Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = mitochondrial GSH (mtGSH)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3224 KiB  
Article
Astilbin Alleviates IL-17-Induced Hyperproliferation and Inflammation in HaCaT Cells via Inhibiting Ferroptosis Through the cGAS-STING Pathway
by Xiaohan Xu, Huizhong Zhang, Aqian Chang, Hulinyue Peng, Shiman Li, Ke Zhang, Wenqi Wang, Xingbin Yin, Changhai Qu, Xiaoxv Dong and Jian Ni
Int. J. Mol. Sci. 2025, 26(11), 5075; https://doi.org/10.3390/ijms26115075 - 24 May 2025
Viewed by 915
Abstract
Psoriasis, a chronic inflammatory skin disorder, is driven by dysregulated immune responses and keratinocyte dysfunction. Here, we explore the therapeutic potential of Astilbin (AST), a flavonoid with potent anti-inflammatory properties, in modulating ferroptosis and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) [...] Read more.
Psoriasis, a chronic inflammatory skin disorder, is driven by dysregulated immune responses and keratinocyte dysfunction. Here, we explore the therapeutic potential of Astilbin (AST), a flavonoid with potent anti-inflammatory properties, in modulating ferroptosis and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in IL-17-stimulated HaCaT keratinocytes. Our psoriatic cell model recapitulated key pathological features, including hyperproliferation, membrane integrity loss, mitochondrial dysfunction, and heightened oxidative stress, alongside elevated proinflammatory cytokine levels. Ferroptosis-related biomarkers were significantly altered, with increased malondialdehyde (MDA) accumulation, reduced glutathione (GSH) levels, iron overload (Fe2+), and enhanced lipid peroxidation (detected via C11-BODIPY). Mechanistically, mitochondrial damage triggered cytoplasmic leakage of mitochondrial DNA (mtDNA), activating the cGAS-STING pathway, as evidenced by upregulated pathway-associated protein expression. AST intervention effectively mitigated these pathological changes by suppressing ferroptosis and modulating cGAS-STING signaling. These findings reveal a dual-pathway regulatory mechanism, positioning AST as a promising therapeutic candidate for psoriasis. By elucidating the interplay between ferroptosis and the cGAS-STING pathway, this study provides new insights into psoriatic inflammation and offers a rationale for targeting these pathways in therapeutic strategies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

20 pages, 23873 KiB  
Article
Engeletin Targets Mitochondrial Dysfunction to Attenuate Oxidative Stress and Experimental Colitis in Intestinal Epithelial Cells Through AMPK/SIRT1/PGC-1α Signaling
by Jing Li, Zhijun Geng, Lixia Yin, Ju Huang, Minzhu Niu, Keni Zhang, Xue Song, Yueyue Wang, Lugen Zuo and Jianguo Hu
Antioxidants 2025, 14(5), 524; https://doi.org/10.3390/antiox14050524 - 27 Apr 2025
Viewed by 861
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, is characterized by chronic intestinal inflammation and epithelial barrier disruption. Emerging evidence highlights mitochondrial dysfunction as a pivotal contributor to IBD pathogenesis, where impaired mitochondrial homeostasis in intestinal epithelial cells (IECs) disrupts redox [...] Read more.
Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, is characterized by chronic intestinal inflammation and epithelial barrier disruption. Emerging evidence highlights mitochondrial dysfunction as a pivotal contributor to IBD pathogenesis, where impaired mitochondrial homeostasis in intestinal epithelial cells (IECs) disrupts redox balance, exacerbates oxidative stress, and triggers apoptosis, further compromising barrier integrity. This study investigated the therapeutic effects of Engeletin (Eng), a dihydroflavonoid from Smilax glabra Roxb., in dextran sulfate sodium (DSS)-induced colitis mice and colonic organoid models. Eng administration (10, 20, 40 mg/kg) significantly alleviated colitis symptoms, including weight loss, disease activity index (DAI) scores, and colon shortening, while restoring intestinal barrier integrity through the upregulation of tight junction proteins (ZO-1, claudin-1) and goblet cell preservation. Eng suppressed NF-κB-mediated inflammation and activated the Nrf2 antioxidant pathway, as well as reduced oxidative stress markers (MDA, CAT, GSH, and SOD). It attenuated epithelial apoptosis by balancing pro- and anti-apoptotic proteins (Bax/Bcl2, c-caspase3) and ameliorated mitochondrial dysfunction via enhanced ATP production, mtDNA levels, and complex I/IV activity. Mechanistically, Eng activated the AMPK/SIRT1/PGC-1α axis, and pharmacological inhibition of PGC-1α abolished its mitochondrial protective and anti-apoptotic effects. These findings demonstrate that Eng alleviates colitis by targeting mitochondrial homeostasis and oxidative stress through AMPK/SIRT1/PGC-1α signaling, offering a multitargeted strategy for IBD therapy. Full article
(This article belongs to the Special Issue Antioxidants as Adjuvants for Inflammatory Bowel Disease Treatment)
Show Figures

