Metasurface-Loaded Biodegradable Mobile Phone Back Cover for Enhanced Radiation Performance
Abstract
:1. Introduction
- Enhance antenna bandwidth by improving impedance matching for both useful frequency bands;
- Reduce SAR by minimizing back radiation from the antenna, thereby decreasing the electromagnetic energy absorbed by the user for both bands;
- Promote sustainability by using PLA as the primary material for the mobile phone case.
2. Materials and Methods
2.1. Polylactic Acid and Its Properties
2.2. Fabrication of PLA Samples
2.3. Characterization of PLA Substrate
3. Results and Discussion
3.1. Design and Characterization of the MTS Unit Cell
3.2. Integration of MTS with Six-Port MIMO Antenna
3.3. Safety Study of Proposed Antenna Module for Mobile Applications
3.4. Measurement Results of the MIMO Antenna with the MTS-Loaded Mobile Cover
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Uhrich, K.E. Biodegradable and biocompatible polymers for electronic applications: A review. J. Bioact. Compat. Polym. 2019, 34, 3–15. [Google Scholar] [CrossRef]
- Lawal, U.; Valapa, R.B. Bioplastics: An Introduction to the Role of Eco-Friendly Alternative Plastics in Sustainable Packaging. In Bio-Based Packaging: Material, Environmental and Economic Aspects; Sapuan, S.M., Ilyas, R.A., Eds.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2021; pp. 319–334. [Google Scholar]
- Wu, Y.; Gao, X.; Wu, J.; Zhou, T.; Nguyen, T.T.; Wang, Y. Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports. Polymers 2023, 15, 3096. [Google Scholar] [CrossRef]
- Morão, A.; de Bie, F. Life Cycle Impact Assessment of Polylactic Acid (PLA) Produced from Sugarcane in Thailand. J. Polym. Environ. 2019, 27, 2523–2539. [Google Scholar] [CrossRef]
- Li, X.; Lin, Y.; Liu, M.; Meng, L.; Li, C. A Review of Research and Application of Polylactic Acid Composites. J. Appl. Polym. Sci. 2023, 140, e53477. [Google Scholar] [CrossRef]
- Khouri, N.G.; Bahú, J.O.; Blanco-Llamero, C.; Severino, P.; Concha, V.O.C.; Souto, E.B. Polylactic Acid (PLA): Properties, Synthesis, and Biomedical Applications–A Review of the Literature. J. Mol. Struct. 2024, 1309, 138243. [Google Scholar] [CrossRef]
- Freeland, B.; McCarthy, E.; Balakrishnan, R.; Fahy, S.; Boland, A.; Rochfort, K.D.; Dabros, M.; Marti, R.; Kelleher, S.M.; Gaughran, J. A Review of Polylactic Acid as a Replacement Material for Single-Use Laboratory Components. Materials 2022, 15, 2989. [Google Scholar] [CrossRef]
- Raquez, J.-M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542. [Google Scholar] [CrossRef]
- Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges. Proc. IEEE 2014, 102, 366–385. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, T.-Y.; Wu, Q.-S.; Zhu, L.; Zhong, S.; Yuan, T. Pin-Loaded Patch Antenna Fed With a Dual-Mode SIW Resonator for Bandwidth Enhancement and Stable High Gain. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 279–283. [Google Scholar] [CrossRef]
- Jeong, G.-T.; Kim, W.-S.; Kwak, K. Dual-Band Wi-Fi Antenna with a Ground Stub for Bandwidth Enhancement. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1036–1039. [Google Scholar] [CrossRef]
- Liu, G.; Hu, P.; Su, G.; Pan, Y. Bandwidth and Gain Enhancement of a Single-Layer Filtering Patch Antenna Using Reshaped TM12 Mode. IEEE Antennas Wirel. Propag. Lett. 2023, 23, 1–5. [Google Scholar]
- Xu, K.-D.; Xu, H.; Liu, Y.; Li, J.; Liu, Q. Microstrip Patch Antennas with Multiple Parasitic Patches and Shorting Vias For Bandwidth Enhancement. IEEE Access 2018, 6, 11624–11633. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, J.; Chen, J.-X. Contactless Varactor-Loaded Bandwidth-Enhanced Frequency-Reconfigurable Patch Antenna. IEEE AWPL 2024, 23, 2456–2460. [Google Scholar] [CrossRef]
