Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Keywords = mint plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1471 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
Show Figures

Figure 1

27 pages, 21524 KiB  
Article
Synergistic Combinations of Native Australian Plants For Skin Inflammation and Wound Healing
by Rotina Kapini, Dennis Chang, Gerald Münch, Lisa Carroll and Xian Zhou
Biomedicines 2025, 13(7), 1754; https://doi.org/10.3390/biomedicines13071754 - 17 Jul 2025
Viewed by 468
Abstract
Background: Inflammation and oxidative stress are key mechanisms in underlying skin conditions like psoriasis and eczema. While many plants, including Australian native plants, are proposed to target these pathways due to their phytochemical content, studies on whole extracts and their synergistic effects remain [...] Read more.
Background: Inflammation and oxidative stress are key mechanisms in underlying skin conditions like psoriasis and eczema. While many plants, including Australian native plants, are proposed to target these pathways due to their phytochemical content, studies on whole extracts and their synergistic effects remain limited. Objectives: This study aimed to investigate individual and combined effects of whole plant extracts on skin protection and healing, focusing on their anti-inflammatory and antioxidant properties. Methods: The antioxidant potential of the individual and combined plant extracts were investigated on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reactive oxygen species (ROS) assay followed by luciferase assay in MCF-7 AREc32 cells for nuclear factor erythroid 2-related factor 2 (Nrf2) activation. The anti-inflammatory activities were investigated on lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages for the inhibition of nitric oxide (NO), tumour necrosis factor (TNF)-α, and interleukin (IL)-6. Synergistic interaction was determined by the combination index model (CI < 1). Combination(s) showing synergistic and optimal activity were further investigated on LPS-induced human dermal fibroblasts (HDF) cells for IL-6 inhibition and wound healing activity. Results: Three of the tested Australian native plant extracts demonstrated prominent antioxidant and anti-inflammatory activities including bitter orange, mountain pepper berry and native river mint. In particular, their three-way combination (1:1:1, w/w) showed prominent synergistic (CI < 1) in reducing NO and IL-6, along with enhanced Nrf2 activation. In LPS-inflamed HDF cells, the combination maintained synergistic inhibition of IL-6 levels and promoted wound healing response. Conclusions: These findings highlight the therapeutic potential of Australian native plant as a whole extract for skin protection and repair attributed to antioxidant and anti-inflammatory activities. The observed synergistic anti-inflammatory and antioxidant effects support their use in the development of new cosmetic formulations for skin. Full article
Show Figures

Graphical abstract

21 pages, 1368 KiB  
Article
Green Extraction Combined with Chemometric Approach: Profiling Phytochemicals and Antioxidant Properties of Ten Species of the Lamiaceae Family
by Branislava Teofilović, Emilia Gligorić, Martina Ninić, Saša Vukmirović, Žarko Gagić, Nebojša Mandić-Kovačević, Biljana Tubić, Đorđe Đukanović and Nevena Grujić-Letić
Separations 2025, 12(6), 155; https://doi.org/10.3390/separations12060155 - 8 Jun 2025
Viewed by 431
Abstract
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, [...] Read more.
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, rosemary, lemon balm, and mint—prepared as traditional infusions and microwave-assisted extracts. The antioxidant capacity was evaluated using spectrophotometric assays, and total phenolics and flavonoids were quantified via spectrophotometry and HPLC. Chemometric analysis (PCA) was applied to explore correlations among antioxidant parameters. The results demonstrated excellent antioxidant activity across all samples. The IC50 for DPPH radicals was in the range from 3.73(0.13) to 8.03(0.17) μg/mL and that for ABTS radicals was from 2.89(0.12) to 8.55(0.34). The CUPRAC antioxidant assay delivered values in the range from 351.93(11.85) to 1129.68(44.46) μg TE/mg DE. The FRAP method produced values from 1.27(0.03) to 6.60(0.26) μmol Fe/mg DE. The presence of gallic acid was detected in all examined samples, with lemon balm and lavender exhibiting the highest concentrations across both applied extraction methods. Notably, lavender showed especially high levels of p-hydroxybenzoic acid and chlorogenic acid. Microwave-assisted extraction generally yielded higher levels of bioactive compounds compared to infusion. These findings highlight the potential of Lamiaceae herbal extracts, particularly those obtained through microwave-assisted extraction, as valuable sources of dietary antioxidants for everyday use. Full article
Show Figures

