Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = mm waveband

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4750 KiB  
Article
Ultra-Wide-Field Long-Wave Infrared System via Hybrid Refractive–Reflective Structure and Field of View Stitching
by Yiruo Wang, Shan Mao and Jianlin Zhao
Photonics 2025, 12(5), 453; https://doi.org/10.3390/photonics12050453 - 7 May 2025
Viewed by 443
Abstract
To address the application demands of ultra-wide-field optical systems, we developed a compact, long-infrared waveband optical system using a field-of-view (FoV) stitching method. This system features a refractive–reflective hybrid structure, with the reflective pathway expanding the FoV and the refractive pathway employing germanium [...] Read more.
To address the application demands of ultra-wide-field optical systems, we developed a compact, long-infrared waveband optical system using a field-of-view (FoV) stitching method. This system features a refractive–reflective hybrid structure, with the reflective pathway expanding the FoV and the refractive pathway employing germanium to correct field defects and aberrations. By stitching the FoVs of the two structures, we achieved an ultra-wide-field long-infrared-waveband imaging system over a range of 0°~190°, with an operational wavelength range of 8.7~11.5 μm. The system exhibits excellent imaging performance, with a modulation transfer function (MTF) exceeding 0.5 at 17 lp/mm, the blur spot remaining within the airy disk limit, and the energy concentration exceeding 60% at 15 μm: the tolerance design meets the imaging requirements. Additionally, the system maintains stable image quality within the temperature range of −20 °C~60 °C. The design offers excellent imaging quality, high design flexibility, good real-time performance, compact size, and low economic cost, providing an effective optical structure and realization strategy for ultra-wide-field imaging systems. Full article
(This article belongs to the Special Issue Optical Systems and Design)
Show Figures

Figure 1

17 pages, 3862 KiB  
Article
Road Surface Texture Evaluation and Relation to Low-Speed Skid Resistance for Different Types of Mixtures
by Wanyan Ren, Jun Li, Yi Zhang, Xinya Wang and Ruixue Shao
Coatings 2024, 14(11), 1367; https://doi.org/10.3390/coatings14111367 - 27 Oct 2024
Viewed by 1348
Abstract
Pavement skid resistance is significant for driving safety. British Pendulum Number (BPN) is commonly used as a low-speed skid resistance indicator, whereas sometimes it is impractical for data collection on roads in service. Since skid resistance is greatly affected by pavement surface texture, [...] Read more.
Pavement skid resistance is significant for driving safety. British Pendulum Number (BPN) is commonly used as a low-speed skid resistance indicator, whereas sometimes it is impractical for data collection on roads in service. Since skid resistance is greatly affected by pavement surface texture, this research aims to evaluate pavement surface texture comprehensively and estimate the low-speed friction BPN from road surface texture on macro- and micro- scale. Asphalt Concrete (AC) and Stone Mastic Asphalt (SMA) were included. Road surface texture was evaluated from four aspects, texture depth, amplitude-related Root Means Square (RMS), elevation variances corresponding to different wavebands and texture spectral analysis. Texture depth indicators include Mean Texture Depth (MTD) and Mean Profile Depth (MPD). Elevation variances with three wavebands, from 5 mm to 50 mm, from 0.5 mm to 5 mm and from 0.024 mm to 0.5 mm respectively, were obtained. The results show that MPD is well correlated with MTD. Elevation variances with different wavebands demonstrates that the elevation variance of macro-texture with long wavelengths from 5 mm to 50 mm dominates the total variance. Spectral analysis shows that texture level is larger when the wavelength is beyond 4 mm, which is consistent with elevation variances. A linear regression between BPN and single texture index, as well as multiple linear regression analysis were conducted. The former regression result indicates that it is not feasible to estimate BPN using single index due to low correlation coefficient R2. The latter shows that the BPN can be estimated from texture levels corresponding to 64 mm and 2 mm, and the micro-texture. The R2 can be up to 0.684. This research will contribute to fast acquisition of BPN from pavement surface texture, thus improving skid resistance. Full article
Show Figures

