Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = modal division multiplexing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2993 KiB  
Article
Integrated Multiband-Mode Multiplexing Photonic Lantern for Selective Mode Excitation and Preservation
by Li Zhao, Ting Yu, Yunhao Chen and Jianing Tang
Photonics 2025, 12(7), 729; https://doi.org/10.3390/photonics12070729 - 17 Jul 2025
Viewed by 228
Abstract
We propose and experimentally demonstrate an Integrated Multiband-Mode Multiplexing Photonic Lantern (IM3PL) that enables the selective excitation of high-order modes and stable modal preservation across multiple wavelength bands. As a proof-of-concept configuration, the IM3PL integrates a custom-designed input fiber array composed of three [...] Read more.
We propose and experimentally demonstrate an Integrated Multiband-Mode Multiplexing Photonic Lantern (IM3PL) that enables the selective excitation of high-order modes and stable modal preservation across multiple wavelength bands. As a proof-of-concept configuration, the IM3PL integrates a custom-designed input fiber array composed of three 980 nm single-mode fibers (SMFs) and two few-mode fibers (FMFs) operating at 1310 nm and 1550 nm, respectively. Simulations verify that 980 nm input signals can selectively excite LP01, LP11a, and LP11b modes at the FMF output, while the modal integrity of high-order linear polarized modes is preserved at 1310 nm and 1550 nm. The fabricated IM3PL device is experimentally validated via near-field pattern measurements, confirming the selective excitation at 980 nm and low-loss, mode-preserving transmission at the signal bands. This work offers a scalable and reconfigurable solution for multiband high-order-mode multiplexing, with promising applications in mode-division multiplexed fiber communication systems and multiband high-mode fiber lasers. Full article
Show Figures

Figure 1

12 pages, 4233 KiB  
Article
L-Band Erbium-Doped Fiber Optimization and Transmission Investigation
by Kaihua Hu, Li Pei, Jianshuai Wang, Zhouyi Hu, Wenxuan Xu, Long Zhang, Jing Li and Li Zhong
Photonics 2025, 12(5), 480; https://doi.org/10.3390/photonics12050480 - 13 May 2025
Viewed by 428
Abstract
The optical spectrum resource in the C-band has been used up due to dense wavelength division multiplexing (DWDM). Because of devices’ compatibility with both the C-band and the L-band, the L-band is a good choice for further capacity expansion. Meanwhile, the mode division [...] Read more.
The optical spectrum resource in the C-band has been used up due to dense wavelength division multiplexing (DWDM). Because of devices’ compatibility with both the C-band and the L-band, the L-band is a good choice for further capacity expansion. Meanwhile, the mode division multiplexing (MDM) method has been applied to increase the number of channels. However, the few-mode erbium-doped fiber amplifier must be redesigned to overcome the power differences among channels. In this work, a few-mode erbium-doped fiber (FM-EDF) is optimized and manufactured. Then, an in-line gain-equalized L-band FM-EDFA is constructed. The experimental results show that the FM-EDFA works well in the wavelength range between 1575 nm and 1610 nm. The minimum differential modal gain (DMG) is 0.54 dB, and the maximum modal gain is 22.22 dB. Due to the excellent performance of the L-band FM-EDFA, a DSP-free transmission scheme in the L-band is demonstrated. The bit error rates (BERs) of each channel are below 1 × 10−5 with a DSP-free receiver. Full article
(This article belongs to the Special Issue Optical Fiber Amplifiers and Their Applications)
Show Figures