Figure 1

20 pages, 1713 KiB  
Review
Rosmarinic Acid as Bioactive Compound: Molecular and Physiological Aspects of Biosynthesis with Future Perspectives
by Dragana Jakovljević, Marzena Warchoł and Edyta Skrzypek
Cells 2025, 14(11), 850; https://doi.org/10.3390/cells14110850 - 5 Jun 2025
Viewed by 747
Abstract
The ester of caffeic acid with α-hydroxydihydrocaffeic acid, named rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) can occur as oligomeric molecules, or in free, esterified, and glycosidic forms. Although it is commonly found among the members of the plants from the Lamiaceae (mints) and Boraginaceae [...] Read more.
The ester of caffeic acid with α-hydroxydihydrocaffeic acid, named rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) can occur as oligomeric molecules, or in free, esterified, and glycosidic forms. Although it is commonly found among the members of the plants from the Lamiaceae (mints) and Boraginaceae (borages) families, only certain plant species produce a comparatively high concentration of RA. This valuable bioactive compound exhibits anti-cancer, anti-angiogenic, antioxidant, anti-inflammatory, antiviral, and antimicrobial properties, among others. As it is difficult to obtain high quantities of RA from natural sources, and since chemical manufacturing is costly and challenging, various biotechnological methods have recently been investigated to boost RA production. Plant cell tissue culture has been used to promote RA production in various plant species, particularly medicinal ones, with elicitation being the most commonly used technique. This review explores the main steps involved in RA biosynthesis in plants, including the molecular mechanisms and physiological alterations underlying its function, along with the primary mechanisms of RA accumulation in response to elicitation. Recent progress in synthetic biology-based RA synthesis, as well as metabolic engineering techniques to enhance the industrial production of this valuable bioactive constituent, are also discussed. Full article
(This article belongs to the Special Issue Antioxidants in Redox Homeostasis of Plant Development)
Show Figures

Figure 1

14 pages, 1141 KiB  
Article
A Novel Biostimulant–Biochar Strategy for Improving Soil Quality and Salinity Tolerance in Medicinal Mint (Mentha longifolia L.)
by Mamdouh A. Eissa, Modhi O. Alotaibi, Mashael M. Alotibi, Alya Aljuaid, Taghreed Hamad Aldayel and Adel M. Ghoneim
Soil Syst. 2025, 9(2), 58; https://doi.org/10.3390/soilsystems9020058 - 2 Jun 2025
Viewed by 591
Abstract
This study evaluated the combined application of biochar (BC) and Spirulina platensis (SP) as a sustainable strategy to improve soil quality and salinity tolerance in mint (Mentha longifolia L.) cultivated in sandy soils. A pot experiment was conducted using saline irrigation water [...] Read more.
This study evaluated the combined application of biochar (BC) and Spirulina platensis (SP) as a sustainable strategy to improve soil quality and salinity tolerance in mint (Mentha longifolia L.) cultivated in sandy soils. A pot experiment was conducted using saline irrigation water (5 dS m−1) with four treatments: control, BC alone, SP alone, and BC + SP applied at 1% (w/w), arranged in a randomized complete block design with three replicates. Salt stress reduced plant height and biomass yield by 16% and 27%, respectively, and increased sodium (Na+) in shoots by 74%, causing ionic imbalance and decreased soil microbial biomass carbon by 19%. The combined BC + SP treatment significantly improved soil microbial biomass carbon (SMBC) by 100%, reduced soil Na⁺ by 41%, and enhanced K+/Na+ and Ca2+/Na+ ratios by 138% and 133%, respectively. Under salinity, BC + SP increased nutrient concentrations in mint shoots, including N (120%), P (106%), K (88%), Ca (67%), Fe (70%), Mn (50%), Zn (44%), and Cu (70%), and improved leaf chlorophyll content. These results demonstrate that BC and SP synergistically mitigate salinity stress by improving soil properties, nutrient uptake, and ionic balance, making BC + SP a promising sustainable amendment for saline sandy soils. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

