Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (87)

Search Parameters:
Keywords = mint extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 21524 KB  
Article
Synergistic Combinations of Native Australian Plants For Skin Inflammation and Wound Healing
by Rotina Kapini, Dennis Chang, Gerald Münch, Lisa Carroll and Xian Zhou
Biomedicines 2025, 13(7), 1754; https://doi.org/10.3390/biomedicines13071754 - 17 Jul 2025
Viewed by 1645
Abstract
Background: Inflammation and oxidative stress are key mechanisms in underlying skin conditions like psoriasis and eczema. While many plants, including Australian native plants, are proposed to target these pathways due to their phytochemical content, studies on whole extracts and their synergistic effects remain [...] Read more.
Background: Inflammation and oxidative stress are key mechanisms in underlying skin conditions like psoriasis and eczema. While many plants, including Australian native plants, are proposed to target these pathways due to their phytochemical content, studies on whole extracts and their synergistic effects remain limited. Objectives: This study aimed to investigate individual and combined effects of whole plant extracts on skin protection and healing, focusing on their anti-inflammatory and antioxidant properties. Methods: The antioxidant potential of the individual and combined plant extracts were investigated on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reactive oxygen species (ROS) assay followed by luciferase assay in MCF-7 AREc32 cells for nuclear factor erythroid 2-related factor 2 (Nrf2) activation. The anti-inflammatory activities were investigated on lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages for the inhibition of nitric oxide (NO), tumour necrosis factor (TNF)-α, and interleukin (IL)-6. Synergistic interaction was determined by the combination index model (CI < 1). Combination(s) showing synergistic and optimal activity were further investigated on LPS-induced human dermal fibroblasts (HDF) cells for IL-6 inhibition and wound healing activity. Results: Three of the tested Australian native plant extracts demonstrated prominent antioxidant and anti-inflammatory activities including bitter orange, mountain pepper berry and native river mint. In particular, their three-way combination (1:1:1, w/w) showed prominent synergistic (CI < 1) in reducing NO and IL-6, along with enhanced Nrf2 activation. In LPS-inflamed HDF cells, the combination maintained synergistic inhibition of IL-6 levels and promoted wound healing response. Conclusions: These findings highlight the therapeutic potential of Australian native plant as a whole extract for skin protection and repair attributed to antioxidant and anti-inflammatory activities. The observed synergistic anti-inflammatory and antioxidant effects support their use in the development of new cosmetic formulations for skin. Full article
Show Figures

Graphical abstract

21 pages, 1368 KB  
Article
Green Extraction Combined with Chemometric Approach: Profiling Phytochemicals and Antioxidant Properties of Ten Species of the Lamiaceae Family
by Branislava Teofilović, Emilia Gligorić, Martina Ninić, Saša Vukmirović, Žarko Gagić, Nebojša Mandić-Kovačević, Biljana Tubić, Đorđe Đukanović and Nevena Grujić-Letić
Separations 2025, 12(6), 155; https://doi.org/10.3390/separations12060155 - 8 Jun 2025
Viewed by 941
Abstract
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, [...] Read more.
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, rosemary, lemon balm, and mint—prepared as traditional infusions and microwave-assisted extracts. The antioxidant capacity was evaluated using spectrophotometric assays, and total phenolics and flavonoids were quantified via spectrophotometry and HPLC. Chemometric analysis (PCA) was applied to explore correlations among antioxidant parameters. The results demonstrated excellent antioxidant activity across all samples. The IC50 for DPPH radicals was in the range from 3.73(0.13) to 8.03(0.17) μg/mL and that for ABTS radicals was from 2.89(0.12) to 8.55(0.34). The CUPRAC antioxidant assay delivered values in the range from 351.93(11.85) to 1129.68(44.46) μg TE/mg DE. The FRAP method produced values from 1.27(0.03) to 6.60(0.26) μmol Fe/mg DE. The presence of gallic acid was detected in all examined samples, with lemon balm and lavender exhibiting the highest concentrations across both applied extraction methods. Notably, lavender showed especially high levels of p-hydroxybenzoic acid and chlorogenic acid. Microwave-assisted extraction generally yielded higher levels of bioactive compounds compared to infusion. These findings highlight the potential of Lamiaceae herbal extracts, particularly those obtained through microwave-assisted extraction, as valuable sources of dietary antioxidants for everyday use. Full article
Show Figures

