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Abstract: Melatonin (MT) can improve the effect of cryopreservation on oocytes by suppressing
oxidative stress and maintaining the permeability of the oolemma. In this study, MT was firstly
applied to human oocytes’ cryopreservation to explore the effect of prolonged cryopreservation on
developmental competence and its role. Collected in vitro-matured human oocytes were cryopre-
served in MT-containing or MT-free medium for 0 and 6 months; after warming, viable oocytes were
assessed for developmental viability, intracellular protein expression, mitochondrial function, and
oxidation-antioxidant system. Meanwhile, fresh oocytes were set as the control. The results showed
that with the extension of cryopreservation time, the developmental competence of oocytes gradually
declined, accompanied by the down-regulation of most mitochondrial function-related proteins, the
reduction in ATP and GSH production, the increase in ROS accumulation, and the aggravation of the
imbalance of ROS/GSH in oocytes. However, the participation of MT seemed to effectively mitigate
these negative effects. Therefore, we speculate that melatonin may maintain normal ATP production
and ROS/GSH balance in cryopreserved oocytes by protecting mitochondrial function and inhibiting
oxidative damage, thereby effectively maintaining the developmental competence of human oocytes
in prolonged cryopreservation.

Keywords: melatonin; human oocytes; prolonged cryopreservation; development; mitochondrial
function; oxidative damage

1. Introduction

Since the birth of the world's first test-tube baby derived from the cryopreservation
of human oocytes in 1986, this technology has received extensive attention in assisted
reproductive technology [1]. Although human oocyte cryopreservation technology has
been extensively developed, it has not been able to address major obstacles such as de-
creased developmental competence and uncontrollable survival rates, which means that
it still not routinely applied in clinical practice [2,3]. The most probable reason is that
the vitrification–warming process and cryopreservation cause unforeseen damage to the
structure, metabolism, and developmental competence of oocytes [4–6]. Furthermore,
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long-term storage in liquid nitrogen reduced the fertilization and blastocyst formation
rates of cryopreserved oocytes in rabbits and mice, while the survival rate and blastocyst
formation competence of human embryos gradually decreased with the extension of cryop-
reservation time in humans [7–9]. However, it has also been shown that the duration of
cryopreservation of human MII oocytes does not affect the gene expression profiles, either
by slow freezing [10] or vitrification [11].

Melatonin (N-acetyl-5-methoxytryptophan, MT) is a type of indole compound, syn-
thesized by the mammalian pineal gland, with high lipid solubility and low water sol-
ubility [12]. It is a powerful free radical scavenger and antioxidant [13,14] that has a
wide range of physiological functions, including antioxidation [15], anti-aging [12], sleep
promotion [16] and so on. MT and its metabolites can directly scavenge reactive oxygen
species (ROS), activate antioxidant enzymes, increase the expression level and activity of
Glutathione (GSH), regulate the expression of antioxidant genes, and inhibit prooxidative
enzymes, thereby protecting cells from oxidative damage [17,18]. According to reports,
the addition of 10-9 M MT to the culture medium may effectively improve the quality
of mammalian gametes and embryos [19,20]. MT also plays an essential role in cryop-
reservation, and the application of MT may effectively protect mammalian gametes from
oxidative stress during vitrification [13,21–25]. In 2021, Zhang et al. reported that MT could
improve the effect of cryopreservation on human oocytes by suppressing oxidative stress
and maintaining the permeability of the oolemma under short-term cryopreservation [15].

However, for the purpose of fertility preservation, gametes and embryos have to be
cryopreserved for a long period, even for many years. Consequently, could prolonged
storage at extremely low temperatures further impair the developmental competence of the
samples? To date, few reports have systematically elucidated the effect of cryopreservation
time on human oocytes. Therefore, based on our previous research [15], in the present
study, in vitro-matured human oocytes (IVM-MII oocytes) with normal morphology were
vitrified and stored in -196°C liquid nitrogen for six months with the medium supplemented
with 10-9 M MT, in order to systematically explore the effect of the cryopreservation time
on the developmental competence of human oocytes, as well as the role of MT during
cryopreservation.

2. Materials and Methods
2.1. Ethics Statement

This study was conducted at the First Affiliated Hospital of Anhui Medical University
Reproductive Medicine Center and was approved by the Ethics Committee of Anhui
Medical University (Ethics approval number: 20200114). Before conducting the study, the
partners of all enrolled patients were interviewed and provided signed informed consent.

