Redox Imbalance in Nasal Epithelial Cells of Primary Ciliary Dyskinesia Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anamnesis and Physical Examinations
2.3. Sample Collection
2.4. Apoptosis, Oxidative/Nitrosative Stress, Mitochondrial Assessment, and Damage to Biomolecules
2.4.1. Cytometric Measurements
2.4.2. Determination of Cellular Viability
2.4.3. Reactive Oxygen Species and Reactive Nitrogen Species Assessment
2.4.4. Reduced Glutathione Assessment
2.4.5. Plasmatic Membrane Potential Assessment
2.4.6. Mitochondrial Assessment
2.4.7. Intracellular Calcium Assessment
2.4.8. Markers of Oxidative Damage to Biomolecules
2.4.9. Apoptosis Assay
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Data
3.2. Comparison of the Oxidative Profile of the Nasal Ciliated Epithelium Cells between PCD Patients and Control Individuals
3.2.1. Apoptosis, ROS/RNS, and Antioxidant Markers
3.2.2. Mitochondrial Oxidative Parameters
3.2.3. Markers of Oxidative Damage
3.3. Analysis of the Association between the Oxidative Stress Profile and the Clinicopathological Characteristics of Patients with PCD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hannah, W.B.; Seifert, B.A.; Truty, R.; Zariwala, M.A.; Ameel, K.; Zhao, Y.; Nykamp, K.; Gaston, B. The Global Prevalence and Ethnic Heterogeneity of Primary Ciliary Dyskinesia Gene Variants: A Genetic Database Analysis. Lancet Respir. Med. 2022, 10, 459–468. [Google Scholar] [CrossRef]
- Horani, A.; Ferkol, T.W. Understanding Primary Ciliary Dyskinesia and Other Ciliopathies. J. Pediatr. 2021, 230, 15–22.e1. [Google Scholar] [CrossRef] [PubMed]
- Blanter, M.; Cockx, M.; Wittebols, L.; Salama, S.A.; Bondt, M.D.; Berghmans, N.; Pörtner, N.; Vanbrabant, L.; Lorent, N.; Gouwy, M.; et al. Sputum from Patients with Primary Ciliary Dyskinesia Contains High Numbers of Dysfunctional Neutrophils and Inhibits Efferocytosis. Respir. Res. 2022, 23, 359. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease. Oxidative Med. Cell. Longev. 2018, 2018, 5730395. [Google Scholar] [CrossRef]
- Dickerhof, N.; Pearson, J.F.; Hoskin, T.S.; Berry, L.J.; Turner, R.; Sly, P.D.; Kettle, A.J.; Arest, C.F. Oxidative Stress in Early Cystic Fibrosis Lung Disease Is Exacerbated by Airway Glutathione Deficiency. Free Radic. Biol. Med. 2017, 113, 236–243. [Google Scholar] [CrossRef]
- Escribano, A.; Pastor, S.; Reula, A.; Castillo, S.; Vicente, S.; Sanz, F.; Casas, F.; Torres, M.; Fernández-Fabrellas, E.; Codoñer-Franch, P.; et al. Accelerated Telomere Attrition in Children and Teenagers with A1-Antitrypsin Deficiency. Eur. Respir. J. 2016, 48, 350–358. [Google Scholar] [CrossRef]
- Escribano, A.; Amor, M.; Pastor, S.; Castillo, S.; Sanz, F.; Codoñer-Franch, P.; Dasí, F. Decreased Glutathione and Low Catalase Activity Contribute to Oxidative Stress in Children with α-1 Antitrypsin Deficiency. Thorax 2015, 70, 82. [Google Scholar] [CrossRef]
- Magallón, M.; Castillo-Corullón, S.; Bañuls, L.; Pellicer, D.; Romero, T.; Martínez-Ferraro, C.; Navarro-García, M.M.; Herrejón, A.; González, C.; Dasí, F. Hypoxia Enhances Oxidative Stress in Neutrophils from ZZ Alpha-1 Antitrypsin Deficiency Patients. Antioxidants 2023, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- Zihlif, N.; Paraskakis, E.; Tripoli, C.; Lex, C.; Bush, A. Markers of Airway Inflammation in Primary Ciliary Dyskinesia Studied Using Exhaled Breath Condensate. Pediatr. Pulmonol. 2006, 41, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Bodini, A.; Pecoraro, L.; Tenero, L.; Pezzella, V.; Pradal, U.; Piacentini, G. Isoprostane-8 in the Exhaled Breath Condensate: Could It Represent a Noninvasive Strategic Tool for Primary Ciliary Dyskinesia Diagnosis and Management? Lung India Off. Organ Indian Chest Soc. 2021, 38, 241–244. [Google Scholar] [CrossRef]
