Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = mobile phone radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9544 KiB  
Article
Electromagnetic Interference Effect of Portable Electronic Device with Satellite Communication to GPS Antenna
by Zhenyang Ma, Sijia Zhang, Zhaobin Duan and Yicheng Li
Sensors 2025, 25(14), 4438; https://doi.org/10.3390/s25144438 - 16 Jul 2025
Viewed by 276
Abstract
Recent technological advancements have resulted in the emergence of portable electronic devices (PEDs), including mobile phones equipped with satellite communication capabilities. These devices generally emit higher power, which can potentially cause electromagnetic interference to GPS antennas. This study uses both simulation and experimental [...] Read more.
Recent technological advancements have resulted in the emergence of portable electronic devices (PEDs), including mobile phones equipped with satellite communication capabilities. These devices generally emit higher power, which can potentially cause electromagnetic interference to GPS antennas. This study uses both simulation and experimental methods to evaluate the interference path loss (IPL) between PEDs located inside an A320 aircraft and an external GPS antenna. The effects of PED location, antenna polarization, and frequency bands on IPL were simulated and analyzed. Additionally, measurement experiments were conducted on an A320 aircraft, and statistical methods were used to compare the experimental data with the simulation results. Considering the front-door coupling of both spurious and intentional radiated emissions, the measured IPL is up to 15 ± 3 dB lower than the IPLtarget. This result should be interpreted with caution. This issue offers new insights into the potential risks of electromagnetic interference in aviation environments. The findings help quantify the probability of interference with GPS antennas. Furthermore, the modeling simplification method used in this study may be applicable to the analysis of other large and complex structures. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 8206 KiB  
Article
Effect of Titanium Mandible Implant on the Electric Field and SAR Distribution Caused by Mobile Phone Within the User’s Head
by Dejan Jovanović, Dragan Krasić, Nenad Cvetković, Vladimir Stanković, Dragana Živaljević and Bojana Petković
Electronics 2025, 14(11), 2096; https://doi.org/10.3390/electronics14112096 - 22 May 2025
Viewed by 954
Abstract
The primary objective of this investigation is to assess the influence of a mandible implant on the electric field distribution and the specific absorption rate (SAR) within the cell phone user’s head. The procedure is based on numerically solving the electromagnetic propagation equation. [...] Read more.
The primary objective of this investigation is to assess the influence of a mandible implant on the electric field distribution and the specific absorption rate (SAR) within the cell phone user’s head. The procedure is based on numerically solving the electromagnetic propagation equation. This is an effective technique for the assessment of electric field distribution and the energy levels absorbed by the organs inside the head. In order to accomplish this, realistic three-dimensional head, implant, and mobile phone models are developed. The frequency applied in the simulations is 2600 MHz. Electric field strength and SAR distributions within the head are presented and examined. A comparative analysis was performed on both models, with and without a titanium mandible implant, to assess the influence of the implant on neighboring biological tissues. The results indicate that both values rise inside biological tissues close to the mandible implant. Face-to-phone safe distances are identified when the values of the electric field and SAR are under the allowable levels set by regulations. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 13632 KiB  
Article
Assessing Pedestrian Exposure to Heat via the Wet-Bulb Globe Temperature Using Mobile Phone Location Data and Urban Thermal Simulations
by Yasunobu Ashie, Eiko Kumakura and Takahiro Ueno
Buildings 2025, 15(5), 676; https://doi.org/10.3390/buildings15050676 - 21 Feb 2025
Viewed by 959
Abstract
The recent rise in temperatures in urban areas has raised concerns about various health problems, such as heat-related illnesses. This study quantified the number of individuals exposed to outdoor heat during the daytime in the summertime waterfront area of Tokyo. Conventional meteorological observation [...] Read more.
The recent rise in temperatures in urban areas has raised concerns about various health problems, such as heat-related illnesses. This study quantified the number of individuals exposed to outdoor heat during the daytime in the summertime waterfront area of Tokyo. Conventional meteorological observation and administrative data are insufficient for high-resolution analyses of people flow and heat conditions in urban environments. Therefore, this study introduced a new methodology combining urban computational fluid dynamics (CFD) and mobile phone global positioning system (GPS) data. A numerical simulation was performed to estimate the wet-bulb globe temperature (WBGT) by analyzing fluid dynamics and radiation models. The WBGT in parks was determined to be approximately 27 °C, while the on-road temperature exceeded 29 °C. Simultaneously, pedestrian density was assessed by collecting high-resolution mobile phone GPS data, revealing that pedestrians concentrated near stations, office areas, and shopping districts within a 5 km × 5 km area. Furthermore, a review of heat stroke cases (2010–2020) indicated that combining heat and people flow yielded stronger correlations with the number of heat stroke cases than considering heat alone. Finally, a new heat risk index was established, integrating heat, people flow, and aging rate, which more accurately predicted the heat stroke cases. Full article
Show Figures

