. J. Mol. Sci. 2023, 24(3), 3039; https://doi.org/10.3390/ijms24033039 - 3 Feb 2023
Cited by 16 | Viewed by 4151
Abstract
Exercise-released extracellular vesicles (EVs) are emerging as a novel class of exerkines that promotes systemic beneficial effects. However, slight differences in the applied exercise protocols in terms of mode, intensity and duration, as well as the need for standardized protocols for EV isolation, [...] Read more.
Exercise-released extracellular vesicles (EVs) are emerging as a novel class of exerkines that promotes systemic beneficial effects. However, slight differences in the applied exercise protocols in terms of mode, intensity and duration, as well as the need for standardized protocols for EV isolation, make the comparison of the studies in the literature extremely difficult. This work aims to investigate the EV amount and EV-associated miRNAs released in circulation in response to different physical exercise regimens. Healthy individuals were subjected to different exercise protocols: acute aerobic exercise (AAE) and training (AT), acute maximal aerobic exercise (AMAE) and altitude aerobic training (AAT). We found a tendency for total EVs to increase in the sedentary condition compared to trained participants following AAE. Moreover, the cytofluorimetric analysis showed an increase in CD81+/SGCA+/CD45 EVs in response to AAE. Although a single bout of moderate/maximal exercise did not impact the total EV number, EV-miRNA levels were affected as a result. In detail, EV-associated miR-206, miR-133b and miR-146a were upregulated following AAE, and this trend appeared intensity-dependent. Finally, THP-1 macrophage treatment with exercise-derived EVs induced an increase of the mRNAs encoding for IL-1β, IL-6 and CD163 using baseline and immediately post-exercise EVs. Still, 1 h post-exercise EVs failed to stimulate a pro-inflammatory program. In conclusion, the reported data provide a better understanding of the release of circulating EVs and their role as mediators of the inflammatory processes associated with exercise. Full article
(This article belongs to the Special Issue Translational Myology: Cellular, Genetic, Molecular Aspects)
Show Figures

Figure 1

11 pages, 1133 KiB  
Article
Monitoring Physiological Performance over 4 Weeks Moderate Altitude Training in Elite Chinese Cross-Country Skiers: An Observational Study
by Yichao Yu, Ruolin Wang, Dongye Li and Yifan Lu
Int. J. Environ. Res. Public Health 2023, 20(1), 266; https://doi.org/10.3390/ijerph20010266 - 24 Dec 2022
Cited by 6 | Viewed by 3110
Abstract
The current observational study aimed to monitor the physiological performance over 4 weeks of living and training at a moderate altitude in elite Chinese cross-country skiers (8 males, mean age 20.83 ± 1.08 years). Lactate threshold, maximal oxygen uptake, blood, and body composition [...] Read more.
The current observational study aimed to monitor the physiological performance over 4 weeks of living and training at a moderate altitude in elite Chinese cross-country skiers (8 males, mean age 20.83 ± 1.08 years). Lactate threshold, maximal oxygen uptake, blood, and body composition tests were performed at different time points to investigate the changes in physiological performance. The data were analysed by a one-way repeated measures ANOVA and a paired sample T-test between the test results. During the training camp, systematic load monitoring was carried out. Lactate threshold velocity, lactate threshold heart rate, and upper body muscle mass increased significantly (p < 0.01) after moderate altitude training. Maximum oxygen uptake was reduced compared to pre-tests (p < 0.05). Aerobic capacity parameters (maximal oxygen uptake, haemoglobin, red blood cell count) did not significantly increase after athletes returned to sea level (p > 0.05). These findings suggest that 4 weeks of moderate altitude training can significantly improve athletes’ lactate threshold and upper body muscle mass; no significant improvement in other aerobic capacity was seen. Exposure time, training load, and nutritional strategies should be thoroughly planned for optimal training of skiers at moderate altitudes. Full article
(This article belongs to the Special Issue Physiology in Sports Training)
Show Figures