15 pages, 2156 KiB  
Article
The Chemical Analysis of Wild Thyme Variability for the Enhanced Production of Bioactive Compounds and Agro-Ecosystem Sustainability in the Mountains of Pistoia (Italy)
by Costanza Santini, Daniele Bonetti, Lorenzo Della Maggiora, Waed Tarraf, Felicia Menicucci, Francesca Ieri, Alfonso Crisci, Gabriele Cencetti, Andrea Ienco and Eleonora Palagano
Sustainability 2025, 17(11), 5073; https://doi.org/10.3390/su17115073 - 1 Jun 2025
Viewed by 492
Abstract
The Pistoia Mountains exhibit a great variety of flora, particularly rich in aromatic plants, such as juniper, mint, savory, helichrysum, and thyme. Thyme is especially notable for its essential oil, typically displaying high thymol and carvacrol content. While the chemotype of thyme determined [...] Read more.
The Pistoia Mountains exhibit a great variety of flora, particularly rich in aromatic plants, such as juniper, mint, savory, helichrysum, and thyme. Thyme is especially notable for its essential oil, typically displaying high thymol and carvacrol content. While the chemotype of thyme determined by its specific terpene composition is genetically controlled, environmental factors, plant age, and seasonality can influence terpene production. This article investigates the morpho-chemical variability of wild thyme plants collected from two different regions of the Pistoia Mountains, identifying five distinct chemotypes. The gas chromatography–mass spectrometry (GC-MS) technique was used to characterize the chemical profiles and determine the seasonal variation in terpene production, identifying spring and summer as the balsamic period, the optimal time for essential oil collection. Furthermore, high-value thyme clones were preserved through in vitro micropropagation, ensuring chemotype stability. These findings contribute to a deeper understanding of wild thyme biodiversity and provide a foundation for practical applications, including the development of value-added products like herb-infused cheeses, plant and animal disease treatments, and integrated pest management strategies in agricultural systems. Full article
Show Figures

Figure 1

20 pages, 765 KiB  
Review
A Review of Nature-Based Solutions for Valorizing Aromatic Plants’ Lignocellulosic Waste Through Oyster Mushroom Cultivation
by Mirca Zotti, Grazia Cecchi, Laura Canonica and Simone Di Piazza
Sustainability 2025, 17(10), 4410; https://doi.org/10.3390/su17104410 - 13 May 2025
Viewed by 726
Abstract
A creative, nature-based way to solve environmental issues and promote sustainable development could be the cultivation of Pleurotus spp. mushrooms to use the lignocellulosic waste from Medicinal and Aromatic Plants (MAPs). Pleurotus species are characterized by flexibility and biodegradative capacities to generate bioactive [...] Read more.
A creative, nature-based way to solve environmental issues and promote sustainable development could be the cultivation of Pleurotus spp. mushrooms to use the lignocellulosic waste from Medicinal and Aromatic Plants (MAPs). Pleurotus species are characterized by flexibility and biodegradative capacities to generate bioactive compounds with antibacterial, antioxidant, and nutraceutical properties using lignocellulosic substrates. Aromatic plant residues, such as those from lavender, sage, and mint, can improve the resultant mushrooms’ metabolic profiles and act as nutrient-rich substrates. Higher levels of phenols, flavonoids, and terpenoids can be among these enhancements, which could make mushrooms useful as functional foods. This strategy could provide scalable and affordable waste management solutions by utilizing already existing agricultural systems, including mushroom cultivation, during slow times. Incorporating Pleurotus-based systems can help to produce renewable bio-based products, reduce pollution, and improve soil health. This study not only attempts to demonstrate how Pleurotus species may convert industrial and agricultural waste into valuable, bioactive products, reducing waste and promoting ecological remediation in a circular economy, but also to highlight the viability of using natural processes for economic and environmental sustainability. To exploit the potential of this nature-based approach, future research should concentrate on maximizing substrate consumption, scaling these solutions to industrial levels, and guaranteeing regulatory compliance. Full article
Show Figures