Graphical abstract

14 pages, 1873 KiB  
Article
Effects of Melatonin on H2O2-Induced Oxidative Damage of the Granulosa Cells in Hen Ovarian Follicles
by Sheng Wang, Yu Ou, Shengxiao Cao, Xue Sun, Ning Qin, Simushi Liswaniso and Rifu Xu
Genes 2025, 16(4), 362; https://doi.org/10.3390/genes16040362 - 22 Mar 2025
Viewed by 628
Abstract
Background: The egg-laying performance of hens is primarily regulated by ovarian follicle growth and development; these follicles are susceptible to oxidative damage caused by excessive reactive oxygen species (ROS). Oxidative damage can lead to follicular atresia and impaired reproductive performance. Melatonin (MT), a [...] Read more.
Background: The egg-laying performance of hens is primarily regulated by ovarian follicle growth and development; these follicles are susceptible to oxidative damage caused by excessive reactive oxygen species (ROS). Oxidative damage can lead to follicular atresia and impaired reproductive performance. Melatonin (MT), a known endogenous antioxidant, plays a role in regulating oxidative damage, but its precise mechanisms in mitigating H2O2-induced oxidative damage via mitophagy regulation in granulosa cells remain unclear. Methods: An in vitro oxidative damage model was established by determining the optimal H2O2 concentration using CCK-8 fluorescence quantification. The optimal MT concentration was identified through fluorescence quantification and catalase (CAT) activity assays. The protective effects of MT against H2O2-induced oxidative damage in follicular granulosa cells were investigated using flow cytometry, Western blotting, ELISA, and quantitative fluorescence analysis. Results: An in vitro oxidative damage model was established using H2O2-induced granulosa cells, characterized by P53 and LC3-II upregulation and LC3-I and BCL-2 downregulation. The optimal MT concentration for reducing cellular injury was determined. MT co-treatment enhanced CAT, GSH, and SOD activities, decreased LC3-II/LC3-I conversion, and increased P62 expression. Furthermore, MT reduced autophagic vesicle formation and restored mitochondrial membrane potential, demonstrating its protective effect against H2O2-induced oxidative damage. Conclusions: Melatonin alleviates H2O2-induced oxidative damage in chicken follicular granulosa cells by modulating antioxidant defense, autophagy, and mitochondrial function. These findings provide newer insights to our understanding of the regulatory mechanisms underlying the alleviation of the H2O2-induced oxidative damage in granulosa cells during ovarian follicle development in chickens. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 3836 KiB  
Article
Mitochondria-Targeted Antioxidant MitoQ Improves In Vitro Maturation and Subsequent Embryonic Development from Culled Cows
by Zhihao Feng, Junsong Shi, Jiajie Ren, Lvhua Luo, Dewu Liu, Yongqing Guo, Baoli Sun, Guangbin Liu, Ming Deng and Yaokun Li
Animals 2024, 14(20), 2929; https://doi.org/10.3390/ani14202929 - 11 Oct 2024
Cited by 2 | Viewed by 1709
Abstract
The purpose of this study was to investigate the effects and mechanisms of MitoQ on the IVM of culled bovine oocytes and subsequent embryonic development. The results revealed that in comparison to the control group (0 µmol/L), the IVM rate (p < [...] Read more.
The purpose of this study was to investigate the effects and mechanisms of MitoQ on the IVM of culled bovine oocytes and subsequent embryonic development. The results revealed that in comparison to the control group (0 µmol/L), the IVM rate (p < 0.05) and subsequent blastocyst rate (p < 0.05) of the low-concentration 1 and 5 µmol/L MitoQ treatment group were increased. The level of ROS (p < 0.05) in the MitoQ treatment group was decreased in comparison to the control group. Additionally, the level of GSH, MMP, ATP, and mt-DNA in the MitoQ treatment group was increased (p < 0.05) in comparison to the control group. The expression level of BAX was decreased (p < 0.05) in the MitoQ treatment group, and the BCL2, DNM1, Mfn2, SOD, and CAT were increased (p < 0.05). In conclusion, MitoQ improved mitochondrial dysfunction, increased mitochondrial activity during IVM, and reduced oxidative stress, resulting in increased IVM rates and subsequent embryonic development from culled cows. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