Figure 1

22 pages, 1964 KiB  
Article
Distributed Conflict Resolution at High Traffic Densities with Reinforcement Learning
by Marta Ribeiro, Joost Ellerbroek and Jacco Hoekstra
Aerospace 2022, 9(9), 472; https://doi.org/10.3390/aerospace9090472 - 25 Aug 2022
Cited by 11 | Viewed by 2841
Abstract
Future operations involving drones are expected to result in traffic densities that are orders of magnitude higher than any observed in manned aviation. Current geometric conflict resolution (CR) methods have proven to be very efficient at relatively moderate densities. However, at higher densities, [...] Read more.
Future operations involving drones are expected to result in traffic densities that are orders of magnitude higher than any observed in manned aviation. Current geometric conflict resolution (CR) methods have proven to be very efficient at relatively moderate densities. However, at higher densities, performance is hindered by the unpredictable emergent behaviour from neighbouring aircraft. Reinforcement learning (RL) techniques are often capable of identifying emerging patterns through training in the environment. Although some work has started introducing RL to resolve conflicts and ensure separation between aircraft, it is not clear how to employ these methods with a higher number of aircraft, and whether these can compare to or even surpass the performance of current CR geometric methods. In this work, we employ an RL method for distributed conflict resolution; the method is completely responsible for guaranteeing minimum separation of all aircraft during operation. Two different action formulations are tested: (1) where the RL method controls heading, and speed variation; (2) where the RL method controls heading, speed, and altitude variation. The final safety values are directly compared to a state-of-the-art distributed CR algorithm, the Modified Voltage Potential (MVP) method. Although, overall, the RL method is not as efficient as MVP in reducing the total number of losses of minimum separation, its actions help identify favourable patterns to avoid conflicts. The RL method has a more preventive behaviour, defending in advance against nearby neighbouring aircraft not yet in conflict, and head-on conflicts while intruders are still far away. Full article
(This article belongs to the Special Issue Advances in Air Traffic and Airspace Control and Management)
Show Figures

Figure 1

16 pages, 1988 KiB  
Article
Chronic Exposure to Normobaric Hypoxia Increases Testosterone Levels and Testosterone/Cortisol Ratio in Cyclists
by Miłosz Czuba, Kamila Płoszczyca, Katarzyna Kaczmarczyk, Józef Langfort and Robert Gajda
Int. J. Environ. Res. Public Health 2022, 19(9), 5246; https://doi.org/10.3390/ijerph19095246 - 26 Apr 2022
Cited by 6 | Viewed by 2859
Abstract
The aim of this study was to analyze the effects of the “live high, train low” method (LH–TL) and intermittent hypoxic training (IHT) on testosterone (T) and cortisol (C) levels in cyclists. Thirty cyclists participated in the experiment. The LH–TL group (n [...] Read more.
The aim of this study was to analyze the effects of the “live high, train low” method (LH–TL) and intermittent hypoxic training (IHT) on testosterone (T) and cortisol (C) levels in cyclists. Thirty cyclists participated in the experiment. The LH–TL group (n = 10) was exposed to normobaric hypoxia (FiO2 = 16.3%) for 11–12 h a day and trained in normoxia for 3 weeks. In the IHT group (n = 10), participants followed the IHT routine three times a week for 3 weeks in normobaric hypoxia (FiO2 = 16.3%). The control group (N; n = 10) followed the same training protocol in normoxia. The LH–TL training was found to significantly increase (p < 0.05) T levels and the testosterone/cortisol (T/C) ratio during the experiment. The area under the curve (AUC) calculated for T levels over 4 weeks was significantly (p < 0.05) higher in the LH–TL group, by 25.6%, compared to the N group. The results also indicated a significant correlation (r = 0.53; p < 0.05) between AUC for T levels over 4 weeks and ∆ values of hemoglobin (HGB) in the LH–TL group. Overall, the findings show that LH–TL training at a moderate simulated altitude contributes to an increase in T levels and T/C ratio in athletes, which is a beneficial change stimulating anabolic processes and erythropoiesis. Full article
Show Figures