Figure 1

17 pages, 956 KiB  
Article
Digital Frequency-Domain MIMO Equalizer Enabling Six-LP-Mode Strong-Coupling IM/DD MDM Optical Transmission System
by Jianyu Long, Chen Wang, Ying Wu, Bohan Sang, Chengzhen Bian, Xiongwei Yang, Long Zhang, Yifan Chen, Qinyi Zhang, Ying Wang, Yichen Li, Wen Zhou, Kaihui Wang, Bo Liu, Lei Shen and Jianjun Yu
Sensors 2025, 25(8), 2562; https://doi.org/10.3390/s25082562 - 18 Apr 2025
Viewed by 454
Abstract
Mode division multiplexing (MDM) techniques provide significant enhancement of the capacity of optical intensity modulation and direct detection (IM/DD) short-reach communication systems, like the datacenter interconnection scenarios. While the introduction of multiple modes leads to mode coupling that will extremely deteriorate the received [...] Read more.
Mode division multiplexing (MDM) techniques provide significant enhancement of the capacity of optical intensity modulation and direct detection (IM/DD) short-reach communication systems, like the datacenter interconnection scenarios. While the introduction of multiple modes leads to mode coupling that will extremely deteriorate the received signals, two approaches have been explored to address this issue: one involves the application of all-link weakly coupled components to suppress modal crosstalk, while the other utilizes optical multiple-input–multiple-output (MIMO) equalizers based on optical devices for signal decoupling. However, pure digital signal processing (DSP)-based schemes for mode decoupling in IM/DD MDM systems with strong mode coupling remain unexplored. In this paper, we propose to use a frequency-domain MIMO equalizer for compensating the modal interference in the strong-coupling linear-polarized (LP) MDM IM/DD system. The signal recovery capability of the proposed method is verified through numerical simulation. Finally, we successfully experimentally demonstrate the transmission of on–off-key (OOK) signals in a six-LP-mode strong-coupling MDM IM/DD system over a 10 km few-mode fiber, employing a pair of strong-coupling mode multiplexers/demultiplexers. The experimental results indicate that, with the frequency-domain MIMO equalizer, OOK signals from all modes can be recovered with an 11% hard-decision forward error correction threshold of 8.3 × 103. The proposed method facilitated by flexible DSP software offers an alternative for short-reach communication systems and has the potential to advance the practical application of MDM techniques in the future. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

10 pages, 3166 KiB  
Article
All-Fiber Low-Modal-Crosstalk Demultiplexers for DSP-Free IM/DD LP-Mode MDM Transmission
by Yuyang Gao, Jian Cui, Xian Zhou, Zhangyuan Chen and Juhao Li
Photonics 2024, 11(3), 271; https://doi.org/10.3390/photonics11030271 - 19 Mar 2024
Cited by 1 | Viewed by 1406
Abstract
Weakly coupled mode-division multiplexing (MDM) techniques supporting intensity modulation and direct detection (IM/DD) transmission are promising methods of enhancing the capacity of short-reach scenarios in which low-modal-crosstalk-mode demultiplexers for degenerate linear polarized (LP) modes are highly desired. In this paper, we review two [...] Read more.
Weakly coupled mode-division multiplexing (MDM) techniques supporting intensity modulation and direct detection (IM/DD) transmission are promising methods of enhancing the capacity of short-reach scenarios in which low-modal-crosstalk-mode demultiplexers for degenerate linear polarized (LP) modes are highly desired. In this paper, we review two degenerate-mode reception schemes. Firstly, a low-modal-crosstalk orthogonal combined reception method for degenerate modes is proposed based on all-fiber mode-selective couplers, in which signals in both degenerate modes are demultiplexed into the LP01 mode of single-mode fibers and then are multiplexed into the mutually orthogonal LP01 and LP11 modes of a two-mode fiber (TMF) for simultaneous detection. Secondly, a novel degenerate-mode-selective coupler consisting of an input few-mode fiber and an output TMF is proposed, which could demultiplex degenerate LP modes without any digital signal processing (DSP). Both demultiplexers are achieved based on the taper and polish process. The fabricated devices are characterized and compared. The results show that the proposed schemes can pave the way to the practical implementation of DSP-free IM/DD LP-mode MDM transmission systems. Full article
(This article belongs to the Special Issue Space Division Multiplexing Techniques)
Show Figures