- Arif, A.; Zubair, M.; Ali, M.; Khan, M.U.; Mehmood, M.Q. A Compact, Low-Profile Fractal Antenna for Wearable On-Body WBAN Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 981–985. [Google Scholar] [CrossRef]
- Zada, M.; Shah, I.A.; Yoo, H. Metamaterial-Loaded Compact High-Gain Dual-Band Circularly Polarized Implantable Antenna System for Multiple Biomedical Applications. IEEE Trans. Antennas Propag. 2020, 68, 1140–1144. [Google Scholar] [CrossRef]
- Fang, Y.; Jia, Y.; Zhu, J.-Q.; Liu, Y.; An, J. Self-Decoupling, Shared-Aperture, Eight-Antenna MIMO Array With MIMO-SAR Reduction. IEEE Trans. Antennas Propag. 2024, 72, 1905–1910. [Google Scholar] [CrossRef]
- Lu, B.; Pang, B.; Hu, W.; Jiang, W. Low-SAR Antenna Design and Implementation for Mobile Phone Applications. IEEE Access 2021, 21, 96444–96452. [Google Scholar] [CrossRef]
- Kwak, S.-I.; Sim, D.-U.; Kwon, J.H. Design of Optimized Multilayer PIFA With the EBG Structure for SAR Reduction in Mobile Applications. IEEE Trans. Electromagn. Compat. 2011, 53, 325–331. [Google Scholar] [CrossRef]
- Varheenmaa, H.; Ylä-Oijala, P.; Lehtovuori, A.; Viikari, V. SAR Reduction With Antenna Cluster Technique. IEEE Trans. Antennas Propag. 2022, 70, 12282–12287. [Google Scholar] [CrossRef]
- Yang, C.; Yao, Y.; Yu, J.; Chen, X. Novel Compact Multiband MIMO Antenna for Mobile Terminal. Int. J. Antennas Propag. 2012, 2012, 691681. [Google Scholar] [CrossRef]
- Wong, K.-L.; Hsu, Y.-H.; Lee, C.-Y.; Li, W.-Y. Wideband 4-Port Patch Antenna Module Based Compact 8-Port Two-Module Antenna for 6G Upper Mid-Band 8 × 4 Device MIMO With Enhanced Spectral Efficiency. IEEE Access 2024, 12, 88976–88991. [Google Scholar] [CrossRef]
- Liu, D.Q.; Zhang, M.; Luo, H.J.; Wen, H.L.; Wang, J. Dual-Band Platform-Free PIFA for 5G MIMO Application of Mobile Devices. IEEE Trans. Antennas Propag. 2018, 66, 6328–6333. [Google Scholar] [CrossRef]
- C95.1-2005; IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Standard: Piscataway, NJ, USA, 2006.
- ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- Yadav, H.; Rai, U.; Singh, R. Radiofrequency radiation: A possible threat to male fertility. Reprod. Toxicol. 2021, 100, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Durusoy, R.; Hassoy, H.; Özkurt, A.; Karababa, A.O. Hassoy Mobile phone use, school electromagnetic field levels and related symptoms: A cross-sectional survey among 2150 high school students in Izmir. Environ. Health 2017, 16, 1–14. [Google Scholar] [CrossRef]
- Shin, J.C.; Kim, J.; Grigsby-Toussaint, D. Mobile phone interventions for sleep disorders and sleep quality: Systematic review. JMIR Mhealth Uhealth 2017, 5, e7244. [Google Scholar] [CrossRef]
- Zhang, T.; Pang, X.; Zhang, H.; Zheng, Q. Ultrabroadband RCS Reduction and Gain Enhancement of Patch Antennas by Phase Gradient Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 665–669. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, W.; Zhao, Q.; Kong, L.; Ren, Y.-H.; Yang, X.-X. Broadband RCS Reduction, Antenna Miniaturization, and Bandwidth Enhancement by Combining Reactive Impedance Surface and Polarization Conversion Metasurface. IEEE Trans. Antennas Propag. 2024, 72, 7395–7400. [Google Scholar] [CrossRef]
- Sufian, M.A.; Hussain, N. Metasurface-Based Phone Case for the SAR Reduction of the 5G Mobile Phones. IEEE Trans. Electromagn. Compat. 2024, 66, 417–426. [Google Scholar] [CrossRef]
- Sufian, M.A.; Hussain, N.; Askari, H.; Park, S.G.; Shin, K.S.; Kim, N. Isolation Enhancement of a Metasurface-Based MIMO Antenna Using Slots and Shorting Pins. IEEE Access 2021, 9, 73533–73543. [Google Scholar] [CrossRef]
- Signal Boosters. Cellular frequency bands: A simple breakdown. 2024. Available online: https://www.signalboosters.com/blog/cellular-frequency-bands-a-simple-breakdown/ (accessed on 14 December 2024).