2.2. Chemicals and Reagents

Unless otherwise specified, all reagents were purchased from Sigma Chemical Com-
pany (St. Louis, MO, USA). Additional details are provided in the Supplementary Materials.

2.3. Immature Oocyte Collection and In Vitro Maturation

The immature oocytes, including germinal vesicle (GV) and metaphase I (MI), were
collected from 140 young infertile women (<35 years old). Then, in vitro maturation (IVM)
was performed as described in our published literature [26], and high-quality IVM-MII
oocytes were selected as the subjects for this study. Additional details are provided in the
Supplementary Matterials.

2.4. Study Design

The collected high-quality IVM-MII oocytes were randomly divided into the following
five groups: fresh group (F group, as control, n = 115), no-MT-treated cryopreservation for
0 months (nMC-0 group, n = 120), no-MT-treated cryopreservation for 6 months (nMC-6
group, n = 119), 10-9 M MT-treated cryopreservation for 0 months (MC-0 group, n = 121),
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10-9 M MT-treated cryopreservation for 6 months (MC-6 group, n = 120). It is worth
noting that 0 months means that oocytes were thawed immediately after vitrification,
and 6 months means that oocytes were cryopreserved for 6 months before thawing. This
study included three experiments. In experiment I, the vitrified–warmed oocytes in each
group were subjected to ICSI insemination and cultured in vitro to observe the subsequent
embryonic development. In experiment II, to further elucidate the mechanism by which
MT inhibits the developmental competence degradation of human oocytes induced by
prolonged cryopreservation, the micro-sample proteomics technique was used to detect the
expression levels of proteins in individual oocyte. In experiment III, after cryopreservation,
mitochondrial function was assessed by fluorescence staining and the levels of intracellular
ATP, ROS, and GSH were detected in oocytes. The experimental flow chart is shown in
Supplementary Figure S1.

2.5. Oocyte Vitrification and Warming

Oocytes were vitrified and warmed according to our previous protocol [27]. After
warming, morphological evaluation was performed under an optical microscope (IX-71,
Olympus, Tokyo, Japan). The oocytes that were normal and round in shape, with moderate
periocular space and clear separation of the cell membrane and cytoplasm, were considered
viable. Additional details are provided in the Supplementary Materials.

2.6. Developmental Competence

A total of 280 oocytes were subjected to ICSI insemination with donated sperm. The
developmental competence of the oocytes, including fertilization, cleavage, blastocyst,
high-quality blastocyst, etc., was assessed by the same embryologist under an optical
microscope (IX-71, Olympus, Tokyo, Japan). Additional details are provided in the Supple-
mentary Materials.

2.7. Single-Oocyte Proteomic Assay

A total of 15 high-quality IVM-MII oocytes (5 per person) were collected from 3 young
patients, and each patient’s oocytes were equally divided into 5 groups (F group (n = 1);
nMC-0 group (n = 1); MC-0 group (n = 1); nMC-6 group (n = 1); MC-6 group (n = 1)).
Oocytes under the five experimental conditions were prepared for a single-oocyte proteomic
assay. Three parallel experiments were conducted for each group. Additional details are
provided in the Supplementary Data.

2.8. Detection of ATP, ROS, and GSH Levels in Oocytes

A total of 94, 84, and 86 oocytes from the cryopreservation and F groups were further
analyzed for ATP, ROS, and GSH levels, respectively. The detailed procedures are described
in the Supplementary Materials.

2.9. Statistical Analysis

Data were presented as mean ± standard deviation. Qualitative data were analyzed
by chi-squared test or Fisher's exact test, while quantitative data were analyzed by one-way
analysis of variance (ANOVA) and Bonferroni test. Statistical tests were performed using
Prism version 8.0 (GraphPad, Insightful Science Inc., San Diego, USA). A P-value of 0.05
was considered statistically significant.