Figure 1

11 pages, 4620 KiB  
Article
Real-Time Spatial-Division Multiplexing Transmission with Commercial 400 Gb/s Transponders
by Yuyang Gao, Juhao Li, Yu Tang, Lei Shen, Xian Zhou, Chunxu Zhao, Shikui Shen, Lei Zhang, Xiongyan Tang and Zhangyuan Chen
Photonics 2024, 11(3), 231; https://doi.org/10.3390/photonics11030231 - 2 Mar 2024
Viewed by 1275
Abstract
As single-mode-fiber transmission systems are reaching their capacity limits, spatial-division multiplexing (SDM) techniques have been investigated to increase the per-fiber capacity. However, the compatibility with current single-mode transponders severely hinders the near-term deployment of SDM systems. In this paper, we experimentally propose two [...] Read more.
As single-mode-fiber transmission systems are reaching their capacity limits, spatial-division multiplexing (SDM) techniques have been investigated to increase the per-fiber capacity. However, the compatibility with current single-mode transponders severely hinders the near-term deployment of SDM systems. In this paper, we experimentally propose two real-time SDM transmission schemes using commercial single-mode 400 G dual-polarized 16 quadrature amplitude modulation equipment. In the first experiment, 60 km weakly coupled single-mode 7-core fiber with a pair of fan-in and fan-out devices are adopted. In the second experiment, the fiber link consists of 60 km/150 km weakly coupled few-mode fiber (FMF) and low-modal-crosstalk mode multiplexers, in which only non-degenerate LP01 and LP02 modes are utilized. In order to investigate the effect of splice on SDM fiber links, 20-roll, 3 km multicore fibers (MCFs) and FMFs are spliced and tested in the experiments. The bit error rates of all SDM experiments are all below 4.75 × 10−2 forward-error-correction threshold of the 400 G transponders. The experimental results prove that the near-term deployment of SDM systems could be accelerated by utilizing weakly coupled MCFs or non-degenerate modes of weakly coupled FMFs which are compatible with commercial single-mode transponders without any software or hardware modifications. Full article
(This article belongs to the Special Issue Emerging Technologies for 6G Space Optical Communication Networks)
Show Figures

Figure 1

15 pages, 5777 KiB  
Article
Experimental Dataset of Tunable Mode Converter Based on Long-Period Fiber Gratings Written in Few-Mode Fiber: Impacts of Thermal, Wavelength, and Polarization Variations
by Juan Soto-Perdomo, Erick Reyes-Vera, Jorge Montoya-Cardona and Pedro Torres
Data 2024, 9(1), 10; https://doi.org/10.3390/data9010010 - 31 Dec 2023
Cited by 1 | Viewed by 2301
Abstract
Mode division multiplexing (MDM) is currently one of the most attractive multiplexing techniques in optical communications, as it allows for an increase in the number of channels available for data transmission. Optical modal converters are one of the main devices used in this [...] Read more.
Mode division multiplexing (MDM) is currently one of the most attractive multiplexing techniques in optical communications, as it allows for an increase in the number of channels available for data transmission. Optical modal converters are one of the main devices used in this technique. Therefore, the characterization and improvement of these devices are of great current interest. In this work, we present a dataset of 49,736 near-field intensity images of a modal converter based on a long-period fiber grating (LPFG) written on a few-mode fiber (FMF). This characterization was performed experimentally at various wavelengths, polarizations, and temperature conditions when the device converted from LP01 mode to LP11 mode. The results show that the modal converter can be tuned by adjusting these parameters, and that its operation is optimal under specific circumstances which have a great impact on its performance. Additionally, the potential application of the database is validated in this work. A modal decomposition technique based on the particle swarm algorithm (PSO) was employed as a tool for determining the most effective combinations of modal weights and relative phases from the spatial distributions collected in the dataset. The proposed dataset can open up new opportunities for researchers working on image segmentation, detection, and classification problems related to MDM technology. In addition, we implement novel artificial intelligence techniques that can help in finding the optimal operating conditions for this type of device. Full article
Show Figures