Figure 1

29 pages, 22131 KiB  
Article
Estimation of 1-km Resolution All-Sky Instantaneous Erythemal UV-B with MODIS Data Based on a Deep Learning Method
by Ruixue Zhao and Tao He
Remote Sens. 2022, 14(2), 384; https://doi.org/10.3390/rs14020384 - 14 Jan 2022
Cited by 4 | Viewed by 3804
Abstract
Although ultraviolet-B (UV-B) radiation reaching the ground represents a tiny fraction of the total solar radiant energy, it significantly affects human health and global ecosystems. Therefore, erythemal UV-B monitoring has recently attracted significant attention. However, traditional UV-B retrieval methods rely on empirical modeling [...] Read more.
Although ultraviolet-B (UV-B) radiation reaching the ground represents a tiny fraction of the total solar radiant energy, it significantly affects human health and global ecosystems. Therefore, erythemal UV-B monitoring has recently attracted significant attention. However, traditional UV-B retrieval methods rely on empirical modeling and handcrafted features, which require expertise and fail to generalize to new environments. Furthermore, most traditional products have low spatial resolution. To address this, we propose a deep learning framework for retrieving all-sky, kilometer-level erythemal UV-B from Moderate Resolution Imaging Spectroradiometer (MODIS) data. We designed a deep neural network with a residual structure to cascade high-level representations from raw MODIS inputs, eliminating handcrafted features. We used an external random forest classifier to perform the final prediction based on refined deep features extracted from the residual network. Compared with basic parameters, extracted deep features more accurately bridge the semantic gap between the raw MODIS inputs, improving retrieval accuracy. We established a dataset from 7 Surface Radiation Budget Network (SURFRAD) stations and 1 from 30 UV-B Monitoring and Research Program (UVMRP) stations with MODIS top-of-atmosphere reflectance, solar and view zenith angle, surface reflectance, altitude, and ozone observations. A partial SURFRAD dataset from 2007–2016 trained the model, achieving an R2 of 0.9887, a mean bias error (MBE) of 0.19 mW/m2, and a root mean square error (RMSE) of 7.42 mW/m2. The model evaluated on 2017 SURFRAD data shows an R2 of 0.9376, an MBE of 1.24 mW/m2, and an RMSE of 17.45 mW/m2, indicating the proposed model accurately generalizes the temporal dimension. We evaluated the model at 30 UVMRP stations with different land cover from those of SURFRAD and found most stations had a relative RMSE of 25% and an MBE within ±5%, demonstrating generalization in the spatial dimension. This study demonstrates the potential of using MODIS data to accurately estimate all-sky erythemal UV-B with the proposed algorithm. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

11 pages, 512 KiB  
Article
The Use of a Smartphone Application in Monitoring HRV during an Altitude Training Camp in Professional Female Cyclists: A Preliminary Study
by Alejandro Javaloyes, Manuel Mateo-March, Agustín Manresa-Rocamora, Santiago Sanz-Quinto and Manuel Moya-Ramón
Sensors 2021, 21(16), 5497; https://doi.org/10.3390/s21165497 - 15 Aug 2021
Cited by 2 | Viewed by 3685
Abstract
Altitude training is a common strategy to improve performance in endurance athletes. In this context, the monitoring of training and the athletes’ response is essential to ensure positive adaptations. Heart rate variability (HRV) has been proposed as a tool to evaluate stress and [...] Read more.
Altitude training is a common strategy to improve performance in endurance athletes. In this context, the monitoring of training and the athletes’ response is essential to ensure positive adaptations. Heart rate variability (HRV) has been proposed as a tool to evaluate stress and the response to training. In this regard, many smartphone applications have emerged allowing a wide access to recording HRV easily. The purpose of this study was to describe the changes of HRV using a validated smartphone application before (Pre-TC), during (TC), and after (Post-TC) an altitude training camp in female professional cyclists. Training load (TL) and vagal markers of heart rate variability (LnRMSSD, LnRMSSDcv) of seven professional female cyclists before, during, and after and altitude training camp were monitored. Training volume (SMD = 0.80), LnRMSSD (SMD = 1.06), and LnRMSSDcv (SMD = −0.98) showed moderate changes from Pre-TC to TC. Training volume (SMD = 0.74), TL (SMD = 0.75), LnRMSSD (SMD = −1.11) and LnRMSSDcv (SMD = 0.83) showed moderate changes from TC to Post-TC. Individual analysis showed that heart rate variability responded differently among subjects. The use of a smartphone application to measure HRV is a useful tool to evaluate the individual response to training in female cyclists. Full article
Show Figures