Figure 1

16 pages, 2541 KiB  
Article
Improving the Estimation Accuracy of Soil Organic Matter Content Based on the Spectral Reflectance from Soils with Different Grain Sizes
by Xayida Subi, Mamattursun Eziz and Ning Wang
Land 2024, 13(7), 1111; https://doi.org/10.3390/land13071111 - 22 Jul 2024
Cited by 3 | Viewed by 1229
Abstract
Accurate and rapid estimation of soil organic matter (SOM) content is of great significance for advancing precision agriculture. Compared with traditional chemical methods, the hyperspectral estimation is superior in rapidly estimating SOM content. Soil grain size affects soil spectral reflectance, thereby affecting the [...] Read more.
Accurate and rapid estimation of soil organic matter (SOM) content is of great significance for advancing precision agriculture. Compared with traditional chemical methods, the hyperspectral estimation is superior in rapidly estimating SOM content. Soil grain size affects soil spectral reflectance, thereby affecting the accuracy of hyperspectral estimation. However, the appropriate soil grain size for the hyperspectral analysis is nearly unknown. This study propose a best hyperspectral estimation method for determining SOM content of farmland soil in the Ibinur Lake Irrigation Area (ILIA) of the northwest arid zones of China. The original spectral reflectance of the 20-mesh (0.85 mm) and 60-mesh (0.25 mm) sieved soil were obtained, and the feature wavebands were selected using five types of spectral transformations. Then, hyperspectral estimation models were constructed based on the partial least squares regression (PLSR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) models. Results show that the SOM content had relatively higher correlation coefficient with spectral reflectance of the 0.85 mm sieved soil than that of the 0.25 mm sieved soil. The transformation of original spectral reflectance of soil effectively enhanced the spectral characteristics related to SOM content. Soil grain size obviously affected spectral reflectance and the accuracy of hyperspectral estimation models. The overall stability and estimation accuracy of RF model was significantly higher compared with the PLSR, SVM, and XGBoost. Finally, the RF model combined with the root mean first-order differentiation (RMSFD) of spectral reflectance of the 0.85 mm sieved soil (R2 = 0.82, RMSE = 2.37, RPD = 2.27) was identified as the best method for estimating SOM content of farmland soil in the ILIA. Full article
(This article belongs to the Topic Hyperspectral Imaging and Signal Processing)
Show Figures

Figure 1

21 pages, 15396 KiB  
Article
Development of an Imaging Spectrometer with a High Signal-to-Noise Ratio Based on High Energy Transmission Efficiency for Soil Organic Matter Detection
by Jize Fan, Yuwei Wang, Guochao Gu, Zhe Li, Xiaoxu Wang, Hanshuang Li, Bo Li and Denghui Hu
Sensors 2024, 24(13), 4385; https://doi.org/10.3390/s24134385 - 5 Jul 2024
Cited by 3 | Viewed by 1435
Abstract
Hyperspectral detection of the change rate of organic matter content in agricultural remote sensing requires a high signal-to-noise ratio (SNR). However, due to the large number and efficiency limitation of the components, it is difficult to improve the SNR. This study uses high-efficiency [...] Read more.
Hyperspectral detection of the change rate of organic matter content in agricultural remote sensing requires a high signal-to-noise ratio (SNR). However, due to the large number and efficiency limitation of the components, it is difficult to improve the SNR. This study uses high-efficiency convex grating with a diffraction efficiency exceeding 50% across the 360–850 nm range, a back-illuminated Complementary Metal Oxide Semiconductor (CMOS) detector with a 95% efficiency in peak wavelength, and silver-coated mirrors to develop an imaging spectrometer for detecting soil organic matter (SOM). The designed system meets the spectral resolution of 10 nm in the 360–850 nm range and achieves a swath of 100 km and a spatial resolution of 100 m at an orbital height of 648.2 km. This study also uses the basic structure of Offner with fewer components in the design and sets the mirrors of the Offner structure to have the same sphere, which can achieve the rapid adjustment of the co-standard. This study performs a theoretical analysis of the developed Offner imaging spectrometer based on the classical Rowland circular structure, with a 21.8 mm slit length; simulates its capacity for suppressing the +2nd-order diffraction stray light with the filter; and analyzes the imaging quality after meeting the tolerance requirements, which is combined with the surface shape characteristics of the high-efficiency grating. After this test, the grating has a diffraction efficiency above 50%, and the silver-coated mirrors have a reflection value above 95% on average. Finally, the laboratory tests show that the SNR over the waveband exceeds 300 and reaches 800 at 550 nm, which is higher than some current instruments in orbit for soil observation. The proposed imaging spectrometer has a spectral resolution of 10 nm, and its modulation transfer function (MTF) is greater than 0.23 at the Nyquist frequency, making it suitable for remote sensing observation of SOM change rate. The manufacture of such a high-efficiency broadband grating and the development of the proposed instrument with high energy transmission efficiency can provide a feasible technical solution for observing faint targets with a high SNR. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 2278 KiB  
Article
Characterizing the Spatial Uniformity of Light Intensity and Spectrum for Indoor Crop Production
by László Balázs, Zoltán Dombi, László Csambalik and László Sipos
Horticulturae 2022, 8(7), 644; https://doi.org/10.3390/horticulturae8070644 - 15 Jul 2022
Cited by 16 | Viewed by 3546
Abstract
Maintaining uniform photon irradiance distribution above the plant canopy is a fundamental goal in controlled environment agriculture (CEA). Spatial variation in photon irradiance below the light saturation point will drive differences in individual plant development, decreasing the economic value of the crop. Plant [...] Read more.
Maintaining uniform photon irradiance distribution above the plant canopy is a fundamental goal in controlled environment agriculture (CEA). Spatial variation in photon irradiance below the light saturation point will drive differences in individual plant development, decreasing the economic value of the crop. Plant growth is also affected by the spectral composition of light. So far, little attention has been paid to the quantification of the spatial variability in horticultural lighting applications. This work provides a methodology to benchmark and compare lighting installations used in indoor cultivation facilities. We measured the photon irradiance distributions underneath two typical grow light installations using a 10 × 10 measurement grid with 100 mm spacing. We calculated photon irradiance values for each grid point for 100 nm-wide blue, green, red and far-red wavebands covering the 400–800 nm range. We showed that the generally used uniformity metric defined as the minimum to average ratio of PPFD is not appropriate for the characterization of light uniformity in horticultural lighting applications. Instead, we propose to normalize photon irradiance to the maximum, analyze the histograms constructed from relative photon irradiance values and consider the light response of the cultivated crop while comparing the performance of CEA grow systems. Full article
Show Figures