3. Results
3.1. Morphological Observation of Vitrified–Warmed Human Oocytes

A total of 480 vitrified–warmed oocytes were cultured for 2.5 hours after warming
and observed under an optical microscope. In total, 440 (91.67%) oocytes were assessed
as viable, of which 436 (90.83%) were selected for subsequent experiments. As shown
in Figure 1, oocytes in the nMC-0 and nMC-6 groups showed various morphological
changes compared with the F group, including vacuolization, rough cytoplasm or a large
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perivitelline space, and blurred membrane and cytoplasm separation. The nMC-6 group
was found to present the roughest cytoplasm and the most severe vacuolization. In contrast,
the oocytes in the MC-0 and MC-6 groups had uniform cytoplasm and no vacuoles. It is
worth mentioning that the oocytes in the MC-0 group presented a similar morphology to
fresh oocytes.
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the coarsest cytoplasm and the most severe vacuolization in the nMC-6 group; (3) a large perivitel-
line space in the nMC-0 group; (4) normal morphology and uniform cytoplasm in the MC-0 group, 
MC-6 group and F group. Bar=10 µm. 
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group are shown in detail in Table 1. The results showed that the developmental competence of the 
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especially for the fertilization, high-quality embryo, and blastocyst rates (Table 1). Similarly, for the 
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decline, but there were no significant differences in each developmental parameter (Table 1). In 
addition, the developmental parameters of the MC-0 group were higher than those of the nMC-0 
group, and there were significant differences in fertilization, high-quality embryo, and blastocyst 
rates (all P<0.05); the developmental parameters of the MC-6 group were also higher than those of 
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extension of the cryopreservation time. Interestingly, the involvement of MT appears to inhibit the 
progressive degradation of developmental competence resulting from the vitrification–warming 
process and prolonged cryopreservation.  

Figure 1. Effect of 10-9 M MT treatment on the effect of cryopreserved human oocytes from the
nMC-0 group, MC-0 group, nMC-6 group and MC-6 group. The fresh group served as control. The
morphological changes of oocytes were observed under an optical microscope: (1) vacuoles and
granulation clusters in the cytoplasm of human oocytes in the nMC-0 group and nMC-6 group; (2) the
coarsest cytoplasm and the most severe vacuolization in the nMC-6 group; (3) a large perivitelline
space in the nMC-0 group; (4) normal morphology and uniform cytoplasm in the MC-0 group, MC-6
group and F group. Bar = 10 µm.

3.2. MT Protected the Developmental Competence of Human Oocytes in
Prolonged Cryopreservation

To investigate the effect of prolonged cryopreservation on the developmental com-
petence of human oocytes, a total of 280 IVM-MII oocytes were collected and randomly
assigned to the following five groups: F group (n = 50), nMC-0 group (n = 58), MC-0 group
(n = 60), nMC-6 group (n = 55), and MC-6 group (n = 57). Representative developmental
images of fresh and vitrified–warmed oocytes after ICSI are shown in Supplementary
Figure S2. The developmental parameters (fertilization, cleavage, high-quality embryo, and
blastocyst rates) of each group are shown in detail in Table 1. The results showed that the
developmental competence of the no-MT-treated groups (2.5 h and 6 months) gradually de-
creased compared to the control group, especially for the fertilization, high-quality embryo,
and blastocyst rates (Table 1). Similarly, for the MT-treated groups (2.5 h and 6 months), the
developmental competence also showed a progressive decline, but there were no significant
differences in each developmental parameter (Table 1). In addition, the developmental
parameters of the MC-0 group were higher than those of the nMC-0 group, and there were
significant differences in fertilization, high-quality embryo, and blastocyst rates (all p <0.05);
the developmental parameters of the MC-6 group were also higher than those of the nMC-6
group (Table 1). The above results suggest that the vitrification–warming process impairs
the developmental competence of human oocytes, and the damage is aggravated with
the extension of the cryopreservation time. Interestingly, the involvement of MT appears
to inhibit the progressive degradation of developmental competence resulting from the
vitrification–warming process and prolonged cryopreservation.
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Table 1. Effect of 10-9M MT treatment on the developmental competence of cryopreserved hu-
man oocytes.

F nMC-0 MC-0 nMC-6 MC-6

IVM-MII (n) 50 58 60 55 57
Fertilization

rate (%)
86.00% (43/50)

a,c 62.07% (36/58) 83.33% (50/60) b 58.18% (32/55) 64.91% (37/57)

Cleavage
rate (%) 86.05% (37/43) 80.56% (29/36) 84.00% (42/50) 68.75% (22/32) 67.57% (25/37)

High-quality cleavage
embryo rate (%)

64.86% (24/37)
b,c 34.48% (10/29) 61.90% (26/42) b 18.18% (4/22) 48.00% (12/25)

Blastocyst
rate (%)

51.35% (19/37)
b,c 17.24% (5/29) 40.48% (17/42) b 9.09% (2/22) 28.00% (7/25)

Data were analyzed using the Chi-square or Fisher Exact test. Different symbols within columns and different
letters within columns and within rows indicate significant differences.a p <0.01, compared with nMC-0 group;
b p <0.05, compared with nMC-0 group; c p < 0.01, compared with nMC-6.