Figure 1

15 pages, 6812 KiB  
Article
A Weakly-Coupled Double Bow-Tie Multi-Ring Elliptical Core Multi-Mode Fiber for Mode Division Multiplexing across C+L+U Band
by Yingjuan Ci, Fang Ren, Xiao Lei, Yidan Li, Deyang Zhou and Jianping Wang
Appl. Sci. 2023, 13(10), 5855; https://doi.org/10.3390/app13105855 - 9 May 2023
Cited by 1 | Viewed by 2128
Abstract
We herein present a weakly-coupled double bow-tie multi-ring elliptical core multi-mode fiber (DBT-MREC-MMF) supporting 22 eigenmodes for mode division multiplexing across the C+L+U band. The proposed fiber introduces a multi-ring elliptical core, bow-tie air holes, and bow-tie stress-applying areas to effectively split adjacent [...] Read more.
We herein present a weakly-coupled double bow-tie multi-ring elliptical core multi-mode fiber (DBT-MREC-MMF) supporting 22 eigenmodes for mode division multiplexing across the C+L+U band. The proposed fiber introduces a multi-ring elliptical core, bow-tie air holes, and bow-tie stress-applying areas to effectively split adjacent eigenmodes. By utilizing the finite element method (FEM), we accordingly optimized the fiber to support the 22 modes under the weakly-coupled condition. We evaluated the impact of fiber parameters on the minimum effective refractive index difference (min Δneff) between adjacent eigenmodes, model birefringence (Bm), and bending loss at a wavelength of 1550 nm. Additionally, broadband performance metrics, such as effective modal index (neff), effective index difference (Δneff), effective mode area (Aeff), differential mode delay (DMD), and chromatic dispersion (D), were comprehensively studied over the entire C+L+U band, ranging from 1530 to 1675 nm. The proposed fiber is capable of supporting 22 completely separated eigenmodes with a min Δneff between adjacent eigenmodes larger than 3.089 × 10−4 over the entire C+L+U band. The proposed DBT-MREC-MMF holds great potential for use in short-haul communication systems that require MDM to improve transmission capacity and expand bandwidth. Full article
(This article belongs to the Special Issue Advances in Fiber Optic Design and Optical Communication)
Show Figures

Figure 1

18 pages, 9207 KiB  
Article
Surface Photonic Crystal Engineering of a Multi-Mode VCSEL for a Bit-Loaded Broadband QAM-OFDM Data Link at 99 Gbit/s
by Yu-Hong Lin, Chih-Hsien Cheng, Cheng-Ting Tsai, Wei-Li Wu, Kent D. Choquette and Gong-Ru Lin
Photonics 2023, 10(5), 549; https://doi.org/10.3390/photonics10050549 - 9 May 2023
Cited by 2 | Viewed by 2300
Abstract
Bit-loaded quadrature amplitude modulation-orthogonal frequency division multiplexing (QAM-OFDM) encoding and photonic-crystal-engineered multi-mode vertical-cavity surface-emitting lasers (MM-VCSELs) transmission performance are analyzed. Two different surface photonic-crystal designs are used to configure the core and cladding regions of MM-VCSELs, producing continuous-wave and digital-encoding outputs. These outputs [...] Read more.
Bit-loaded quadrature amplitude modulation-orthogonal frequency division multiplexing (QAM-OFDM) encoding and photonic-crystal-engineered multi-mode vertical-cavity surface-emitting lasers (MM-VCSELs) transmission performance are analyzed. Two different surface photonic-crystal designs are used to configure the core and cladding regions of MM-VCSELs, producing continuous-wave and digital-encoding outputs. These outputs are combined with the end-face-flattened OM5 multi-mode fiber (MMF) for 100 m short-reach transmission. The photonic-crystal (PhC) structure exhibits a spatial mode-filtering ability, supporting few or single-mode outputs from the MM-VCSEL. This helps reduce the modal dispersion during OM5-MMF transmission of the encoded data. Comparing the original MM-VCSEL with two different surface-photonic-crystal-configured MM-VCSELs, the allowable bit-loaded QAM-OFDM data rate can be increased from 60.7 (for the VCSEL without the PhC structure) to 85/65 Gbit/s (for the PhC VCSELs with 2-layer PhC structures in the cladding layer and the ones with a 1-layer PhC structure in the core layer and 2-layer PhC structures in the cladding layer, respectively) under back-to-back (BtB) encoding and enable the 100 m OM5-MMF transmission to increase from 58.5 (for the VCSEL without the PhC structure) to 81.2/64.6 Gbit/s (for the PhC VCSELs with 2-layer PhC structures in the cladding layer and the ones with a 1-layer PhC structure in the core layer and 2-layer PhC structures in the cladding layer), respectively. Furthermore, by comparing the 7°-titled and 0°-normalized vertical coupling conditions, it can be observed that the purely normalized vertical coupling can collect more output power, resulting in an improved signal-to-noise ratio. This significantly increases the allowable error-free data rate from 85 to 98.9 Gbit/s in the BtB case and from 81.2 Gbit/s to 95.3 Gbit/s in the 100 m OM5-MMF case. Full article
(This article belongs to the Special Issue Vertical-Cavity Surface-Emitting Lasers (VCSELs))
Show Figures