Figure 1

23 pages, 16269 KiB  
Article
Development of Eco-Friendly Date Palm Biomass-Based Hydrogels for Enhanced Water Retention in Soil
by Faisal S. Alsubaie, Mouyed Srdar, Osama Fayraa, Faris M. Alsulami, Feras Omran and Khalid A. Alamry
Gels 2025, 11(5), 349; https://doi.org/10.3390/gels11050349 - 8 May 2025
Viewed by 1050
Abstract
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. [...] Read more.
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. In this study, renewable and cost-effective HGs were prepared from all-lignocellulose fibers of date palm biomass after carboxymethylation followed by citric acid (CA) crosslinking. HGs showed high equilibrium swelling capacity (EWC%), even in salty media, whereas purified HGs showed about 700–400 EWC% in deionized water. Further, HGs’ effect on germination was studied on Chico III tomato, mint, Basilico red, and chia seeds. The results revealed that HGs enhanced the soil properties, with taller and healthier plants observed in HG-amended soil. FTIR, thermal analysis, and microscope imaging were utilized to evaluate HGs’ and raw materials’ characteristics. The findings in this study support the idea that all-lignocellulose could be used for HG production without separation. Full article
Show Figures

Graphical abstract

17 pages, 3258 KiB  
Article
A Novel Method to Investigate Environmental Risk in Wastewater Toxicity
by Isha Shakoor, Amina Sultan, Kamran Shaukat, Talha Mahboob Alam and Aisha Nazir
Agronomy 2025, 15(4), 841; https://doi.org/10.3390/agronomy15040841 - 28 Mar 2025
Viewed by 2397
Abstract
This is a pioneering study on the main drainage system in Gujranwala District, where untreated mixed wastewater is discharged and subsequently used for vegetable irrigation, leading to potential health and environmental risks. This study seeks to develop the spatial pattern of toxic metal [...] Read more.
This is a pioneering study on the main drainage system in Gujranwala District, where untreated mixed wastewater is discharged and subsequently used for vegetable irrigation, leading to potential health and environmental risks. This study seeks to develop the spatial pattern of toxic metal accumulation in soil across an 11 km stretch of land used for vegetable cultivation. By using 90 samples of mixed wastewater and sludge, as well as 10 quadruplicate samples of rhizospheric soils and crops from ten vegetable fields, it was observed that the concentrations of Cr, Cu, Cd, Zn, Fe, Pb, Mg, and Ni in cauliflower (Brassica oleracea var. botrytis L.), coriander (Coriandrum sativum L.), radish (Raphanus sativus L.), mustard (Brassica juncea L.), spinach (Spinacia oleracea L.), meadow clover (Trifolium sp. L.), sorghum (Sorghum bicolour L.), garlic (Allium sativum L.), brinjal (Solanum melongena L.), and mint (Mentha L.) were beyond the permissible limits set by the FAO/WHO, 2001. The declining trend of the toxic metal concentrations in the effluent was Mg > Cr > Ni > Zn > Pb > Cd > Cu > Fe, and in sludge, soil, and plants, it varied in the order of Mg > Fe > Cr > Ni > Zn > Pb > Cd > Cu. Radish, mint, and brinjal had the highest quantities of toxic metals. The spatial pattern of toxic metals was determined by using proximity interpolation, Inverse Distance Weighted (IDW), the fine tuning of the interpolation characteristics, and the kriging of selected sample variograms. Toxic metals were found in the following order: plants > soil > sludge > effluents. The most prevalent cause of metal pollution was soil irrigation with polluted water. This study provides crucial information about the extent of contamination, which could help in the identification of public health risk, the assessment of environmental impacts, and also sustainable water management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