Figure 1

16 pages, 1709 KB  
Article
Anti-Inflammatory Effects and Human Skin Safety of the Eastern Traditional Herb Mosla japonica
by Hyun-Ju Han and Chang-Gu Hyun
Life 2025, 15(3), 418; https://doi.org/10.3390/life15030418 - 7 Mar 2025
Cited by 2 | Viewed by 1620
Abstract
Traditional knowledge has long provided natural solutions for disease prevention and treatment, complementing modern medicine. Mosla japonica (Korean mint) has been traditionally valued for its pesticidal, dehumidifying, anti-swelling, and detoxifying properties. This study explores its anti-inflammatory potential using M. japonica extract (MJE) in [...] Read more.
Traditional knowledge has long provided natural solutions for disease prevention and treatment, complementing modern medicine. Mosla japonica (Korean mint) has been traditionally valued for its pesticidal, dehumidifying, anti-swelling, and detoxifying properties. This study explores its anti-inflammatory potential using M. japonica extract (MJE) in LPS-stimulated RAW 264.7 macrophages and evaluates its safety for human skin applications. MJE significantly reduced inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and key cytokines (IL-1β, IL-6, TNF-α) in a dose-dependent manner. It also suppressed the expression of iNOS and COX-2, enzymes crucial for inflammation. Mechanistically, MJE inhibited NF-κB activation by stabilizing IκBα, thereby reducing inflammation-related gene expression. Additionally, it downregulated ERK, JNK, and p38 in the MAPK signaling pathway, further contributing to its anti-inflammatory effects. A primary skin irritation test confirmed MJE’s safety, showing no significant skin reactions at 100 μg/mL. These findings highlight MJE’s strong anti-inflammatory properties and potential for dermatological applications. This study underscores the pharmacological value of M. japonica and its integration into modern scientific research, aligning with global biodiversity frameworks such as the Nagoya Protocol. Future research may further expand its applications in medicine and skincare. Full article
Show Figures

Figure 1

39 pages, 1181 KB  
Review
Phytochemical and Pharmacological Insights into Mentha asiatica Boriss.: A Promising Antimicrobial Plant
by Baiken Baimakhanova, Amankeldi Sadanov, Gul Baimakhanova, Diana Tluebekova, Alma Amangeldi, Zere Turlybaeva, Irina Ratnikova, Zhanar Nurgaliyeva, Roza Seisebayeva, Botagoz Ussipbek, Lyazzat Umbetyarova, Akerke Amirkhanova, Gulnaz Seitimova and Aknur Turgumbayeva
Molecules 2025, 30(3), 511; https://doi.org/10.3390/molecules30030511 - 23 Jan 2025
Cited by 2 | Viewed by 2596
Abstract
Mentha asiatica Boriss., a species native to Central Asia, has garnered significant attention for its diverse phytochemical profile and antimicrobial potential. This review synthesizes current knowledge on the antimicrobial activities of M. asiatica, focusing on its essential oils and other bioactive constituents. [...] Read more.
Mentha asiatica Boriss., a species native to Central Asia, has garnered significant attention for its diverse phytochemical profile and antimicrobial potential. This review synthesizes current knowledge on the antimicrobial activities of M. asiatica, focusing on its essential oils and other bioactive constituents. The study contextualizes the importance of natural antimicrobials in the era of rising antibiotic resistance and highlights the plant’s traditional use in ethnomedicine. The main methodologies explored include gas chromatography–mass spectrometry (GC–MS) for phytochemical characterization and various in vitro assays to assess antimicrobial efficacy against bacterial and fungal pathogens. The essential oils of M. asiatica demonstrate a broad spectrum of activity, attributed to compounds such as menthol, menthone, and carvone. Other phytochemicals, including sesquiterpenes and terpenoids, also contribute to its bioactivity. The review underscores the potential of M. asiatica as a source of novel antimicrobial agents and calls for further research into its mechanisms of action, bioavailability, and safety profiles. The findings position M. asiatica as a promising candidate for developing plant-based antimicrobial formulations, addressing critical needs in healthcare and food preservation. Full article
(This article belongs to the Special Issue Cutting-Edge Progress in Natural Product-Derived Antimicrobial Drugs)
Show Figures