- Lucas, J.S.; Barbato, A.; Collins, S.A.; Goutaki, M.; Behan, L.; Caudri, D.; Dell, S.; Eber, E.; Escudier, E.; Hirst, R.A.; et al. European Respiratory Society Guidelines for the Diagnosis of Primary Ciliary Dyskinesia. Eur. Respir. J. 2017, 49, 1601090. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple, R.A.; Kenia, P. European Respiratory Society Guidelines for the Diagnosis of Primary Ciliary Dyskinesia: A Guideline Review. Arch. Dis. Child.—Educ. Pr. Ed. 2019, 104, 265. [Google Scholar] [CrossRef]
- Baz-Redón, N.; Rovira-Amigo, S.; Paramonov, I.; Castillo-Corullón, S.; Cols-Roig, M.; Antolín, M.; García-Arumí, E.; Torrent-Vernetta, A.; Messa, I.d.M.; Gartner, S.; et al. Implementation of a Gene Panel for Genetic Diagnosis of Primary Ciliary Dyskinesia. Arch. Bronconeumol. (Engl. Ed.) 2021, 57, 186–194. [Google Scholar] [CrossRef]
- Rubbo, B.; Shoemark, A.; Jackson, C.L.; Hirst, R.; Thompson, J.; Hayes, J.; Frost, E.; Copeland, F.; Hogg, C.; O’Callaghan, C.; et al. Accuracy of High-Speed Video Analysis to Diagnose Primary Ciliary Dyskinesia. Chest 2019, 155, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Reula, A.; Pellicer, D.; Castillo, S.; Magallón, M.; Armengot, M.; Herrera, G.; O’Connor, J.-E.; Bañuls, L.; Navarro-García, M.M.; Escribano, A.; et al. New Laboratory Protocol to Determine the Oxidative Stress Profile of Human Nasal Epithelial Cells Using Flow Cytometry. J. Clin. Med. 2021, 10, 1172. [Google Scholar] [CrossRef]
- Noone, P.G.; Leigh, M.W.; Sannuti, A.; Minnix, S.L.; Carson, J.L.; Hazucha, M.; Zariwala, M.A.; Knowles, M.R. Primary Ciliary Dyskinesia: Diagnostic and Phenotypic Features. Am. J. Respir. Crit. Care Med. 2004, 169, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef] [PubMed]
- Paternò, S.; Pisani, L.; Zanconato, S.; Ferraro, V.A.; Carraro, S. Role of Nasal Nitric Oxide in Primary Ciliary Dyskinesia and Other Respiratory Conditions in Children. Int. J. Mol. Sci. 2023, 24, 16159. [Google Scholar] [CrossRef]
- ben Anes, A.; Fetoui, H.; Bchir, S.; ben Nasr, H.; Chahdoura, H.; Chabchoub, E.; Yacoub, S.; Garrouch, A.; Benzarti, M.; Tabka, Z.; et al. Increased Oxidative Stress and Altered Levels of Nitric Oxide and Peroxynitrite in Tunisian Patients with Chronic Obstructive Pulmonary Disease: Correlation with Disease Severity and Airflow Obstruction. Biol. Trace Elem. Res. 2014, 161, 20–31. [Google Scholar] [CrossRef]
- Kanazawa, H.; Shiraishi, S.; Hirata, K.; Yoshikawa, J. Imbalance between Levels of Nitrogen Oxides and Peroxynitrite Inhibitory Activity in Chronic Obstructive Pulmonary Disease. Thorax 2003, 58, 106. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, H.; Shiraishi, S.; Hirata, K.; Yoshikawa, J. Decreased Peroxynitrite Inhibitory Activity in Induced Sputum in Patients with Bronchial Asthma. Thorax 2002, 57, 509. [Google Scholar] [CrossRef]
- Burkhalter, M.D.; Sridhar, A.; Sampaio, P.; Jacinto, R.; Burczyk, M.S.; Donow, C.; Angenendt, M.; Competence Network for Congenital Heart Defects Investigators; Hempel, M.; Walther, P.; et al. Imbalanced Mitochondrial Function Provokes Heterotaxy via Aberrant Ciliogenesis. J. Clin. Investig. 2019, 129, 2841–2855. [Google Scholar] [CrossRef] [PubMed]