3.3. Micro-Sample Global Proteomic Expression Characteristics of Human Oocytes in
Prolonged Cryopreservation

To further analyze the mechanism of MT inhibiting the developmental competence
degradation of human oocytes induced by prolonged cryopreservation, micro-proteomics
was used to detect the protein expression level in individual oocyte. Fold change > 1.5
and p < 0.05 were determined as the screening criteria for significant differences among
the five groups. A total of 6723 proteins were identified in this experiment, covering 1006
differential proteins (Figure 2A). Gene Ontology Functional (GO) enrichment analysis was
conducted to identify the distribution of the expression of differentially expressed proteins
between various biological functions (Figure 2B). The results showed that “cellular process”
was the most significant enrichment term in the biological process category; “cell” was the
most significant enrichment term in the cellular components category and “binding” was
the most significant enrichment term in the molecular function category.

Table 2 shows the number of total and mitochondrial-related differentially expressed
proteins (DEPs) in the pairwise comparison. Figures 3 and 4 show the biological functions
in which these DEPs were involved. As shown Table 2, the GO-annotated DEPs statistics
found that, compared with the F group, the nMC-0 group had 70 DEPs, with 64 downregu-
lated and 6 upregulated (Supplementary Figure S3A), of which 14 mitochondrial function-
related proteins were downregulated (Supplementary Figure S4A). The MC-0 group had
133 DEPs, including 129 downregulated and 4 upregulated (Supplementary Figure S3B), of
which 20 mitochondrial function-related proteins were downregulated (Supplementary
Figure S4B). Moreover, the nMC-6 group had 148 DEPs, including 144 downregulated and
4 upregulated (Supplementary Figure S3C), of which 21 mitochondrial function-related
proteins were all downregulated (Supplementary Figure S4C). It is worth noting that the
protein expression levels of the MC-6 group had almost no difference from those of the
F group. There were only 8 upregulated and 9 downregulated proteins (Supplementary
Figure S3D), of which only 2 mitochondrial function-related protein was upregulated
(Supplementary Figure S4D). To analyze the contribution of MT, we compared the DEPs
of the MT-treated group with the nMT-treated group at the same cryopreservation time.
Compared with the nMC-0 group, the MC-0 group had 58 DEPs, of which 30 were downreg-
ulated and 28 were upregulated (Figure 3A), including 8 upregulated and 3 downregulated
mitochondrial function-related proteins (Figure 4A). Compared with the nMC-6 group,
the MC-6 group had 160 DEPs, with 4 downregulated and 156 upregulated (Figure 3B), of
which mitochondrial function-related proteins were upregulated (Figure 4B). To analyze
the effects of different cryopreservation times, we compared 0 months with 6 months of
cryopreservation under the same intervention conditions. Compared with the nMC-0
group, the nMC-6 group had 53 DEPs, with 38 downregulated and 15 were upregulated
(Figure 3C), of which one mitochondrial function-related protein was downregulated and
one upregulated (Figure 4C), respectively. Compared with the MC-0 group, the MC-6 group
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had 212 DEPs, including 12 downregulated and 200 upregulated proteins (Figure 3D), of
which 32 mitochondrial function-related proteins were upregulated (Figure 4D).
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Figure 2. Effect of MT treatment and prolonged cryopreservation on the micro-sample global protein
expression characteristics of cryopreserved human oocytes from the nMC-0 group, MC-0 group,
nMC-6 group and MC-6 group. Fresh oocytes (F group) served as the control. (A) Differential Protein
Statistics Graph. The histogram above is the statistical graph of differential proteins in each group.
The green represents the number of down-regulated differential proteins, and the red represents the
number of up-regulated differential proteins. (B) Gene Ontology (GO) Functional annotation. The GO
classification map shows the distribution of the items involved in the three ontology, and the different
colors are labeled as the individual items involved in the three ontology. The red represents biological
processes, the green represents cellular component, and the blue represents molecular functions.
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Table 2. Statistical table of the number of differential proteins related to mitochondrial function in
each group.