18 pages, 8137 KiB  
Article
MPV17 Prevents Myocardial Ferroptosis and Ischemic Cardiac Injury through Maintaining SLC25A10-Mediated Mitochondrial Glutathione Import
by Tao Xu and Guilan Chen
Int. J. Mol. Sci. 2024, 25(19), 10832; https://doi.org/10.3390/ijms251910832 - 9 Oct 2024
Cited by 4 | Viewed by 1507
Abstract
Ferroptosis is a recently identified iron-dependent programmed cell death with lipid peroxide accumulation and condensation and compaction of mitochondria. A recent study indicated that ferroptosis plays a pivotal role in ischemic cardiac injury with the mechanisms remain largely unknown. This study demonstrates that [...] Read more.
Ferroptosis is a recently identified iron-dependent programmed cell death with lipid peroxide accumulation and condensation and compaction of mitochondria. A recent study indicated that ferroptosis plays a pivotal role in ischemic cardiac injury with the mechanisms remain largely unknown. This study demonstrates that when an iron overload occurs in the ischemia/reperfusion cardiac tissues, which initiates myocardial ferroptosis, the expression levels of mitochondrial inner membrane protein MPV17 are reduced. Overexpression of MPV17 delivered via adenovirus significantly reduced ferroptosis in both cardiomyocytes with high levels of iron and cardiac I/R tissues. Mitochondrial glutathione (mtGSH), crucial for reactive oxygen species scavenging and mitochondrial homeostasis maintenance, is depleted in myocardial ferroptosis caused by iron overload. This mechanistic study shows that MPV17 can increase mitochondrial glutathione levels through maintaining the protein homeostasis of SLC25A10, which is a mitochondrial inner-membrane glutathione transporter. The absence of MPV17 in iron overload resulted in the ubiquitination-dependent degradation of SLC25A10, leading to impaired mitochondrial glutathione import. Moreover, we found that MPV17 was the targeted gene of Nrf2, which plays a pivotal role in preventing lipid peroxide accumulation and ferroptosis. The decreased expression levels of Nrf2 led to the inactivation of MPV17 in iron overload-induced myocardial ferroptosis. In summary, this study demonstrates the critical role of MPV17 in protecting cardiomyocytes from ferroptosis and elucidates the Nrf2-MPV17-SLC25A10/mitochondrial glutathione signaling pathway in the regulation of myocardial ferroptosis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

20 pages, 6103 KiB  
Communication
Redox Homeostasis Alteration Is Restored through Melatonin Treatment in COVID-19 Patients: A Preliminary Study
by María Elena Soto, Israel Pérez-Torres, Linaloe Manzano-Pech, Adrían Palacios-Chavarría, Rafael Ricardo Valdez-Vázquez, Verónica Guarner-Lans, Elizabeth Soria-Castro, Eulises Díaz-Díaz and Vicente Castrejón-Tellez
Int. J. Mol. Sci. 2024, 25(8), 4543; https://doi.org/10.3390/ijms25084543 - 21 Apr 2024
Cited by 4 | Viewed by 2229
Abstract
Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox [...] Read more.
Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox homeostasis alteration in serum from COVID-19 patients. We determined oxidative stress (OS) markers such as carbonyls, glutathione (GSH), total antioxidant capacity (TAC), thiols, nitrites (NO2), lipid peroxidation (LPO), and thiol groups in serum. We also studied the enzymatic activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST), reductase (GR), thioredoxin reductase (TrxR), extracellular superoxide dismutase (ecSOD) and peroxidases. There were significant increases in LPO and carbonyl quantities (p ≤ 0.03) and decreases in TAC and the quantities of NO2, thiols, and GSH (p < 0.001) in COVID-19 patients. The activities of the antioxidant enzymes such as ecSOD, TrxR, GPx, GST, GR, and peroxidases were decreased (p ≤ 0.04) after the MT treatment. The treatment with MT favored the activity of the antioxidant enzymes that contributed to an increase in TAC and restored the lost redox homeostasis. MT also modulated glucose homeostasis, functioning as a glycolytic agent, and inhibited the Warburg effect. Thus, MT restores the redox homeostasis that is altered in COVID-19 patients and can be used as adjuvant therapy in SARS-CoV-2 infection. Full article
Show Figures