8 pages, 2111 KiB  
Proceeding Paper
The Innovative Potential of Key Mentha Species: An Assessment Based on Patent Analysis
by Reda El Boukhari and Ahmed Fatimi
Biol. Life Sci. Forum 2024, 39(1), 5; https://doi.org/10.3390/blsf2024039005 - 7 Feb 2025
Viewed by 700
Abstract
Morocco’s rich biodiversity includes various aromatic and medicinal plants utilized for culinary and medicinal purposes. The genus Mentha, belonging to the Lamiaceae family, is notable for its widespread use in Moroccan culture. This genus encompasses several species with distinct phytochemical profiles, offering [...] Read more.
Morocco’s rich biodiversity includes various aromatic and medicinal plants utilized for culinary and medicinal purposes. The genus Mentha, belonging to the Lamiaceae family, is notable for its widespread use in Moroccan culture. This genus encompasses several species with distinct phytochemical profiles, offering potential applications in cosmetics, medicine, and other sectors. However, understanding the innovation landscape related to Mentha in Morocco requires a comprehensive patent analysis, which can indicate trends, the technological focus, and potential commercial applications. This study identifies the Mentha species commonly used in Morocco and examines patent documents to reveal technological innovations linked to Moroccan Mentha species. Five major Mentha species were identified, namely M. longifolia, M. pulegium, M. gattefossei, M. spicata, and M. suaveolens, in addition to two hybrids (Mentha × piperita and M. rotundifolia). The patent analysis, focusing on the number of documents, jurisdictional distribution, and International Patent Classification (IPC) codes, highlights that China and the United States are leading jurisdictions, with 1113 and 915 patent documents, respectively. The primary IPC code, A61K36/53, corresponds to medicinal preparations containing mint. Among the eight identified species, M. spicata (spearmint) accounted for the highest patent activity, reflecting its widespread cultivation and use both in Morocco and globally. In contrast, M. gattefossei (persian mint), an endemic species, had minimal patent representation, suggesting limited international exploitation and potential opportunities for increased research and commercialization focused on this species. Full article
Show Figures

Figure 1

25 pages, 8251 KiB  
Article
Effects of Far-Red Light and Ultraviolet Light-A on Growth, Photosynthesis, Transcriptome, and Metabolome of Mint (Mentha haplocalyx Briq.)
by Lishu Yu, Lijun Bu, Dandan Li, Kaili Zhu, Yongxue Zhang, Shaofang Wu, Liying Chang, Xiaotao Ding and Yuping Jiang
Plants 2024, 13(24), 3495; https://doi.org/10.3390/plants13243495 - 14 Dec 2024
Cited by 2 | Viewed by 1435
Abstract
To investigate the effects of different light qualities on the growth, photosynthesis, transcriptome, and metabolome of mint, three treatments were designed: (1) 7R3B (70% red light and 30% blue light, CK); (2) 7R3B+ far-red light (FR); (3) 7R3B+ ultraviolet light A (UVA). The [...] Read more.
To investigate the effects of different light qualities on the growth, photosynthesis, transcriptome, and metabolome of mint, three treatments were designed: (1) 7R3B (70% red light and 30% blue light, CK); (2) 7R3B+ far-red light (FR); (3) 7R3B+ ultraviolet light A (UVA). The results showed that supplemental FR significantly promoted the growth and photosynthesis of mint, as evidenced by the increase in plant height, plant width, biomass, effective quantum yield of PSII photochemistry (Fv’/Fm’), maximal quantum yield of PSII (Fv/Fm), and performance index (PI). UVA and CK exhibited minimal differences. Transcriptomic and metabolomic analysis indicated that a total of 788 differentially expressed genes (DEGs) and 2291 differential accumulated metabolites (DAMs) were identified under FR treatment, mainly related to plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis. FR also promoted the accumulation of phenylalanine, sinapyl alcohol, methylchavicol, and anethole in the phenylpropanoid biosynthesis pathway, and increased the levels of luteolin and leucocyanidin in the flavonoid biosynthesis pathway, which may perhaps be applied in practical production to promote the natural antibacterial and antioxidant properties of mint. An appropriate increase in FR radiation might alter transcript reprogramming and redirect metabolic flux in mint, subsequently regulating its growth and secondary metabolism. Our study uncovered the regulation of FR and UVA treatments on mint in terms of growth, physiology, transcriptome, and metabolome, providing reference for the cultivation of mint and other horticultural plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