Figure 1

12 pages, 4032 KiB  
Article
Design Consideration, Numerical and Experimental Analyses of Mode-Division-Multiplexed (MDM) Silicon Photonics Integrated Circuit with Sharp Bends
by Pin-Cheng Kuo, Chi-Wai Chow, Yuan-Zeng Lin, Wahyu Hendra Gunawan, Tun-Yao Hung, Yin-He Jian, Guan-Hong Chen, Ching-Wei Peng, Yang Liu and Chien-Hung Yeh
Sensors 2023, 23(6), 2965; https://doi.org/10.3390/s23062965 - 9 Mar 2023
Cited by 2 | Viewed by 2683
Abstract
Due to the popularity of different high bandwidth applications, it is becoming increasingly difficult to satisfy the huge data capacity requirements, since the traditional electrical interconnects suffer significantly from limited bandwidth and huge power consumption. Silicon photonics (SiPh) is one of the important [...] Read more.
Due to the popularity of different high bandwidth applications, it is becoming increasingly difficult to satisfy the huge data capacity requirements, since the traditional electrical interconnects suffer significantly from limited bandwidth and huge power consumption. Silicon photonics (SiPh) is one of the important technologies for increasing interconnect capacity and decreasing power consumption. Mode-division multiplexing (MDM) allows signals to be transmitted simultaneously, at different modes, in a single waveguide. Wavelength-division multiplexing (WDM), non-orthogonal multiple access (NOMA) and orthogonal-frequency-division multiplexing (OFDM) can also be utilized to further increase the optical interconnect capacity. In SiPh integrated circuits, waveguide bends are usually inevitable. However, for an MDM system with a multimode bus waveguide, the modal fields will become asymmetric when the waveguide bend is sharp. This will introduce inter-mode coupling and inter-mode crosstalk. One simple approach to achieve sharp bends in multimode bus waveguide is to use a Euler curve. Although it has been reported in the literature that sharp bends based on a Euler curve allow high performance and low inter-mode crosstalk multimode transmissions, we discover, by simulation and experiment, that the transmission performance between two Euler bends is length dependent, particularly when the bends are sharp. We investigate the length dependency of the straight multimode bus waveguide between two Euler bends. High transmission performance can be achieved by a proper design of the waveguide length, width, and bend radius. By using the optimized MDM bus waveguide length with sharp Euler bends, proof-of-concept NOMA-OFDM experimental transmissions, supporting two MDM modes and two NOMA users, are performed. Full article
Show Figures