Figure 1

19 pages, 17510 KiB  
Article
The Antioxidant Salidroside Ameliorates the Quality of Postovulatory Aged Oocyte and Embryo Development in Mice
by Kexiong Liu, Luyao Zhang, Xiaoling Xu, Linli Xiao, Junhui Wen, Hanbing Zhang, Shuxin Zhao, Dongliang Qiao, Jiahua Bai and Yan Liu
Antioxidants 2024, 13(2), 248; https://doi.org/10.3390/antiox13020248 - 19 Feb 2024
Cited by 10 | Viewed by 2903
Abstract
Postovulatory aging is known to impair the oocyte quality and embryo development due to oxidative stress in many different animal models, which reduces the success rate or pregnancy rate in human assisted reproductive technology (ART) and livestock timed artificial insemination (TAI), respectively. Salidroside [...] Read more.
Postovulatory aging is known to impair the oocyte quality and embryo development due to oxidative stress in many different animal models, which reduces the success rate or pregnancy rate in human assisted reproductive technology (ART) and livestock timed artificial insemination (TAI), respectively. Salidroside (SAL), a phenylpropanoid glycoside, has been shown to exert antioxidant and antitumor effects. This study aimed to investigate whether SAL supplementation could delay the postovulatory oocyte aging process by alleviating oxidative stress. Here, we show that SAL supplementation decreases the malformation rate and recovers mitochondrial dysfunction including mitochondrial distribution, mitochondrial membrane potential (ΔΨ) and ATP content in aged oocytes. In addition, SAL treatment alleviates postovulatory aging-caused oxidative stress such as higher reactive oxygen species (ROS) level, lower glutathione (GSH) content and a reduced expression of antioxidant-related genes. Moreover, the cytoplasmic calcium ([Ca2+]c) and mitochondrial calcium ([Ca2+]mt) of SAL-treated oocytes return to normal levels. Notably, SAL suppresses the aging-induced DNA damage, early apoptosis and improves spindle assembly in aged oocytes, ultimately elevating the embryo developmental rates and embryo quality. Finally, the RNA-seq and confirmatory experience showed that SAL promotes protective autophagy in aged oocytes by activating the MAPK pathway. Taken together, our research suggests that supplementing SAL is an effective and feasible method for preventing postovulatory aging and preserving the oocyte quality, which potentially contributes to improving the successful rate of ART or TAI. Full article
Show Figures