F vs.
nMC-0

F vs.
MC-0

F vs.
nMC-6

F vs.
MC-6

nMC-0 vs.
MC-0

nMC-6 vs.
MC-6

nMC-0 vs.
nMC-6

MC-0 vs.
MC-6

Number of differential proteins 70 133 148 17 58 160 53 212
Number of differential proteins associated

with mitochondrial function 14 20 21 1 11 19 2 32

Up 0 0 0 2 8 19 1 32
Down 14 20 21 0 3 0 2 0
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Figure 3. Differential protein GO function classification map of cryopreserved human oocytes from
the nMC-0 group, MC-0 group, nMC-6 group and MC-6 group. (A) nMC-0 VS MC-0: Comparison of
up-and down-regulated differential proteins between nMC-0 group and MC-0 group; (B) nMC-6 VS
MC-6: Comparison of up-and down-regulated differential proteins between nMC-6 group and MC-6
group; (C) nMC-0 VS nMC-6: Comparison of up-and down-regulated differential proteins between
nMC-0 group and nMC-6 group; (D) MC-0 VS MC-6: Comparison of up-and down-regulated differen-
tial proteins between MC-0 group and MC-6 group. The red represents up, the blue represents down.
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The common pathways responsible for the final oxidation by mitochondria are the tricarbox-
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Figure 4. GO functional classification map of differential proteins associated with mitochondrial of
cryopreserved human oocytes from the nMC-0 group, MC-0 group, nMC-6 group and MC-6 group.
(A) nMC-0 VS MC-0: Comparison of up-and down-regulated differential proteins between nMC-0
group and MC-0 group; (B) nMC-6 VS MC-6: Comparison of up-and down-regulated differential
proteins between nMC-6 group and MC-6 group; (C) nMC-0 VS nMC-6: Comparison of up-and
down-regulated differential proteins between nMC-0 group and nMC-6 group; (D) MC-0 VS MC-6:
Comparison of up-and down-regulated differential proteins between MC-0 group and MC-6 group.
The red represents up, the blue represents down.

The common pathways responsible for the final oxidation by mitochondria are the
tricarboxylic acid cycle and oxidative phosphorylation. Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis revealed that the majority of DEPs involved in
oxidative phosphorylation of the energy metabolism pathway were up-regulated in MC-6
group compared with nMC-6 group. Especially, most of these DEGs were encoded in the
mitochondrial genome and participated in mitochondrial respiratory chain by encoding
a component of vacuolar ATPase (V-ATPase). Those differentially expressed proteins
included VATD, VATB2. Additionally, the genes encoding a subunit of mitochondrial ATP
synthase including differentially expressed protein ATP5H. Mitochondrial ATP synthase
catalyzes ATP synthesis, using an electrochemical gradient of protons across the inner
membrane during oxidative phosphorylation. Cytochrome b-c1 complex subunit 1(QCR1),
which is the key component of mitochondrial complex III, were also found significantly up-
regulated in the oocytes of MC-6 group (Table 3) (Figure 5). The results suggest that MT may
be involved in the effect on mitochondria by regulating key proteins in the mitochondrial
oxidative phosphorylation pathway and ATP synthesis.
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Table 3. Statistical table of the number of differential proteins related to oxidative phosphorylation
pathway between nMC-6 group and MC-6 group.

Primary_protein_ID Mean Intensity
(nMT-6)

Mean Intensity
(MT-6) Ratio p-Value Class Description

p|Q9Y5K8|VATD_HUMAN 57,736,499.74 155,072,081.7 2.685858728 0.012634037 Up
V-type proton ATPase subunit D
OS = Homo sapiens OX = 9606
GN = ATP6V1D PE = 1 SV = 1

sp|O75947|ATP5H_HUMAN 757,186,306.8 2,746,405,384 3.627119718 0.027221848 Up

ATP synthase subunit d,
mitochondrial OS = Homo

sapiens OX = 9606 GN = ATP5PD
PE = 1 SV = 3

sp|P21281|VATB2_HUMAN 1,576,694,555 2,656,550,766 1.684886117 0.043175449 Up

V-type proton ATPase subunit B,
brain isoform OS = Homo sapiens

OX = 9606 GN = ATP6V1B2
PE = 1 SV=3

sp|P31930|QCR1_HUMAN 1,021,503,942 2,837,296,332 2.777567676 0.045073322 Up

Cytochrome b-c1 complex subunit
1, mitochondrial OS=Homo

sapiens OX = 9606 GN = UQCRC1
PE = 1 SV = 3
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between nMC-6 group and MC-6 group.