Figure 1

16 pages, 3941 KiB  
Article
Low Power Consuming Mode Switch Based on Hybrid-Core Vertical Directional Couplers with Graphene Electrode-Embedded Polymer Waveguides
by Lixi Zhong, Quandong Huang, Jiali Zhang and Ou Xu
Polymers 2023, 15(1), 88; https://doi.org/10.3390/polym15010088 - 26 Dec 2022
Cited by 1 | Viewed by 2244
Abstract
We propose a mode switch based on hybrid-core vertical directional couplers with an embedded graphene electrode to realize the switching function with low power consumption. We designed the device with Norland Optical Adhesive (NOA) material as the guide wave cores and epoxy polymer [...] Read more.
We propose a mode switch based on hybrid-core vertical directional couplers with an embedded graphene electrode to realize the switching function with low power consumption. We designed the device with Norland Optical Adhesive (NOA) material as the guide wave cores and epoxy polymer material as cladding to achieve a thermo-optic switching for the E11, E21 and E12 modes, where monolayer graphene served as electrode heaters. The device, with a length of 21 mm, had extinction ratios (ERs) of 20.5 dB, 10.4 dB and 15.7 dB for the E21, E12 and E11 modes, respectively, over the C-band. The power consumptions of three electric heaters were reduced to only 3.19 mW, 3.09 mW and 2.97 mW, respectively, and the response times were less than 495 µs, 486 µs and 498 µs. Additionally, we applied such a device into a mode division multiplexing (MDM) transmission system to achieve an application of gain equalization of few-mode amplification among guided modes. The differential modal gain (DMG) could be optimized from 5.39 dB to 0.92 dB over the C-band, together with the characteristic of polarization insensitivity. The proposed mode switch can be further developed to switch or manipulate the attenuation of the arbitrary guided mode arising in the few-mode waveguide. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 3371 KiB  
Article
Joint Pre- and Post-Equalization with Higher-Order Modulation Formats in SDM-Based Optical MIMO Systems
by Jasmeet Singh, Andreas Ahrens and Steffen Lochmann
Photonics 2022, 9(11), 876; https://doi.org/10.3390/photonics9110876 - 19 Nov 2022
Cited by 4 | Viewed by 2267
Abstract
The multiple-input and multiple-output (MIMO) technology is a promising area of research to cope up with the demands of higher data rates and capacity. In the optical communication domain, the combination of space-division multiplexing (SDM) with higher-order modulation (HOM) formats over an optical [...] Read more.
The multiple-input and multiple-output (MIMO) technology is a promising area of research to cope up with the demands of higher data rates and capacity. In the optical communication domain, the combination of space-division multiplexing (SDM) with higher-order modulation (HOM) formats over an optical MIMO system actively addresses these challenges. By allowing multi-level signaling with limited increment in the transmitter’s complexity, a jointly designed pre- and post-equalization (PPE) for an optical MIMO system with a multi-mode fiber (MMF) link is proposed. Cost-effectiveness of the system is incorporated by utilizing intensity modulation/direct detection (IM/DD) with HOM formats such as pulse-amplitude modulation (PAM) schemes. With the aid of a numerical optimization algorithm, the proposed joint-PPE filter coefficients are optimized with respect to the MMF channel and the transmit power constraint. In contrast to existing research on the single-mode fiber (SMF) based optical systems, the effectiveness of the proposed joint-PPE filter is analyzed on an MMF link, which is considerably degraded by the modal dispersion. In the analyzed experimental scenario, the proposed joint-PPE scheme confirms to be beneficial as compared to the post-equalization only (PE-only) in terms of bit-error rate (BER) performance. Furthermore, the required average received optical power to reach a BER 104 by the joint-PPE scheme is improved by 2 dB with comparison to the minimum mean-squared error (MMSE) PE-only. Full article
(This article belongs to the Special Issue Optical Fiber Communication Systems)
Show Figures

Figure 1

14 pages, 2303 KiB  
Article
Contribution to the Improvement of the Correlation Filter Method for Modal Analysis with a Spatial Light Modulator
by David Benedicto, María Victoria Collados, Juan C. Martín, Jesús Atencia, Omel Mendoza-Yero and Juan A. Vallés
Micromachines 2022, 13(11), 2004; https://doi.org/10.3390/mi13112004 - 17 Nov 2022
Cited by 3 | Viewed by 1703
Abstract
Modal decomposition of light is essential to study its propagation properties in waveguides and photonic devices. Modal analysis can be carried out by implementing a computer-generated hologram acting as a match filter in a spatial light modulator. In this work, a series of [...] Read more.
Modal decomposition of light is essential to study its propagation properties in waveguides and photonic devices. Modal analysis can be carried out by implementing a computer-generated hologram acting as a match filter in a spatial light modulator. In this work, a series of aspects to be taken into account in order to get the most out of this method are presented, aiming to provide useful operational procedures. First of all, a method for filter size adjustment based on the standard fiber LP-mode symmetry is presented. The influence of the mode normalization in the complex amplitude encoding-inherent noise is then investigated. Finally, a robust method to measure the phase difference between modes is proposed. These procedures are tested by wavefront reconstruction in a conventional few-mode fiber. Full article
Show Figures