Figure 1

13 pages, 289 KiB  
Article
Redox Imbalance in Nasal Epithelial Cells of Primary Ciliary Dyskinesia Patients
by Ana Reula, Silvia Castillo-Corullón, Miguel Armengot, Guadalupe Herrera, Amparo Escribano and Francisco Dasí
Antioxidants 2024, 13(2), 190; https://doi.org/10.3390/antiox13020190 - 2 Feb 2024
Viewed by 2117
Abstract
Background: Primary Ciliary Dyskinesia (PCD) represents a rare condition marked by an abnormal mobility pattern of cilia and flagella, resulting in impaired mucociliary clearance. This deficiency leads to recurrent infections and persistent inflammation of the airways. While previous studies have indicated heightened oxidative [...] Read more.
Background: Primary Ciliary Dyskinesia (PCD) represents a rare condition marked by an abnormal mobility pattern of cilia and flagella, resulting in impaired mucociliary clearance. This deficiency leads to recurrent infections and persistent inflammation of the airways. While previous studies have indicated heightened oxidative stress levels in the exhaled breath condensate of pediatric PCD patients, the assessment of oxidative stress within the affected respiratory tissue remains unexplored. Aims: To assess the oxidative status of human nasal epithelial cells (NECs) in PCD patients. Methods: Thirty-five PCD patients and thirty-five healthy control subjects were prospectively included in the study. Levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), intracellular Ca2+, plasma membrane potential, and oxidative damage in lipids and proteins were measured. In addition, apoptosis and mitochondrial function were analyzed by flow cytometry in NECs. Results: NECs from PCD patients showed reduced levels of apoptosis (p = 0.004), superoxide anion (O2, p = 0.018), peroxynitrite (ONOO, p = 0.007), nitric oxide (NO, p = 0.007), mitochondrial hydrogen peroxide (mtH2O2, p < 0.0001), and mitochondrial superoxide anion (mtO2, p = 0.0004) and increased mitochondrial mass (p = 0.009) compared to those from healthy individuals. No significant differences were observed in oxidized proteins (p = 0.137) and the oxidized/reduced lipid ratio (p = 0.7973). The oxidative profile of NEC cells in PCD patients, according to their ciliary motility, recurrent otitis, recurrent pneumonia, atelectasis, bronchiectasis, and situs inversus, showed no statistically significant differences in the parameters studied. Conversely, patients with chronic rhinosinusitis exhibited lower levels of ONOO than PCD patients without this condition, with no significant differences related to other symptoms. Conclusions: Our findings strongly suggest the presence of a redox imbalance, specifically leaning toward a reductive state, in PCD patients. Full article
(This article belongs to the Section ROS, RNS and RSS)
18 pages, 13597 KiB  
Article
Melatonin-Mediated Suppression of mtROS-JNK-FOXO1 Pathway Alleviates Hypoxia-Induced Apoptosis in Porcine Granulosa Cells
by Xuan Zhang, Dingding Zhang, Hongmin Li, Zhaojun Liu, Yatong Yang, Jiameng Li, Lishiyuan Tang, Jingli Tao, Honglin Liu and Ming Shen
Antioxidants 2023, 12(10), 1881; https://doi.org/10.3390/antiox12101881 - 19 Oct 2023
Cited by 3 | Viewed by 2164
Abstract
Numerous studies have established that the hypoxic conditions within ovarian follicles induce apoptosis in granulosa cells (GCs), a pivotal hallmark of follicular atresia. Melatonin (N-acetyl-5-methoxytryptamine, MT), a versatile antioxidant naturally present in follicular fluid, acts as a safeguard for maintaining GCs’ survival during [...] Read more.
Numerous studies have established that the hypoxic conditions within ovarian follicles induce apoptosis in granulosa cells (GCs), a pivotal hallmark of follicular atresia. Melatonin (N-acetyl-5-methoxytryptamine, MT), a versatile antioxidant naturally present in follicular fluid, acts as a safeguard for maintaining GCs’ survival during stress exposure. In this study, we unveil an innovative protective mechanism of melatonin against hypoxia-triggered GC apoptosis by selectively inhibiting mitochondrial ROS (mtROS) generation. Specifically, under hypoxic conditions, a gradual accumulation of mitochondrial ROS occurred, consequently activating the JNK-FOXO1 pathway, and driving GCs toward apoptosis. The blocking of JNK or FOXO1 diminished hypoxia-induced GC apoptosis, but this effect was nullified in the presence of GSH, indicating that mtROS instigates apoptosis through the JNK-FOXO1 pathway. Consistent with this, hypoxic GCs treated with melatonin exhibited decreased levels of mtROS, reduced JNK-FOXO1 activation, and mitigated apoptosis. However, the protective capabilities of melatonin were attenuated upon inhibiting its receptor MTNR1B, accompanied by the decreased expression of antioxidant genes. Notably, SOD2, a key mitochondrial antioxidant gene modulated by the melatonin–MTNR1B axis, effectively inhibited the activation of mtROS-JNK-FOXO1 and subsequent apoptosis, whereas SOD2 knockdown abrogated the protective role of melatonin in hypoxic GCs. In conclusion, our study elucidates that melatonin, through MTNR1B activation, fosters SOD2 expression, effectively quelling mtROS-JNK-FOXO1-mediated apoptosis in follicular GCs under hypoxic stress. Full article
(This article belongs to the Special Issue Advances in Mitochondrial Redox Biology)
Show Figures

Figure 1

16 pages, 8205 KiB  
Article
Salidroside Supplementation Affects In Vitro Maturation and Preimplantation Embryonic Development by Promoting Meiotic Resumption
by Shuming Shi, Zhaojun Geng, Xianfeng Yu, Bing Hu, Liying Liu, Zhichao Chi, Linyi Qu, Mingjun Zhang and Yongxun Jin
Genes 2023, 14(9), 1729; https://doi.org/10.3390/genes14091729 - 30 Aug 2023
Cited by 8 | Viewed by 2126
Abstract
Salidroside (Sal) possesses several pharmacological activities, such as antiaging, and anti-inflammatory, antioxidant, anticancer activities, and proliferation-promoting activities, but the effects of Sal on oocytes have rarely been reported. In the present study, we evaluated the beneficial effects of Sal, which is mainly found [...] Read more.
Salidroside (Sal) possesses several pharmacological activities, such as antiaging, and anti-inflammatory, antioxidant, anticancer activities, and proliferation-promoting activities, but the effects of Sal on oocytes have rarely been reported. In the present study, we evaluated the beneficial effects of Sal, which is mainly found in the roots of Rhodiola. Porcine cumulus oocyte complexes were cultured in IVM medium supplemented (with 250 μmol/L) with Sal or not supplemented with Sal. The maturation rate in the Sal group increased from 88.34 ± 4.32% to 94.12 ± 2.29%, and the blastocyst rate in the Sal group increased from 30.35 ± 3.20% to 52.14 ± 7.32% compared with that in the control group. The experimental groups showed significant improvements in the cumulus expansion area. Sal reduced oocyte levels of reactive oxygen species (ROS) and enhanced intracellular GSH levels. Sal supplementation enhanced the mitochondrial membrane potential (MMP), ATP level, and mtDNA copy number, which shows that Sal enhances the cytoplasmic maturation of oocytes. Oocytes in the Sal group exhibited slowed apoptosis and reduced DNA breakage. Cell cycle signals and oocyte meiosis play important roles in oocyte maturation. The mRNA expressions of the MAPK pathway and MAPK phosphorylation increased significantly in the Sal group. The mRNA expression of the oocyte meiosis gene also increased significantly. These results show that Sal enhances the nuclear maturation of oocytes. Moreover, Sal increased the number of blastocyst cells, the proliferation of blastocysts, and the expressions of pluripotency genes. Sal down-regulated apoptosis-related genes and the apoptotic cell rate of blastocysts. In summary, our results demonstrate that Sal is helpful to improving the quality of porcine oocytes in vitro, and their subsequent embryonic development. Full article
(This article belongs to the Special Issue Genetic Regulation of Animal Reproduction)
Show Figures