3.4. MT Increased ATP Production of Human Oocytes in PROLONGED CRYOPReservation

As shown in Figure 6A,C, the level of intracellular ATP in the nMC-0 group (n = 20) or
the nMC-6 group (n = 17) was significantly lower than that in the F group (n = 23) (p < 0.01;
p < 0.001). Compared with the nMC-0 group, the ATP level in oocytes of the nMC-6 group
was significantly decreased (p < 0.01). After MT treatment, the ATP level of the MC-0 group
(n = 17) was significantly increased compared with that of the nMC-0 group (p < 0.05).
Similarly, the ATP level of the MC-6 group (n = 17) was significantly increased compared
with that of the nMC-0 group (p<0.05). Similarly, the ATP level of the MC-6 group (n = 17)
was significantly higher than that of the nMC-6 group (p<0.01). Moreover, there was no
significant difference in the ATP level between the MC-0 and MC-6 groups, which was
comparable to that of F group. These results indicate that the ATP level of human oocytes
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dramatically decreased due to prolonged cryopreservation, and MT can effectively increase
ATP production.
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Figure 6. Effect of Effect of prolonged cryopreservation and 10-9 M MT treatment on mitochondrial
function in cryopreserved human oocytes from the nMC-0 group, MC-0 group, nMC-6 group and MC-
6 group. Fresh oocytes (F group) served as the control. (A)ATP levels in cryopreserved human oocytes.
BODIPYTM FL ATP staining was performed to measure the intracellular ATP levels, and the staining
was detected using confocal microscopy. Bar = 20 µm. (B) ROS and GSH level in cryopreserved human
oocytes. DCHFDA staining was performed to measure the intracellular ROS levels, CellTrackerTM

staining was performed to measure the intracellular GSH levels, and the staining was detected using
confocal microscopy. Bar = 20 µm. (C) BODIPYTM FL ATP fluorescence intensity was quantified. Data
were expressed as the mean ± SEM. * p < 0.05, ** p < 0.01 and *** p < 0.001. (D) DCHFDA fluorescence
intensity was quantified. Data were expressed as the mean ± SEM. * p < 0.05 and *** p < 0.001.
(E) CellTrackerTM fluorescence intensity was quantified. Data were expressed as the mean ± SEM.
* p < 0.05 and *** p < 0.001. (F) Ratio of ROS/GSH in long-term cryopreserved human oocytes. The
fresh group served as control. Data were expressed as the mean ± SEM. ** p < 0.01 and *** p < 0.001.
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3.5. MT Inhibited the Aggravation of ROS Accumulation and Suppressed the Decline in GSH
Production in Human Oocytes under Prolonged Cryopreservation

As shown in Figure 6B (upper panel) and Figure 6D regarding the ROS level in
oocytes from each group, those in the nMC-0 (n = 17) and the nMC-6 groups (n = 17) were
significantly higher than that in the F group (n = 19) (both p < 0.001), and the nMC-6 group
showed a significantly higher fluorescence intensity of ROS (p < 0.05) compared with the
nMC-0 group, which means that the freeze–thaw process and prolonged storage resulted in
the dramatic accumulation of ROS; meanwhile, the result for the MC-0 group (n = 16) was
significantly lower than that of the nMC-0 group (p < 0.001), and the result for the MC-6
group (n = 15) was significantly lower than that of the nMC-6 group (p < 0.001). As shown
in Figure 6B (lower panel) and Figure 6E, regarding the GSH levels, those of the nMC-0
(n = 17) and nMC-6 (n = 17) groups were significantly lower than that of the F group (n = 20)
(both p < 0.001), whereas the MC-0 (n = 16) and MC-6 groups (n = 16) were comparable
to the F group. In addition, the MC-0 group’s value was higher than that of the nMC-0
group (p < 0.05), and the MC-6 group’s value was higher than that of the nMC-6 group
(p < 0.05). These results suggest that the involvement of MT can inhibit the aggravation of
ROS and suppress the decline in GSH production caused by the freeze–thaw process and
prolonged storage.