Figure 1

17 pages, 9619 KiB  
Article
Metasurface-Loaded Biodegradable Mobile Phone Back Cover for Enhanced Radiation Performance
by Juin Acharjee, Jawad Ali, Muhammad Uzair, Thipamas Phakaew, Prayoot Akkaraekthalin, Yaowaret Maiket, Rungsima Yeetsorn and Suramate Chalermwisutkul
Materials 2025, 18(4), 730; https://doi.org/10.3390/ma18040730 - 7 Feb 2025
Viewed by 975
Abstract
This article introduces a novel biodegradable metasurface-loaded mobile phone back cover designed to reduce electromagnetic exposure and enhance antenna performance. The cover operates across the low GHz band (2–8 GHz) and the millimeter-wave band (22–25.6 GHz), utilizing polylactic acid as an eco-friendly substrate. [...] Read more.
This article introduces a novel biodegradable metasurface-loaded mobile phone back cover designed to reduce electromagnetic exposure and enhance antenna performance. The cover operates across the low GHz band (2–8 GHz) and the millimeter-wave band (22–25.6 GHz), utilizing polylactic acid as an eco-friendly substrate. Integrated with a six-port multiple-input multiple-output (MIMO) antenna system, the cover achieves port isolation above 20 dB in both bands. Specific absorption rate (SAR) analysis, performed using a human head model, shows significant reductions in electromagnetic exposure—61.1% in the low GHz band (from 1.06 W/kg to 0.412 W/kg) and 55% in the millimeter wave band (from 2.061 W/kg to 0.917 W/kg). Additionally, the metasurface cover enhances antenna gain and increases impedance bandwidth by 20% in the low GHz band and 8.3% in the millimeter-wave band. A comparative study highlights superior SAR reduction and bandwidth improvement of a metasurface on a biodegradable substrate over one on a silicone substrate. Prototypes of the MIMO antenna and the proposed cover were fabricated and tested, revealing strong alignment between simulated and measured results. These findings highlight the potential of biodegradable metasurface-based covers to deliver high-performance, sustainable solutions for mobile communication devices. Full article
Show Figures

Graphical abstract

16 pages, 14961 KiB  
Article
A Sub-6 GHz 8 × 8 MIMO Antenna Array for 5G Metal-Frame Mobile Phone Applications
by Yu-Tung Chen and Hsin-Lung Su
Electronics 2024, 13(23), 4590; https://doi.org/10.3390/electronics13234590 - 21 Nov 2024
Cited by 2 | Viewed by 1364
Abstract
This article introduces a broadband sub-6 GHz 8 × 8 MIMO (multi-input multi-output) antenna array for 5G (fifth-generation) metal-frame mobile phone applications. The unique advantage of this compact antenna design is its placement in the corners of the mobile phone, allowing for significant [...] Read more.
This article introduces a broadband sub-6 GHz 8 × 8 MIMO (multi-input multi-output) antenna array for 5G (fifth-generation) metal-frame mobile phone applications. The unique advantage of this compact antenna design is its placement in the corners of the mobile phone, allowing for significant PCB board space reduction. The proposed antenna’s 6 dB impedance bandwidth ranged from 3.3 to 6 GHz, covering the n77/78/79 and WiFi-5GHz bands. The main radiating element was an open-slot antenna coupled by a T-shaped structure connected to a 50-Ω transmission line. The size of the single-antenna element was 12.25 mm × 2.5 mm × 7 mm, and these antennas were symmetrical at four corners of the smartphone. A wide slot and neutral line were incorporated to reduce mutual coupling between adjacent antennas. The MIMO antenna array achieved isolation above 12 dB. The peak realized gain ranged from 2 to 5.28 dBi, and the total efficiency spanned 37% to 71%. The ECC (envelope correlation coefficient) was less than 0.34, and the CC (channel capacity) ranged from 33 and 41 bps/Hz. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