Figure 1

9 pages, 451 KiB  
Communication
Core Switch Using Optically Induced Long-Period Gratings
by Gil M. Fernandes, Ana M. Rocha and Margarida Facão
Photonics 2022, 9(11), 824; https://doi.org/10.3390/photonics9110824 - 2 Nov 2022
Viewed by 1318
Abstract
We propose and theoretically demonstrate an optically induced long-period gratings (OLPGs) based core switching technique for multi-core fibers (MCFs). This switching technique is fully reconfigurable in terms of signal wavelength and input–output fiber cores. The switching window and its efficiency can be adjusted [...] Read more.
We propose and theoretically demonstrate an optically induced long-period gratings (OLPGs) based core switching technique for multi-core fibers (MCFs). This switching technique is fully reconfigurable in terms of signal wavelength and input–output fiber cores. The switching window and its efficiency can be adjusted by changing the peak power and the shape of the pump pulses, respectively. Switching efficiencies of 76% were found. Furthermore, we also show that the switched signal can be reshaped by tuning the shape of the pump pulses. Full article
Show Figures

Figure 1

15 pages, 4346 KiB  
Article
Design for Terahertz Circular-Core Photonic Crystal Fiber Supporting Orbital Angular Momentum Modes
by Jingxuan Yang and Wei Li
Photonics 2022, 9(9), 607; https://doi.org/10.3390/photonics9090607 - 26 Aug 2022
Viewed by 2353
Abstract
We propose a new terahertz fiber based on a circular-core photonic crystal fiber (PCF) structure to support high-performance orbital angular momentum (OAM) modes transmission. The modal characteristics of the proposed terahertz fiber were thoroughly analyzed to vary the parameters of air holes radius [...] Read more.
We propose a new terahertz fiber based on a circular-core photonic crystal fiber (PCF) structure to support high-performance orbital angular momentum (OAM) modes transmission. The modal characteristics of the proposed terahertz fiber were thoroughly analyzed to vary the parameters of air holes radius and the annular thickness by the full-vector finite element method (FEM). The optimal parameters are selected to realize the stable transmission of five-order OAM mode with high mode quality, low confinement loss and wide bandwidth. The mode purity is in excess of 91%, and the confinement loss is less than 10−7 dB/m over the 0.2 THz to 0.55 THz band. Furthermore, the design of this PCF is relatively simple and flexible, since it consists only of circular air holes. Due to its excellent transmission characteristics, the proposed OAM fiber has a potential application in terahertz mode division multiplexing (MDM) communication system. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

8 pages, 2207 KiB  
Article
Gain Equalization for Few-Mode Erbium-Doped Fiber Amplifiers via Strong Mode Coupling
by Yaping Liu, Zhiqun Yang, Xutao Wang, Yongmin Jung and Lin Zhang
Appl. Sci. 2022, 12(2), 767; https://doi.org/10.3390/app12020767 - 13 Jan 2022
Cited by 9 | Viewed by 2790
Abstract
Few-mode erbium-doped fiber amplifiers (FM-EDFAs) are one of the most important optical subsystems for successful space division multiplexed transmission systems. In this paper, we propose a new FM-EDFA designed to achieve significantly reduced differential modal gain (DMG) via strong mode coupling. Using a [...] Read more.
Few-mode erbium-doped fiber amplifiers (FM-EDFAs) are one of the most important optical subsystems for successful space division multiplexed transmission systems. In this paper, we propose a new FM-EDFA designed to achieve significantly reduced differential modal gain (DMG) via strong mode coupling. Using a new numerical model based on a fiber transfer matrix, the DMGs of FM-EDFAs are systematically investigated and two different types of six-mode fiber amplifiers are analyzed, as exemplar demonstrations. In a uniformly doped step-index fiber, the DMG can be reduced from 9.3 to 1.1 dB (i.e., 8.2 dB reduction) and further reduced to 0.5 dB in a dual-layer doping structure. Full article
Show Figures

Figure 1

Back to TopTop