3.6. ROS/GSH Ratio in Prolonged Cryopreserved Human Oocytes

Previous studies have demonstrated that the balance of the ROS/GSH ratio is critical
for oocyte maturation and normal zygote development [28]. Therefore, we further analyzed
the ROS/GSH ratio of vitrified–warmed human oocytes. As shown in Figure 6F, the ratio
of ROS/GSH in oocytes of the nMC-0 and nMC-6 groups was significantly higher than that
of the F group (both p < 0.001), and the ratio of the nMC-0 group was significantly lower
than that of the nMC-6 group (p < 0.01). In addition, the ratio of the nMC-0 group was
significantly higher than that of the MC-0 group (p < 0.01), and that of the nMC-6 group
was significantly higher than that of MC-6 group (p < 0.001). In contrast, there was no
significant difference in the ROS/GSH ratio between the MC-0 and MC-6 groups, and the
ratio of each group was comparable to that of the F group. These results further suggest
that the involvement of MT can reverse the changes in the ROS/GSH ratio induced by the
freeze–thaw process and prolonged storage.

4. Discussion

Thus far, there are few reports on the effect of cryopreservation time on human
oocytes. However, such research work has important clinical value for the preservation
of human fertility. Therefore, combined with our previous findings on human oocyte
cryopreservation, the present study was initiated to address two questions: (1) does
prolonged cryopreservation aggravate the damage to the developmental competence of
cryopreserved human oocytes? (2) Can the involvement of 10-9 M MT counteract the
decline in developmental competence?

Firstly, we investigated the effect of prolonged cryopreservation on the morphology
and developmental competence of human oocytes. The vitrified–warmed oocytes in the
no-MT treated groups showed various morphological changes; in particular, those in the
nMC-6 group suffered the most serious damage. In contrast, the oocytes treated with
MT had uniform cytoplasm and no vacuoles, and the morphological characteristics of the
oocytes in the MC-0 group were almost indistinguishable from those of fresh oocytes. The
morphological features point out that the vitrification-warming process has a negative effect
on oocyte morphology, which is aggravated with the extension of the cryopreservation
time, while the involvement of MT during cryopreservation significantly alleviated the
negative effect. In subsequent developmental studies, the developmental competence of
the oocytes in the no-MT-treated groups significantly decreased with the extension of the
cryopreservation time. Moreover, the developmental competence of human oocytes in the
MT-treated groups was significantly enhanced. The developmental results also suggest
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that the vitrification–warming process and a prolonged cryopreservation time will cause
severe damage to oocytes, which can be effectively inhibited by MT intervention.

To reveal the potential pathogenesis of human oocyte degradation during cryop-
reservation, and to clarify the mechanism of MT’s resistance to cryogenic damage, micro-
proteomics technology was utilized to detect the expression levels of proteins in a single
oocyte. GO annotation revealed that the cellular process and metabolic process were the
primary affected biological processes during oocytes’ cryopreservation. It was found that
only the protein expression profile of the MC-6 group was almost comparable to that of the
F group; most metabolic processes-related DEPs in other experimental groups were down-
regulated. This suggests that cryopreservation adversely affects the metabolic function of
oocytes. Mitochondria are the central site for ATP production in the metabolic process and
ensure the provision of energy for oocyte and embryo development [29,30]. Cryopreserva-
tion has been reported to impair mitochondrial function and consume ATP [31]. Therefore,
we further analyzed the mitochondrial function-related proteins. It was found that a consid-
erable number of these downregulated DEPs were mitochondrial function-related proteins,
which indicates that the mitochondrial proteins are sensitive to cryopreservation. Under the
same intervention conditions, most mitochondrial function-related DEPs in the long-term
preservation groups were down-regulated, which suggests that a prolonged cryopreserva-
tion time will impair the expression of mitochondrial function-related proteins. Under the
same cryopreservation time, mitochondrial function-related DEPs in the MT-treated groups
were all upregulated, which indicates that MT can preserve the expression of mitochondrial
proteins and resist the negative effects of the vitrification–warming process and prolonged
cryopreservation on mitochondria. Similar KEGG enrichment analysis showed that most
DEPs involved in oxidative phosphorylation were upregulated in the MT-treated groups.
Moreover, with the extension of the cryopreservation time, the addition of MT upregulated
the expression of some proteins in the oxidative phosphorylation pathway.