Figure 1

14 pages, 677 KiB  
Article
A 3D MIMO Channel Model for a High-Speed Train Millimeter Wave Communication System under Cutting and Viaduct Environments
by Eva Assiimwe and Yihenew Wondie Marye
Electronics 2022, 11(13), 2025; https://doi.org/10.3390/electronics11132025 - 28 Jun 2022
Cited by 4 | Viewed by 2188
Abstract
Incorporating MIMO technology with 3D geometry-based stochastic models (GBSM) is a promising channel modeling technique for 5G and beyond. These models could be extended to high-speed train (HST) environments at mmWave bands. In this paper, the proposed 3D MIMO model is composed of [...] Read more.
Incorporating MIMO technology with 3D geometry-based stochastic models (GBSM) is a promising channel modeling technique for 5G and beyond. These models could be extended to high-speed train (HST) environments at mmWave bands. In this paper, the proposed 3D MIMO model is composed of the line of sight component (LOS), the non-line of sight component (NLOS) from one sphere, and multiple stochastic confocal elliptic cylinders. The model is applied in the viaduct and cutting environments with a time-varying Rician K-factor. The local channel statistical properties such as the auto correlation function, stationarity distance, and the level crossing rate (LCR) are derived and thoroughly investigated at the 41GHz frequency. These properties are compared with the corresponding measured results at the same wave frequency for an HST wireless channel. There is a strong correlation between the results from the derived model and the measured results. Therefore, this model can be extended to be used for viaduct and cutting channel modeling at the mmWave band. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

10 pages, 2135 KiB  
Communication
Optical Design of a 4× Zoom Lens with a Stable External Entrance Pupil and Internal Stop
by Rui Qu, Jing Duan, Kai Liu, Jianzhong Cao and Jianfeng Yang
Photonics 2022, 9(3), 191; https://doi.org/10.3390/photonics9030191 - 17 Mar 2022
Cited by 4 | Viewed by 3284
Abstract
Zoom lens with stationary external entrance pupil and internal stop is a type of special optical system that can be used in cascaded optics to meet the requirements of long focal length or variable magnification. We proposed a 4× zoom lens to improve [...] Read more.
Zoom lens with stationary external entrance pupil and internal stop is a type of special optical system that can be used in cascaded optics to meet the requirements of long focal length or variable magnification. We proposed a 4× zoom lens to improve the pupil walking limitation observed in the conventional design. Varifocal- and pupil-stable differential equations are presented and a paraxial design of the lens with two moving parts was developed. Moreover, the zoom lens, which functions in the visible waveband 500 nm~750 nm, is designed using seven types of common optical glasses, has a constant f-number of 10 and focal range of 100 mm~400 mm, and achieves pupil walking in the range −3.9 mm to +4.3 mm. The results demonstrate that the design had good image quality and tolerance characteristics. Owing to the limited pupil walking and zoom capability, the scheme is of considerable interest for application in electrical optical systems. Full article
(This article belongs to the Special Issue Optical Instrumentation)
Show Figures

Figure 1

4 pages, 1560 KiB  
Proceeding Paper
A CMOS-Based Thermopile Array Fabricated on a Single SiO2 Membrane
by Richard Hopper, Syed Zeeshan Ali, Sophie Boual, Andrea De Luca, Ying Dai, Daniel Popa and Florin Udrea
Proceedings 2018, 2(13), 878; https://doi.org/10.3390/proceedings2130878 - 22 Nov 2018
Cited by 10 | Viewed by 2957
Abstract
We present a novel thermopile-based infrared (IR) sensor array fabricated on a single CMOS dielectric membrane, comprising of poly-silicon p+ and n+ elements. Processing of the chip is simplified by fabricating the entire array on a single membrane and by using [...] Read more.
We present a novel thermopile-based infrared (IR) sensor array fabricated on a single CMOS dielectric membrane, comprising of poly-silicon p+ and n+ elements. Processing of the chip is simplified by fabricating the entire array on a single membrane and by using standard CMOS Al metal layers for thermopile cold junction heatsinking. On a chip area of 1.76 mm × 1.76 mm, with a membrane size of 1.2 mm × 1.2 mm, we fabricated IR sensor arrays with 8 × 8 to 100 × 100 pixels. The 8 × 8 pixel device has <2% thermal crosstalk, a responsivity of 36 V/W and enhanced optical absorption in the 8–14 µm waveband, making it particularly suitable for people presence sensing. Full article
(This article belongs to the Proceedings of EUROSENSORS 2018)
Show Figures

Figure 1

Back to TopTop