11 pages, 6298 KiB  
Article
Impact of Titanium Cranial Implants on the Electric Field and SAR Distribution Induced by Mobile Phones Within the User’s Head
by Dragana Živaljević, Dejan Jovanović, Dragan Krasić, Nenad Cvetković and Bojana Petković
Electronics 2024, 13(22), 4551; https://doi.org/10.3390/electronics13224551 - 20 Nov 2024
Cited by 1 | Viewed by 1662
Abstract
The purpose of this study was to determine the impact of a titanium cranial implant on the electric field distribution and the amount of energy absorbed from a cell phone within the human head. Three-dimensional lifelike models of the head of the mobile [...] Read more.
The purpose of this study was to determine the impact of a titanium cranial implant on the electric field distribution and the amount of energy absorbed from a cell phone within the human head. Three-dimensional lifelike models of the head of the mobile phone user, a titanium cranial implant, and a smartphone model was built. The head model consisted of sixteen homogeneous, isotropic domains, with permittivity and conductivity parameters taken from the literature. Numerical calculations were performed at the mobile communication frequency of 2600 MHz for a head model with and without a titanium cranial implant, in order to determine a field perturbation introduced by the implant. Our results show that in the presence of a titanium cranial implant, the electric field amplitude and SAR (Specific Absorption Rate) are increased within the layers close to the outer surface of the model (skin, fat tissue, and muscle). On the other hand, a cranial implant leads to a lower penetration depth, decreasing the electric field amplitude and SAR inside the skull, cerebrospinal fluid, and brain. Full article
Show Figures

Figure 1

13 pages, 3622 KiB  
Article
RF Exposure Assessment by Drone-Based Technology
by Jesús M. Paniagua-Sánchez, Christopher Marabel-Calderón, Francisco J. García-Cobos, Antonio Gordillo-Guerrero, Montaña Rufo-Pérez and Antonio Jiménez-Barco
Appl. Sci. 2024, 14(22), 10203; https://doi.org/10.3390/app142210203 - 7 Nov 2024
Viewed by 959
Abstract
There is growing international interest in assessing population exposure to radiofrequency electromagnetic fields, especially those generated by mobile-phone base stations. The work presented here is an experimental study in which we assess exposure to radiofrequency electromagnetic fields in a university environment, where there [...] Read more.
There is growing international interest in assessing population exposure to radiofrequency electromagnetic fields, especially those generated by mobile-phone base stations. The work presented here is an experimental study in which we assess exposure to radiofrequency electromagnetic fields in a university environment, where there is a site with mobile-phone antennas and where a large number of people live on a daily basis. The data were collected with a personal exposure meter in two samplings, one walking at ground level and the other using an aerial vehicle at a height higher than the buildings. The geo-referenced electric-field data were subjected to a process in which a theoretical model was adjusted to the experimental variograms, and heat maps were obtained using kriging interpolation. The research carried out is of great relevance, since it provides detailed measurements of the electromagnetic radiation levels both at ground level and at significant heights, using innovative methodologies such as the use of drones. Furthermore, the results obtained allow for contextualizing the exposures in relation to international safety limits, highlighting the importance of rigorous monitoring in everyday environments. Full article
Show Figures