- Ignatenko, O.; Malinen, S.; Rybas, S.; Vihinen, H.; Nikkanen, J.; Kononov, A.; Jokitalo, E.S.; Ince-Dunn, G.; Suomalainen, A. Mitochondrial Dysfunction Compromises Ciliary Homeostasis in Astrocytes. J. Cell Biol. 2022, 222, e202203019. [Google Scholar] [CrossRef] [PubMed]
Controls (n = 35) | Patients (n = 35) | p-Value | |
---|---|---|---|
Age (years ± SD) | 26.73 ± 9.51 | 27.09 ± 20.12 | 0.226 |
Male/female (n/%) | 17 (49%)/18 (51%) | 20 (57%)/15 (43%) | 0.632 |
BMI (kg m−2) | 20.00 ± 2.00 | 22.53 ± 5.00 | 0.520 |
Situs inversus (n/%) | - | 9 (26) | - |
Chronic cough (n/%) | - | 31 (89) | - |
Bronchiectasis (n/%) | - | 15 (43) | - |
Atelectasis (n/%) | - | 11 (31) | - |
Asthma (n/%) | - | 10 (29) | - |
Otitis (n/%) | - | 21 (60) | - |
Rhinosinusitis (n/%) | - | 18 (51) | - |
Pneumonia (n/%) | - | 20 (57) | - |
nNO (ppb) | - | 94.50 ± 64.50 | - |
Ciliary Ultrastructure Defects (n = 22) | Number of Patients | Percentage |
---|---|---|
Defects in both external and internal dynein arms | 6 | 27 |
Defects only in internal dynein arms | 7 | 32 |
Microtubule disorganization | 2 | 9 |
Transposition | 1 | 5 |
Partial dynein deficiency | 3 | 14 |
Normal | 3 | 14 |
Ciliary Beat Pattern (n = 35) | Number of Patients | Percentage |
---|---|---|
Immobile cilia | 9 | 26 |
Vibrational movement | 11 | 31 |
Reduced amplitude and lack of coordination | 9 | 26 |
Normal pattern but reduced frequency | 6 | 17 |
Control (n = 35) | Patients (n = 35) | p-Value | |
---|---|---|---|
Apoptosis | 20.59 ± 18.97 | 10.01 ± 7.80 | 0.004 |
ROS/RNS and antioxidant markers | |||
GSH (FU) | 1438.00 ± 507.40 | 1463.00 ± 653.70 | 0.867 |
O2− (FU) | 469.70 ± 406.70 | 273.00 ± 172.90 | 0.018 |
ONOO− (FU) | 29.04 ± 16.27 | 18.64 ± 14.24 | 0.007 |
NO (FU) | 132.70 ± 165.60 | 53.66 ± 33.79 | 0.007 |
iCa2+ | 116.80 ± 53.55 | 111.20 ± 60.27 | 0.680 |
Plasma membrane potential | 756.70 ± 767.00 | 748.10 ± 534.30 | 0.957 |
Intracellular peroxides | 484.90 ± 409.20 | 823.20 ± 841.30 | 0.206 |
Mitochondrial oxidative parameters | |||
H2O2 (FU) | 490.50 ± 237.40 | 270.10 ± 133.10 | <0.0001 |
O2− (FU) | 155.10 ± 108.60 | 74.56 ± 63.04 | 0.0004 |
Mitochondrial mass (FU) | 1723.00 ± 947.50 | 2314.00 ± 877.70 | 0.009 |
ΔΨm (FU) | 590.50 ± 376.80 | 735.30 ± 536.60 | 0.200 |
Markers of oxidative damage | |||
Oxidized protein (FU) | 1694.00 ± 1244.00 | 2147.80 ± 1298.00 | 0.1371 |
Oxidized/reduced lipid ratio (FU) | 189.30 ± 163.70 | 178.90 ± 155.00 | 0.7973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reula, A.; Castillo-Corullón, S.; Armengot, M.; Herrera, G.; Escribano, A.; Dasí, F. Redox Imbalance in Nasal Epithelial Cells of Primary Ciliary Dyskinesia Patients. Antioxidants 2024, 13, 190. https://doi.org/10.3390/antiox13020190
Reula A, Castillo-Corullón S, Armengot M, Herrera G, Escribano A, Dasí F. Redox Imbalance in Nasal Epithelial Cells of Primary Ciliary Dyskinesia Patients. Antioxidants. 2024; 13(2):190. https://doi.org/10.3390/antiox13020190
Chicago/Turabian StyleReula, Ana, Silvia Castillo-Corullón, Miguel Armengot, Guadalupe Herrera, Amparo Escribano, and Francisco Dasí. 2024. "Redox Imbalance in Nasal Epithelial Cells of Primary Ciliary Dyskinesia Patients" Antioxidants 13, no. 2: 190. https://doi.org/10.3390/antiox13020190
APA StyleReula, A., Castillo-Corullón, S., Armengot, M., Herrera, G., Escribano, A., & Dasí, F. (2024). Redox Imbalance in Nasal Epithelial Cells of Primary Ciliary Dyskinesia Patients. Antioxidants, 13(2), 190. https://doi.org/10.3390/antiox13020190