The above results strongly demonstrate that the participation of MT can effectively
preserve the expression of mitochondrial function-related and oxidative phosphorylation
pathway-related proteins during human oocyte cryopreservation but cannot serve as direct
evidence for the protection of mitochondrial function. One of the major functions of
mitochondria is to produce ATP. Therefore, ATP production in cryopreserved oocytes was
further measured. The ATP levels in oocytes of the nMC-0 group or nMC-6 group were
significantly lower than that of the F group, indicating that the cryopreservation process
reduces ATP production. It has been reported that the weakened mitochondrial function
and impaired ATP production were present in human, porcine, and bovine oocytes after
cryopreservation [31,32]. These findings are consistent with our findings. The ATP level
in the nMC-6 group was significantly lower than that in the nMC-0 group, indicating
that long-term cryopreservation results in a decrease in mitochondrial ATP production.
However, the ATP levels in the MT-treated groups were significantly higher than those
in the no-MT-treated groups, suggesting that MT can effectively protect mitochondrial
function, thereby maintaining normal ATP production.

A by-product of energy production in mitochondria is ROS. Normally, overproduced
cellular ROS is removed by the endogenous antioxidant system to maintain ROS homeosta-
sis in cells. As the foremost nonenzymatic antioxidant, GSH is crucial for the formation,
maintenance, and protection of meiotic spindles from oxidative stress [33]. The intracel-
lular ROS/GSH balance is critically important for physiological functions of cells. An
imbalance in ROS/GSH indicates that the cells are in a state of oxidative stress and suffer
from oxidative damage [34]. According to recent reports, the vitrification–warming process
and extremely low-temperature conditions destroy the ROS/GSH balance, resulting in the
failed removal and accumulation of excessive ROS. The accumulated ROS will attack the
target mitochondria, causing damage to the mitochondrial inner membrane and ultimately
impairing mitochondrial function [35]. The damaged mitochondrial function further leads
to the increased ROS and a disrupted ROS/GSH balance, resulting in the peroxidation
of the biofilm of structural proteins and lipids and the impairment of the permeability of
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biofilms, finally causing cell apoptosis [35–37]. ROS/GSH balance is critical for promoting
oocyte maturation and zygotic development [38]. Given that MT is known to exert antioxi-
dant effects by modulating the intracellular ROS/GSH balance [39,40], we further detected
the levels of ROS and GSH and analyzed the differences in ROS/GSH ratios among groups.
In this study, the ROS and GSH levels of the no-MT-treated groups were significantly higher
or lower than those in the F group, which indicated that cryopreservation resulted in ROS
accumulation and GSH reduction. The ROS level of oocytes in the nMC-6 group was signif-
icantly higher than that in the nMC-0 group, confirming that ROS accumulation increased
in oocytes in prolonged cryopreservation. After MT treatment, the ROS and GSH levels
in the MC-0 and MC-6 groups were significantly diminished or enhanced compared to
those in the nMC-0 and nMC-6 groups, respectively, which implies that the involvement of
MT effectively suppresses the ROS accumulation and antioxidant competence impairment
caused by prolonged cryopreservation. The ROS/GSH ratio in the no-MT-treated groups
was significantly higher than that in the F and MT-treated groups, and that in the nMC-0
group was significantly lower than that in the nMC-6 group. However, the ROS/GSH
ratio of the MT-treated groups was comparable to that of the F group. These results reveal
that MT can effectively maintain the balance of the intracellular antioxidant system, thus
effectively protecting the developmental competence of cryopreserved oocytes.

5. Conclusions

In conclusion, this study reveals the phenomenon of the decreased developmental
competence of human oocytes with prolonged cryopreservation. The developmental
competence degradation can be attributed to the deterioration of cellular metabolic func-
tion, especially mitochondrial function. MT can effectively protect the developmental
competence of human cryopreserved oocytes. The underlying mechanism may be that
melatonin protects mitochondrial function and inhibits oxidative damage mainly by protect-
ing the expression of oxidative phosphorylation pathway-related proteins and maintaining
ROS/GSH homeostasis, thereby maintaining normal ATP production and ROS/GSH ratio
in human cryopreserved oocytes.
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