Figure 1

17 pages, 4473 KiB  
Article
A Deep Learning Framework for Evaluating the Over-the-Air Performance of the Antenna in Mobile Terminals
by Yuming Chen, Dianyuan Qi, Lei Yang, Tongning Wu and Congsheng Li
Sensors 2024, 24(17), 5646; https://doi.org/10.3390/s24175646 - 30 Aug 2024
Cited by 3 | Viewed by 1175
Abstract
This study introduces RTEEMF (Real-Time Evaluation Electromagnetic Field)-PhoneAnts, a novel Deep Learning (DL) framework for the efficient evaluation of mobile phone antenna performance, addressing the time-consuming nature of traditional full-wave numerical simulations. The DL model, built on convolutional neural networks, uses the Near-field [...] Read more.
This study introduces RTEEMF (Real-Time Evaluation Electromagnetic Field)-PhoneAnts, a novel Deep Learning (DL) framework for the efficient evaluation of mobile phone antenna performance, addressing the time-consuming nature of traditional full-wave numerical simulations. The DL model, built on convolutional neural networks, uses the Near-field Electromagnetic Field (NEMF) distribution of a mobile phone antenna in free space to predict the Effective Isotropic Radiated Power (EIRP), Total Radiated Power (TRP), and Specific Absorption Rate (SAR) across various configurations. By converting antenna features and internal mobile phone components into near-field EMF distributions within a Huygens’ box, the model simplifies its input. A dataset of 7000 mobile phone models was used for training and evaluation. The model’s accuracy is validated using the Wilcoxon Signed Rank Test (WSR) for SAR and TRP, and the Feature Selection Validation Method (FSV) for EIRP. The proposed model achieves remarkable computational efficiency, approximately 2000-fold faster than full-wave simulations, and demonstrates generalization capabilities for different antenna types, various frequencies, and antenna positions. This makes it a valuable tool for practical research and development (R&D), offering a promising alternative to traditional electromagnetic field simulations. The study is publicly available on GitHub for further development and customization. Engineers can customize the model using their own datasets. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 4733 KiB  
Article
High Frequency Electromagnetic Field Exposure in Paediatric and Female Patients with Implanted Cardiac Pacemaker
by Frederika Bacova, Mariana Benova, Zuzana Psenakova, Milan Smetana, Miroslav Pacek and Jan Ochodnicky
Appl. Sci. 2024, 14(16), 7198; https://doi.org/10.3390/app14167198 - 15 Aug 2024
Cited by 2 | Viewed by 1224
Abstract
This article investigates the effects of electromagnetic field (EMF) from mobile phones on human tissues and implanted medical devices. The intensity of the electric field (E) is evaluated based on simulations and measurements of various exposure scenarios. An area of interest is the [...] Read more.
This article investigates the effects of electromagnetic field (EMF) from mobile phones on human tissues and implanted medical devices. The intensity of the electric field (E) is evaluated based on simulations and measurements of various exposure scenarios. An area of interest is the case of a person with an implanted device (heart pacemaker) who may be affected by this exposure. Due to the rapid development of communication technologies and the growing awareness of the potential health risks of radio frequency (RF) EMF, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established exposure limits within the European Union. Our study models and analyses EMF values in human tissues in an ideal environment, in a situation where a person uses a mobile phone in the DCS (Digital Cellular System) band, including the case of a person with an implanted pacemaker. Pilot simulations were verified by experimental measurements. Based on them, specific human models with the best matching results were selected for modelling other possible interactions of exogenous EMF and cardiac pacemaker in the same situations and locations. Full article
Show Figures