29 pages, 1868 KiB  
Article
The Role of Light in Enhancing the Nutritional and Antioxidant Qualities of Basil, Mint and Lemon Balm
by Karolina Jakubczyk, Kinga Szymczykowska, Klaudia Melkis, Dominika Maciejewska-Markiewicz, Anna Nowak, Anna Muzykiewicz-Szymańska and Karolina Skonieczna-Żydecka
Foods 2024, 13(23), 3954; https://doi.org/10.3390/foods13233954 - 7 Dec 2024
Cited by 2 | Viewed by 1883
Abstract
Mint (Mentha L.), basil, (Ocimum basilicum) and Melissa (Melissa officinalis L.) are herbaceous plants from the Lamiaceae family. They have a wide range of health benefits and flavour properties which are highly valued around the world. Alternative methods of [...] Read more.
Mint (Mentha L.), basil, (Ocimum basilicum) and Melissa (Melissa officinalis L.) are herbaceous plants from the Lamiaceae family. They have a wide range of health benefits and flavour properties which are highly valued around the world. Alternative methods of growing plants to minimise greenhouse gas emissions during autumn and winter are being sought in the face of increasing climate change. One way to achieve this is to switch from HPS to LED lighting. LED lighting has a longer lifespan and higher efficiency while using less energy and better matching the colour of the light to the needs of the herbs. This study tested the hypothesis that the type of illumination (solar, HPS, and LED) significantly impacts the antioxidant and nutritional qualities of herbs. The results indicated that LED lighting enhanced biochemical properties, supporting its adoption for sustainable plant cultivation. Full article
Show Figures

Graphical abstract

14 pages, 1092 KiB  
Article
GC/MS Analysis and Protective Effects of Mentha longifolia L. Essential Oil Against Antituberculosis Drug-Induced Organs Toxicity in Wistar Albino Rats
by Usama K. Abdel-Hameed, Abdulaziz S. Abualghaith, Shaza H. Aly, Mohamed Mostafa Soliman, Lamiaa Adnan Munshi, Safia A. A. Mohammed, Omayma A. Eldahshan and Eman A. R. Abdelghffar
Plants 2024, 13(22), 3231; https://doi.org/10.3390/plants13223231 - 17 Nov 2024
Cited by 3 | Viewed by 1721
Abstract
Mentha longifolia (L.) L., also known as wild mint, is a perennial herbaceous plant that belongs to the Lamiaceae family. This study aimed to investigate the effects of essential oil of M. longifolia (MLEO) on oxidative stress and inflammatory responses in the liver [...] Read more.
Mentha longifolia (L.) L., also known as wild mint, is a perennial herbaceous plant that belongs to the Lamiaceae family. This study aimed to investigate the effects of essential oil of M. longifolia (MLEO) on oxidative stress and inflammatory responses in the liver and kidneys in the context of drug-induced liver injury caused by the anti-TB drugs rifampicin, isoniazid, and pyrazinamide (INH-RIF-PZA). The chemical composition of MLEO was characterized using GC/MS analysis, which revealed the presence of pulegone, trans-p-menthan-3-one, piperitenone, and β-caryophyllene as its major volatile constituents. An INH/RIF/PZA mixture was administered to Wistar rats for 30 days, and silymarin was administered as a standard drug. MLEO was administered p.o. at doses of 50 mg and 100 mg/kg b.w. Both doses of the MLEO therapy effectively regulated all biochemical indicators of hepatic impairment and reduced the damage caused by the INH/RIF/PZA mixture. It may be deduced that MLEO has the ability to protect organs against INH/RIF/PZA-induced damage and could potentially be a valuable natural remedy for treating anti-TB-induced liver and kidney injuries. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Activities of Essential Oils)
Show Figures