Figure 1

16 pages, 4398 KiB  
Article
Combination of CNP, MT and FLI during IVM Significantly Improved the Quality and Development Abilities of Bovine Oocytes and IVF-Derived Embryos
by Peipei Zhang, Baigao Yang, Xi Xu, Hang Zhang, Xiaoyi Feng, Haisheng Hao, Weihua Du, Huabin Zhu, Shujing Li, Wenli Yu, Adnan Khan, Saqib Umer and Xueming Zhao
Antioxidants 2023, 12(4), 897; https://doi.org/10.3390/antiox12040897 - 7 Apr 2023
Cited by 3 | Viewed by 3031
Abstract
Oocyte maturation is a critical step in the completion of female gametogenesis in the ovary; thus, for subsequent fertilization and embryogenesis. Vitrification of embryo also has been shown to be closely associated with oocyte maturation. To improve the quality and developmental potential of [...] Read more.
Oocyte maturation is a critical step in the completion of female gametogenesis in the ovary; thus, for subsequent fertilization and embryogenesis. Vitrification of embryo also has been shown to be closely associated with oocyte maturation. To improve the quality and developmental potential of bovine oocytes derived from in vitro maturation (IVM), Pre-IVM with C-type natriuretic peptide (CNP), melatonin (MT) and in combination, IGF1, FGF2, LIF (FLI) were supplemented in the IVM medium. In this current study, we cultured bovine oocytes in Pre-IVM with CNP for 6 h before transferring them to the IVM medium supplemented with MT and FLI. The developmental potential of bovine oocytes was then investigated by measuring the reactive oxygen species (ROS), the intracellular glutathione (GSH) and ATP levels, the transzonal projections (TZP), the mitochondrial membrane potential (ΔΨm), cacline-AM, and the expression of related genes (cumulus cells (CCs), oocytes, blastocysts). The results revealed that oocytes treated with a combination of CNP, MT, and FLI had dramatically improved the percentage of oocytes developed to blastocyst, ATP content, GSH levels, TZP intensity, the ΔΨm, cacline-AM fluorescence intensity, and considerably reduced ROS levels of oocytes. Furthermore, the survival rate and the hatched rate after vitrification of the CNP+MT+FLI group were significantly higher than those other groups. Thus, we speculated that CNP+MT+FLI increases the IVM of bovine oocytes. In conclusion, our findings deepen our understanding and provide new perspectives on targeting the combination of CNP, MT and FLI to enhance the quality and developmental potential of bovine oocytes. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 4193 KiB  
Article
Modulation of Melatonin in Pain Behaviors Associated with Oxidative Stress and Neuroinflammation Responses in an Animal Model of Central Post-Stroke Pain
by Tavleen Kaur, Andrew Chih-Wei Huang and Bai-Chuang Shyu
Int. J. Mol. Sci. 2023, 24(6), 5413; https://doi.org/10.3390/ijms24065413 - 12 Mar 2023
Cited by 10 | Viewed by 2741
Abstract
Central post-stroke pain is a severe persistent pain disease that affects 12% of stroke survivors (CPSP). These patients may have a cognitive impairment, depression, and sleep apnea, which leave them open to misdiagnosis and mistreatment. However, there has been little research on whether [...] Read more.
Central post-stroke pain is a severe persistent pain disease that affects 12% of stroke survivors (CPSP). These patients may have a cognitive impairment, depression, and sleep apnea, which leave them open to misdiagnosis and mistreatment. However, there has been little research on whether the neurohormone melatonin can effectively reduce pain in CPSP conditions. In the present study, we labeled melatonin receptors in various brain regions of rats. Later, we established a CPSP animal model by intra-thalamic collagenase lesions. After a rehabilitation period of three weeks, melatonin was administered using different doses (i.e., 30 mg/kg, 60 mg/kg, 120 mg/kg) for the following three weeks. Mechanical allodynia, thermal hyperalgesia, and cold allodynia behavioral tests were performed. Immediately after behavioral parameters were tested, animals were sacrificed, and the thalamus and cortex were isolated for biochemical (mitochondrial complexes/enzyme assays and LPO, GSH levels) and neuroinflammatory (TNF-α, IL-1β, IL-6) assessments. The results show that melatonin receptors were abundant in VPM/VPL regions. The thalamic lesion significantly induced pain behaviors in the mechanical, thermal planters, and cold allodynia tests. A significant decrease in mitochondrial chain complexes (C-I, II, III, IV) and enzymes (SOD, CAT, Gpx, SDH) was observed after the thalamic lesion. While there were significant increases in reactive oxygen species levels, including increases in LPO, the levels of reduced GSH were decreased in both the cortex and thalamus. Proinflammatory infiltration was noticed after the thalamic lesion, as there was a significant elevation in levels of TNF-α, IL-1β, and IL-6. Administration of melatonin has been shown to reverse the injury effect dose-dependently. Moreover, a significant increase in C-I, IV, SOD, CAT, and Gpx levels occurred in the CPSP group. Proinflammatory cytokines were significantly reduced by melatonin treatments. Melatonin seems to mediate its actions through MT1 receptors by preserving mitochondrial homeostasis, reducing free radical generation, enhancing mitochondrial glutathione levels, safeguarding the proton potential in the mitochondrial ETC by stimulating complex I and IV activities, and protecting the neuronal damage. In summary, exogenous melatonin can ameliorate pain behaviors in CPSP. The present findings may provide a novel neuromodulatory treatment in the clinical aspects of CPSP. Full article
Show Figures