Figure 1

14 pages, 1582 KiB  
Article
Delayed Growth in Immature Male Rats Exposed to 900 MHz Radiofrequency
by Raphaël Bodin, Franck Robidel, Stéphanie Rodrigues, Anthony Lecomte and Anne-Sophie Villégier
Appl. Sci. 2024, 14(16), 6978; https://doi.org/10.3390/app14166978 - 9 Aug 2024
Cited by 1 | Viewed by 1317
Abstract
People have been exposed to the 900 MHz mobile phone electromagnetic field for approximately 30 years. There is still no conclusion from immature rodent experiments regarding the potential effects of nonthermal radiofrequency (RF) 900 MHz continuous wave exposure during biological development. Here, we [...] Read more.
People have been exposed to the 900 MHz mobile phone electromagnetic field for approximately 30 years. There is still no conclusion from immature rodent experiments regarding the potential effects of nonthermal radiofrequency (RF) 900 MHz continuous wave exposure during biological development. Here, we test the hypothesis that mother rats exposed at a whole-body specific absorption rate (wbSAR) occupational (Oc) limit of the International Commission on Non-Ionizing Radiation Protection for humans (0.4 W/kg) will show impairments in development, with less effect at the public (Pu) limit (0.08 W/kg). The wbSAR was estimated at 0.4 W/kg to mimic working mothers (OcM exposure) and 0.08 W/kg for non-working mothers, i.e., public (PuM exposure). This pre- and postnatal study is the first to compare public and occupational exposure limits on rat pup physical development. Litter endpoints and the descendants’ body weights and lengths were recorded regularly from birth concomitantly with the age of developmental landmarks. Male neonates showed earlier pinna ear detachment and earlier eye opening in both the OcM and PuM groups, but earlier incisor eruption only in the PuM group. The OcM-exposed males showed lower body weight as juveniles until adolescence. The OcM- and PuM-exposed descendant females showed earlier pinna ear detachment and eye opening with similar body weight. These data suggest variations in the development time of descendant rats when the mother rats received daily 900 MHz continuous waves at human limits for workers and non-workers (public). Full article
(This article belongs to the Special Issue Electromagnetic Fields (EMF) Applications in Medicine)
Show Figures

Figure 1

29 pages, 14405 KiB  
Article
Data Immunity in Near Field Radio Frequency Communication Systems—NFC as an Aspect of Electromagnetic Information Security
by Andrzej Firlej, Slawomir Musial and Ireneusz Kubiak
Appl. Sci. 2024, 14(13), 5854; https://doi.org/10.3390/app14135854 - 4 Jul 2024
Cited by 1 | Viewed by 1512
Abstract
The NFC and MIFARE systems (referred to as HF-band RFID) are a special case of Radio Frequency Identification (RFID) technology using a radio frequency of 13.56 MHz for communication. The declared range of such communication is usually several cm and is characterized by [...] Read more.
The NFC and MIFARE systems (referred to as HF-band RFID) are a special case of Radio Frequency Identification (RFID) technology using a radio frequency of 13.56 MHz for communication. The declared range of such communication is usually several cm and is characterized by the need to bring the data carrier close to the system reader. Due to the possibility of transmitting sensitive data in this type of system, an important problem seems to be the electromagnetic security of the transmitted data between the cards (tags) and the reader and within the system. In most of the available research studies, the security of RFID systems comes down to the analysis of the effectiveness of encryption of transmitted data or testing the range of communication between the reader and the identifier. In this research, however, special attention is paid to the so-called electromagnetic information security without the analysis of cryptographic protection. In some cases (e.g., data retransmission), encryption may not be an effective method of securing data (because, e.g., encrypted data might be used to open and start a car with a keyless system). In addition, the research draws attention to the fact that the data from the identifier can be accessed not only from the identifier, but also from the control system (reader, wiring, controller, etc.) from which the data can be radiated (unintentionally) at a much greater distance than the communication range between the identifier and the reader. In order to determine the security of the transmitted data in the HF-band RFID systems, a number of tests were carried out with the use of specialized equipment. During the measurements, both the data carriers themselves (cards, key fobs, stickers, tags) and exemplary systems for reading data from the media (a writable card reader, a mobile phone with NFC function, and an extensive access control system) were tested. The experiments carried out made it possible to determine the safety of NFC and MIFARE systems during their use and only storage (e.g., the ability to read data from an identification card stored in a pocket). Full article
Show Figures