- Dahman, Y. Poly (Lactic Acid): Green and Sustainable Plastics. Ferment. Technol. 2012; 1, in press. [Google Scholar]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R. Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: A review. Food Chem. 2020, 310, 125915. [Google Scholar] [CrossRef]
- Resende, T.M.; Costa, M.M. Biopolymers of sugarcane. In Sugarcane Biorefinery, Technology and Perspectives, 1st ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 229–254. [Google Scholar]
- Avinc, O.; Khoddami, A. Overview of poly (lactic acid) (PLA) fibre: Part I: Production, properties, performance, environmental impact, and end-use applications of poly (lactic acid) fibres. Fibre Chem. 2009, 41, 391–401. [Google Scholar] [CrossRef]
- Pirsa, S.; Sani, I.K.; Mirtalebi, S.S. Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag. Shelf Life 2022, 31, 100789. [Google Scholar] [CrossRef]
- Raja, M.M.; Lim, P.Q.; Wong, Y.S.; Xiong, G.M.; Zhang, Y.; Venkatraman, S.; Huang, Y. Polymeric Nanomaterials: Methods of Preparation and Characterization. In Nanocarriers for Drug Delivery, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 557–653. [Google Scholar]
- Shaikh, S.; Yaqoob, M.; Aggarwal, P. An overview of biodegradable packaging in food industry. Curr. Res. Food Sci. 2021, 4, 503–520. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials and the Environment: Eco-informed Material Choice, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Handa, M.; Soni, M.; Beg, S.; Shukla, R. Nanoscaffolds and role of 3D-printed surgical dressings for wound healing application. In Nanotechnology and Regenerative Medicine, 1st ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 371–395. [Google Scholar]
- Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef]
- Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S.W. An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Convers. Biorefinery 2023, 14, 3057. [Google Scholar] [CrossRef]
- Latti, K.-P.; Kettunen, M.; Strom, J.-P.; Silventoinen, P. A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials. IEEE Trans. Instrum. Meas. 2007, 56, 1845–1850. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; John Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Islam, S.; Zada, M.; Yoo, H. Highly Compact Integrated Sub-6 GHz and Millimeter-Wave Band Antenna Array for 5G Smartphone Communications. IEEE Trans. Antennas Propag. 2022, 70, 11629–11638. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharjee, J.; Ali, J.; Uzair, M.; Phakaew, T.; Akkaraekthalin, P.; Maiket, Y.; Yeetsorn, R.; Chalermwisutkul, S. Metasurface-Loaded Biodegradable Mobile Phone Back Cover for Enhanced Radiation Performance. Materials 2025, 18, 730. https://doi.org/10.3390/ma18040730
Acharjee J, Ali J, Uzair M, Phakaew T, Akkaraekthalin P, Maiket Y, Yeetsorn R, Chalermwisutkul S. Metasurface-Loaded Biodegradable Mobile Phone Back Cover for Enhanced Radiation Performance. Materials. 2025; 18(4):730. https://doi.org/10.3390/ma18040730
Chicago/Turabian StyleAcharjee, Juin, Jawad Ali, Muhammad Uzair, Thipamas Phakaew, Prayoot Akkaraekthalin, Yaowaret Maiket, Rungsima Yeetsorn, and Suramate Chalermwisutkul. 2025. "Metasurface-Loaded Biodegradable Mobile Phone Back Cover for Enhanced Radiation Performance" Materials 18, no. 4: 730. https://doi.org/10.3390/ma18040730
APA StyleAcharjee, J., Ali, J., Uzair, M., Phakaew, T., Akkaraekthalin, P., Maiket, Y., Yeetsorn, R., & Chalermwisutkul, S. (2025). Metasurface-Loaded Biodegradable Mobile Phone Back Cover for Enhanced Radiation Performance. Materials, 18(4), 730. https://doi.org/10.3390/ma18040730