Figure 1

16 pages, 16171 KiB  
Article
Effects of Antioxidant Combinations on the Renal Toxicity Induced Rats by Gold Nanoparticles
by Ghedeir M. Alshammari, Mohammed S. Al-Ayed, Mohamed Anwar Abdelhalim, Laila Naif Al-Harbi and Mohammed Abdo Yahya
Molecules 2023, 28(4), 1879; https://doi.org/10.3390/molecules28041879 - 16 Feb 2023
Cited by 15 | Viewed by 2727
Abstract
This study investigated some possible mechanisms underlying the nephrotoxic effect of gold nanoparticles (AuNPs) in rats and compared the protective effects of selected known antioxidants—namely, melanin, quercetin (QUR), and α-lipoic acid (α-LA). Rats were divided into five treatment groups (eight rats per group): [...] Read more.
This study investigated some possible mechanisms underlying the nephrotoxic effect of gold nanoparticles (AuNPs) in rats and compared the protective effects of selected known antioxidants—namely, melanin, quercetin (QUR), and α-lipoic acid (α-LA). Rats were divided into five treatment groups (eight rats per group): control, AuNPs (50 nm), AuNPs + melanin (100 mg/kg), AuNPs + QUR (200 mg/kg), and AuNPs + α-LA (200 mg/kg). All treatments were administered i.p., daily, for 30 days. AuNPs promoted renal glomerular and tubular damage and impaired kidney function, as indicated by the higher serum levels of creatinine (Cr), urinary flow, and urea and albumin/Cr ratio. They also induced oxidative stress by promoting mitochondrial permeability transition pore (mtPTP) opening, the expression of NOX4, increasing levels of malondialdehyde (MDA), and suppressing glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). In addition, AuNPs induced renal inflammation and apoptosis, as evidenced by the increase in the total mRNA and the cytoplasmic and nuclear levels of NF-κB, mRNA levels of Bax and caspase-3, and levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Treatment with melanin, QUR, and α-lipoic acid (α-LA) prevented the majority of these renal damage effects of AuNPs and improved kidney structure and function, with QUR being the most powerful. In conclusion, in rats, AuNPs impair kidney function by provoking oxidative stress, inflammation, and apoptosis by suppressing antioxidants, promoting mitochondrial uncoupling, activating NF-κB, and upregulating NOX4. However, QUR remains the most powerful drug to alleviate this toxicity by reversing all of these mechanisms. Full article
Show Figures