Figure 1

17 pages, 21469 KiB  
Article
Eight-Element Dual-Band Multiple-Input Multiple-Output Mobile Phone Antenna for 5G and Wireless Local Area Network Applications
by Tao He, Jianlin Huang, Jiaping Lu, Xiaojing Shi and Gui Liu
Micromachines 2023, 14(12), 2200; https://doi.org/10.3390/mi14122200 - 30 Nov 2023
Cited by 3 | Viewed by 1631
Abstract
This paper proposes an eight-element dual-band multiple-input multiple-output (MIMO) antenna that operates in the fifth generation (5G), n78 (3400–3600 MHz), and WLAN (5275–5850 MHz) bands to accommodate the usage scenarios of 5G mobile phones. The eight antenna elements are printed on two long [...] Read more.
This paper proposes an eight-element dual-band multiple-input multiple-output (MIMO) antenna that operates in the fifth generation (5G), n78 (3400–3600 MHz), and WLAN (5275–5850 MHz) bands to accommodate the usage scenarios of 5G mobile phones. The eight antenna elements are printed on two long frames, which significantly reduce the usage of the internal space of the mobile phone. Each antenna element is printed on both surfaces of one frame, which consists of a radiator on the internal surface and a defected ground plane on the outer surface. The radiator is a rectangular ring fed by a 50 Ω microstrip line which is printed on the top surface of the system board. A parasitic unit is printed on the outer surface of each frame, which is composed of an inverted H-shaped and four L-shaped patches. Each parasitic unit is connected to the internal surface of the frames through a via, and then it is connected to a 1.5 mm wide microstrip line on the top surface of the system board, which is connected to the ground plane on the bottom surface of the system board by a via. Four L-shaped slots, four rectangular slots, and four U-shaped slots are etched onto the system board, which provides good isolation between the antenna elements. Two merged rectangular rings are printed on the center of each frame, which improves the isolation further. The return loss is better than 6 dB, and the isolation between the units is better than 15 dB in the required working frequency bands. In addition, the use of a defected ground structure not only makes the antenna element obtain better isolation but also improves the overall working efficiency. The measurement results show that the proposed MIMO antenna structure can be an ideal solution for 5G and WLAN applications. Full article
(This article belongs to the Special Issue Exploring the Potential of 5G and Millimeter-Wave Array Antennas)
Show Figures

Figure 1

16 pages, 16619 KiB  
Article
Specific Absorption Rate and Temperature Distributions in the Human Head with Implanted Deep Brain Stimulation Subjected to Mobile Phone Electromagnetic Radiation
by Rui Tian, Yu-Qin Wu, Mai Lu and Xin-Fa Miao
Electronics 2023, 12(21), 4389; https://doi.org/10.3390/electronics12214389 - 24 Oct 2023
Cited by 6 | Viewed by 2579
Abstract
Deep Brain Stimulation (DBS), also known as the brain pacemaker, has gradually evolved from a scientific experiment into an effective clinical treatment for movement disorders as a method of improving movement disorders. At present, there are few studies on the effects of 5G [...] Read more.
Deep Brain Stimulation (DBS), also known as the brain pacemaker, has gradually evolved from a scientific experiment into an effective clinical treatment for movement disorders as a method of improving movement disorders. At present, there are few studies on the effects of 5G mobile phone antenna radiation on the heads of adult patients implanted with DBS. In this study, COMSOL Multiphysics was used to establish a mobile phone model with a 5G/4G patch antenna, a real human head, and the DBS models. Then, we calculated the specific absorption rate (SAR) of various layers of the head tissues with the mobile phone at different distances from the human head, as well as the temperature change rule of the head and the DBS irradiated by the antenna for 30 min. The simulation results showed that when the frequency is 3500 MHz, the electromagnetic radiation of the phone to the patient’s head is generally greater than that of the 2400 MHz. When at 3500 MHz, the distance between the phone and the head is inversely proportional to the SAR value; thus, when the distance between the phone and the head is 1 cm, the maximum SAR value—which is 1.132 W/kg—appeared in the skin layer of the head with implanted DBS. But it is worth noting that the largest temperature rise appeared in the brain layer at 2400 MHz and at a distance of 1 cm, which is 0.2148 °C. Although the SAR values and temperature rise obtained from all simulations are below the limits of 2 W/kg and +1 °C specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), we still recommend that patients with implanted DBS maintain a distance when using the phones. Full article
Show Figures