Figure 1

11 pages, 936 KiB  
Article
Affective and Enjoyment Responses to Sprint Interval Exercise at Different Hypoxia Levels
by Zhaowei Kong, Mingzhu Hu, Shengyan Sun, Liye Zou, Qingde Shi, Yubo Jiao and Jinlei Nie
Int. J. Environ. Res. Public Health 2021, 18(15), 8171; https://doi.org/10.3390/ijerph18158171 - 2 Aug 2021
Cited by 6 | Viewed by 2867
Abstract
Benefits of performing sprint interval training (SIT) under hypoxic conditions on improving cardiorespiratory fitness and body composition have been well-documented, yet data is still lacking regarding affective responses to SIT under hypoxia. This study aimed to compare affective responses to SIT exercise under [...] Read more.
Benefits of performing sprint interval training (SIT) under hypoxic conditions on improving cardiorespiratory fitness and body composition have been well-documented, yet data is still lacking regarding affective responses to SIT under hypoxia. This study aimed to compare affective responses to SIT exercise under different oxygen conditions. Nineteen active males participated in three sessions of acute SIT exercise (20 repetitions of 6 s of all-out cycling bouts interspersed with 15 s of passive recovery) under conditions of normobaric normoxia (SL: PIO2 150 mmHg, FIO2 0.209), moderate hypoxia (MH: PIO2 117 mmHg, FIO2 0.154, simulating an altitude corresponding to 2500 m), and severe hypoxia (SH: PIO2 87 mmHg, FIO2 0.112, simulating an altitude of 5000 m) in a randomized order. Perceived exertions (RPE), affect, activation, and enjoyment responses were recorded before and immediately after each SIT session. There were no significant differences across the three conditions in RPE or the measurements of affective responses, despite a statistically lower SpO2 (%) in severe hypoxia. Participants maintained a positive affect valence and reported increased activation in all the three SIT conditions. Additionally, participants experienced a medium level of enjoyment after exercise as indicated by the exercise enjoyment scale (EES) and physical activity enjoyment scale (PACES). These results indicated that performing short duration SIT exercise under severe hypoxia could be perceived as pleasurable and enjoyable as performing it under normoxia in active male population. Full article
(This article belongs to the Special Issue The Health Outcomes of High-Intensity Interval Exercise and Training)
Show Figures

Figure 1

11 pages, 2664 KiB  
Article
Hormonal and Inflammatory Responses to Hypertrophy-Oriented Resistance Training at Acute Moderate Altitude
by Cristina Benavente, Josefa León, Belén Feriche, Brad J. Schoenfeld, Juan Bonitch-Góngora, Filipa Almeida, Sergio Pérez-Regalado and Paulino Padial
Int. J. Environ. Res. Public Health 2021, 18(8), 4233; https://doi.org/10.3390/ijerph18084233 - 16 Apr 2021
Cited by 13 | Viewed by 4704
Abstract
This study investigated the effect of a traditional hypertrophy-oriented resistance training (RT) session at acute terrestrial hypoxia on inflammatory, hormonal, and the expression of miR-378 responses associated with muscular gains. In a counterbalanced fashion, 13 resistance trained males completed a hypertrophic [...] Read more.
This study investigated the effect of a traditional hypertrophy-oriented resistance training (RT) session at acute terrestrial hypoxia on inflammatory, hormonal, and the expression of miR-378 responses associated with muscular gains. In a counterbalanced fashion, 13 resistance trained males completed a hypertrophic RT session at both moderate-altitude (H; 2320 m asl) and under normoxic conditions (N; <700 m asl). Venous blood samples were taken before and throughout the 30 min post-exercise period for determination of cytokines (IL6, IL10, TNFα), hormones (growth hormone [GH], cortisol [C], testosterone), and miR-378. Both exercise conditions stimulated GH and C release, while miR-378, testosterone, and inflammatory responses remained near basal conditions. At H, the RT session produced a moderate to large but nonsignificant increase in the absolute peak values of the studied cytokines. miR-378 revealed a moderate association with GH (r = 0.65; p = 0.026 and r = −0.59; p = 0.051 in N and H, respectively) and C (r = 0.61; p = 0.035 and r = 0.75; p = 0.005 in N and H, respectively). The results suggest that a RT session at H does not differentially affect the hormonal, inflammatory, and miR-378 responses compared to N. However, the standardized mean difference detected values in the cytokines suggest an intensification of the inflammatory response in H that should be further investigated. Full article
(This article belongs to the Section Sport and Health)
Show Figures

Figure 1

Back to TopTop