Figure 1

15 pages, 3625 KiB  
Article
Melatonin Protects Mitochondrial Function and Inhibits Oxidative Damage against the Decline of Human Oocytes Development Caused by Prolonged Cryopreservation
by Qi Zhu, Ding Ding, Han Yang, Weiwei Zou, Dandan Yang, Kaijuan Wang, Chao Zhang, Beili Chen, Dongmei Ji, Yan Hao, Rufeng Xue, Yuping Xu, Qiushuang Wang, Jing Wang, Bo Yan, Yunxia Cao, Huijuan Zou and Zhiguo Zhang
Cells 2022, 11(24), 4018; https://doi.org/10.3390/cells11244018 - 12 Dec 2022
Cited by 15 | Viewed by 3124
Abstract
Melatonin (MT) can improve the effect of cryopreservation on oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. In this study, MT was firstly applied to human oocytes’ cryopreservation to explore the effect of prolonged cryopreservation on developmental competence and [...] Read more.
Melatonin (MT) can improve the effect of cryopreservation on oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. In this study, MT was firstly applied to human oocytes’ cryopreservation to explore the effect of prolonged cryopreservation on developmental competence and its role. Collected in vitro-matured human oocytes were cryopreserved in MT-containing or MT-free medium for 0 and 6 months; after warming, viable oocytes were assessed for developmental viability, intracellular protein expression, mitochondrial function, and oxidation-antioxidant system. Meanwhile, fresh oocytes were set as the control. The results showed that with the extension of cryopreservation time, the developmental competence of oocytes gradually declined, accompanied by the down-regulation of most mitochondrial function-related proteins, the reduction in ATP and GSH production, the increase in ROS accumulation, and the aggravation of the imbalance of ROS/GSH in oocytes. However, the participation of MT seemed to effectively mitigate these negative effects. Therefore, we speculate that melatonin may maintain normal ATP production and ROS/GSH balance in cryopreserved oocytes by protecting mitochondrial function and inhibiting oxidative damage, thereby effectively maintaining the developmental competence of human oocytes in prolonged cryopreservation. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Figure 1

15 pages, 3789 KiB  
Article
Mechanisms Underlying the Protective Effect of Maternal Zinc (ZnSO4 or Zn-Gly) against Heat Stress-Induced Oxidative Stress in Chicken Embryo
by Yunfeng Zhang, Lingyu Xie, Xiaoqing Ding, Yuanyuan Wang, Yibin Xu, Danlei Li, Shuang Liang, Yongxia Wang, Ling Zhang, Aikun Fu and Xiuan Zhan
Antioxidants 2022, 11(9), 1699; https://doi.org/10.3390/antiox11091699 - 30 Aug 2022
Cited by 9 | Viewed by 3130
Abstract
Environmental factors such as high temperature can cause oxidative stress and negatively affect the physiological status and meat quality of broiler chickens. The study was conducted to evaluate the effects of dietary maternal Zn-Gly or ZnSO4 supplementation on embryo mortality, hepatocellular mitochondrial [...] Read more.
Environmental factors such as high temperature can cause oxidative stress and negatively affect the physiological status and meat quality of broiler chickens. The study was conducted to evaluate the effects of dietary maternal Zn-Gly or ZnSO4 supplementation on embryo mortality, hepatocellular mitochondrial morphology, liver antioxidant capacity and the expression of related genes involved in liver oxidative mechanisms in heat-stressed broilers. A total of 300 36-week-old Lingnan Yellow broiler breeders were randomly divided into three treatments: (1) control (basal diet, 24 mg zinc/kg); (2) inorganic ZnSO4 group (basal diet +80 mg ZnSO4/kg); (3) organic Zn-Gly group (basal diet +80 mg Zn-Gly/kg). The results show that maternal zinc alleviated heat stress-induced chicken embryo hepatocytes’ oxidative stress by decreasing the content of ROS, MDA, PC, 8-OHdG, and levels of HSP70, while enhancing T-SOD, T-AOC, CuZn-SOD, GSH-Px, CTA activities and the content of MT. Maternal zinc alleviated oxidative stress-induced mitochondrial damage in chick embryo hepatocytes by increasing mitochondrial membrane potential and UCP gene expression; and Caspase-3-mediated apoptosis was alleviated by increasing CuZn-SOD and MT gene expression and decreasing Bax gene expression and reducing the activity of caspase 3. Furthermore, maternal zinc treatment significantly increased Nrf2 gene expression. The results above suggest that maternal zinc can activate the Nrf2 signaling pathway in developing chick embryos, enhance its antioxidant function and reduce the apoptosis-effecting enzyme caspase-3 activities, thereby slowing oxidative stress injury and tissue cell apoptosis. Full article
(This article belongs to the Special Issue Antioxidants in Husbandry Animal Production)
Show Figures

Graphical abstract

Back to TopTop