Figure 1

14 pages, 3719 KiB  
Article
Ten-Port MIMO Inverted-F Antenna for LTE Bands 43/48/49 Bands Smartphone Applications
by Muhammad Zahid, Aliya Khalid, Hira Moazzam, Hajra Sadaqat, Sultan Shoaib and Yasar Amin
Electronics 2023, 12(19), 4005; https://doi.org/10.3390/electronics12194005 - 22 Sep 2023
Cited by 4 | Viewed by 1589
Abstract
This paper presents a design and performance analysis of a 10-element 5G massive Multiple Input Multiple Output (m-MIMO) antenna array for sub-6 GHz mobile handsets, specifically for Long Term Evolution (LTE) bands 43 (3600–3800 MHz) and 48/49 (3550–3700 MHz) applications. The proposed antenna [...] Read more.
This paper presents a design and performance analysis of a 10-element 5G massive Multiple Input Multiple Output (m-MIMO) antenna array for sub-6 GHz mobile handsets, specifically for Long Term Evolution (LTE) bands 43 (3600–3800 MHz) and 48/49 (3550–3700 MHz) applications. The proposed antenna array consists of ten closely spaced inverted-F antennas with a compact size of 20 × 9 mm2 of a single element. The proposed antenna array provides high efficiency and low correlation between the antenna elements, which result in increased data rate and enhanced signal quality. The performance of the antenna array is evaluated in terms of the radiation pattern, diversity gain, efficiency, and correlation coefficient. The simulation and measured results show that the proposed antenna array achieves an approximate peak gain of 2.8 dBi and a total efficiency of 65% at the resonance frequency of 37 GHz and a low correlation coefficient of 0.07 between the adjacent antenna elements. Moreover, the single and two-hand modes are also given in order to highlight the potential of such a structure as a smart mobile terminal. The simulated results are discovered to be in excellent agreement with the measured values. We think this structure has a bright future in the next generation of smart mobile phones based on the performance and the measured findings. Full article
(This article belongs to the Collection MIMO Antennas)
Show Figures

Figure 1

14 pages, 3561 KiB  
Article
Safety Assessment and Uncertainty Quantification of Electromagnetic Radiation from Mobile Phones to the Human Head
by Miao Yi, Boqi Wu, Yang Zhao, Tianbo Su and Yaodan Chi
Appl. Sci. 2023, 13(14), 8107; https://doi.org/10.3390/app13148107 - 12 Jul 2023
Cited by 1 | Viewed by 1953
Abstract
With the rapid development of the mobile communication technology, the design of mobile phones has become more complex, and research on the electromagnetic radiation from mobile phones that reaches the human head has become important. Therefore, first of all, a model of mobile [...] Read more.
With the rapid development of the mobile communication technology, the design of mobile phones has become more complex, and research on the electromagnetic radiation from mobile phones that reaches the human head has become important. Therefore, first of all, a model of mobile phone daily use was established. Then, based on the established simulation model, the safety of human head exposure to mobile phones was evaluated. The generalized polynomial chaos (gPC) method was used to establish a proxy model of the specific absorption rate (SAR) of the human head at different frequencies to perform a parameter uncertainty quantification (UQ). Finally, the Sobol method was used to quantify the influence of relevant variables on the SAR. The simulation results showed that the gPC method can save time and cost while ensuring accuracy, and the SAR value is greatly influenced by the electromagnetic materials of the mobile phone shell. Combined with the above analysis, this paper can provide reasonable suggestions for the design of mobile phone electromagnetic materials. Full article
Show Figures

Figure 1

Back to TopTop