Figure 1

22 pages, 4280 KiB  
Article
Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel Dieter Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Plants 2024, 13(22), 3155; https://doi.org/10.3390/plants13223155 - 9 Nov 2024
Cited by 1 | Viewed by 2210
Abstract
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of [...] Read more.
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of potentially health-damaging compounds such as menthofuran should be avoided. This study examines the effect of shading on the EO content and composition of three Mentha genotypes (Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’ and Mentha rotundifolia ‘Apfelminze’). The Mentha genotypes were cultivated in field trials for two years (2022–2023). Each genotype was shaded with a shading net (50% photosynthetic active radiation (PAR) reduction), and a control without shading was prepared. EO content was determined by steam distillation and EO composition was characterized by GC-MS analysis. Furthermore, biomass, vegetation indices (VIs) and the electron transport rate (ETR) were analyzed. While shading led to higher plant heights, higher EO content and a slightly reduced amount of undesired EO compounds, the unshaded control yielded a higher biomass accumulation. Significant genotypic differences were determined. In conclusion, the benefits of shading depend on the intended use and genotype selection. Full article
Show Figures

Figure 1

17 pages, 1130 KiB  
Article
Quality Characteristics and Essential Oil Properties of Thymus capitatus, Mentha piperita, and Sideritis cypria Dried under Different Conditions
by Panayiota Xylia, Antonios Chrysargyris, Ekaterina-Michaela Tomou, Christos Goumenos, Helen Skaltsa and Nikolaos Tzortzakis
Plants 2024, 13(22), 3150; https://doi.org/10.3390/plants13223150 - 9 Nov 2024
Cited by 2 | Viewed by 1260
Abstract
The drying of medicinal and aromatic plants (MAPs) is one of the main preservation methods for these products that can prolong their shelf life, if performed properly. The current study aimed to examine the effects of different drying conditions (sun, shade, and oven [...] Read more.
The drying of medicinal and aromatic plants (MAPs) is one of the main preservation methods for these products that can prolong their shelf life, if performed properly. The current study aimed to examine the effects of different drying conditions (sun, shade, and oven drying at 42 °C) on the quality characteristics of Thymus capitatus, Mentha piperita, and Sideritis cypria; their essential oil (EO) yield; and their biological properties (antioxidant and antibacterial activities). According to the results of the current study, oven drying resulted in faster moisture loss for all investigated species and slightly darker products. For T. capitatus, sun drying resulted in higher EO carvacrol content, whereas EOs obtained from shade and oven drying (at 42 °C) presented high total phenolic content and great antimicrobial activity. For M. piperita, shade drying resulted in a higher EO yield and higher iso-menthone content, whilst the EO obtained from oven-dried mint plants presented great antibacterial activity against the investigated foodborne pathogens. S. cypria plants dried in an air-ventilated oven produced an EO rich in β-caryophyllene and α-pinene, which also presented great antioxidant and antibacterial activity. The findings of the current study indicate that traditional drying methods, such as sun and shade, can result in good-quality dried MAPs that can yield EOs with significant biological activities, along with minimum energy consumption and lower carbon dioxide production (lower environmental carbon footprint), as opposed to oven drying. However, the drying-process duration could be a limitation at the industrial scale. Full article
Show Figures

Figure 1

Back to TopTop