Figure 1

32 pages, 3405 KB  
Article
Antioxidant, Phytochemical, and Pharmacological Properties of Algerian Mentha aquatica Extracts
by Radhia Aitfella Lahlou, Ana Carolina Gonçalves, Mustapha Bounechada, Ana R. Nunes, Pedro Soeiro, Gilberto Alves, Diego A. Moreno, Cristina Garcia-Viguera, Cesar Raposo, Samuel Silvestre, Jesus M. Rodilla, Maria Isabel Ismael and Luís R. Silva
Antioxidants 2024, 13(12), 1512; https://doi.org/10.3390/antiox13121512 - 11 Dec 2024
Cited by 7 | Viewed by 3532
Abstract
Water mint (Mentha aquatica) is used in many formulations worldwide as a functional food and natural remedy to treat gastrointestinal disorders, lung diseases, and certain mental disorders such as epilepsy and depression. This study assessed the bioactivity of its infusion extract [...] Read more.
Water mint (Mentha aquatica) is used in many formulations worldwide as a functional food and natural remedy to treat gastrointestinal disorders, lung diseases, and certain mental disorders such as epilepsy and depression. This study assessed the bioactivity of its infusion extract (INF) and hydroethanolic extract (HE) to highlight its health benefits. These extracts were analyzed for their chemical composition by HPLC-DAD-ESI-MSn, their antioxidant and antidiabetic properties, and their capacities to protect human erythrocytes against induced hemoglobin oxidation and lipid peroxidation. The effect on normal human dermal fibroblast (NHDF) cells and on the N27 rat dopaminergic neuron cell line was also assessed. The chromatographic analysis identified 57 compounds belonging to hydroxycinnamic acids, flavanones, flavone, and isoflavonoids. In respect to the biological potential, the Mentha aquatica extracts revealed a notable capacity for 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, and superoxide radicals, as well as for the inhibition of α-glucosidase action and the protection of human erythrocytes against oxidative damage. Quantification revealed noteworthy phenolic content in both extracts. Additionally, the extracts demonstrated less cytotoxic effects regarding the NHDF and N27 cell lines. Overall, Mentha aquatica presents promising antioxidant activity and a spectrum of potential biological activities, underscoring its significance as a novel antioxidant candidate for applications in animal nutrition, human medicine, and natural product research in the pharmaceutical and nutraceutical industries. Full article
(This article belongs to the Special Issue Phenolic Antioxidants)
Show Figures

Figure 1

16 pages, 2718 KB  
Article
NMR Analysis of Pulegone in Food Products
by Yifei Yu, Thomas Kuballa and Dirk W. Lachenmeier
Appl. Sci. 2024, 14(23), 10838; https://doi.org/10.3390/app142310838 - 22 Nov 2024
Viewed by 2830
Abstract
Pulegone is a monoterpene ketone found in a variety of mint species. It has been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). In previous studies, pulegone in food was analyzed exclusively via GC-MS, [...] Read more.
Pulegone is a monoterpene ketone found in a variety of mint species. It has been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). In previous studies, pulegone in food was analyzed exclusively via GC-MS, while 1H NMR methods were limited to essential oils. The aim of this study was to develop an NMR method for the detection and quantification of pulegone in essential oils and foods. A mixture of methanol-d4/chloroform-d1 in a 1:1 ratio (v/v) was identified as the most effective solvent for separating pulegone signals. The essential oils were subjected to analysis at this solvent-mixture ratio. The extraction of pulegone was required for food analysis, and the steam distillation method proved to be more effective than the ultrasonic-assisted extraction method. The highest pulegone concentrations were identified in pennyroyal oil and muña oil, whereas lower levels were observed in other matrices, including corn mint oil and select food items. A toxicological assessment showed that the amount consumed did not exert any adverse effects on human health. Full article
(This article belongs to the Special Issue Recent Applications of Plant Extracts in the Food Industry)
Show Figures

Figure 1

22 pages, 4280 KB  
Article
Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel Dieter Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Plants 2024, 13(22), 3155; https://doi.org/10.3390/plants13223155 - 9 Nov 2024
Cited by 3 | Viewed by 3133
Abstract
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of [...] Read more.
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of potentially health-damaging compounds such as menthofuran should be avoided. This study examines the effect of shading on the EO content and composition of three Mentha genotypes (Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’ and Mentha rotundifolia ‘Apfelminze’). The Mentha genotypes were cultivated in field trials for two years (2022–2023). Each genotype was shaded with a shading net (50% photosynthetic active radiation (PAR) reduction), and a control without shading was prepared. EO content was determined by steam distillation and EO composition was characterized by GC-MS analysis. Furthermore, biomass, vegetation indices (VIs) and the electron transport rate (ETR) were analyzed. While shading led to higher plant heights, higher EO content and a slightly reduced amount of undesired EO compounds, the unshaded control yielded a higher biomass accumulation. Significant genotypic differences were determined. In conclusion, the benefits of shading depend on the intended use and genotype selection. Full article
Show Figures

Figure 1

15 pages, 2657 KB  
Article
A Study on Internet News for Patient Safety Campaigns: Focusing on Text Network Analysis and Topic Modeling
by Sun-Hwa Shin and On-Jeon Baek
Healthcare 2024, 12(19), 1914; https://doi.org/10.3390/healthcare12191914 - 24 Sep 2024
Cited by 2 | Viewed by 3573 | Correction
Abstract
Background/Objectives: This study aimed to identify the main issues related to public patient safety campaigns reflected in Korean online news. This study utilized a text-mining method to identify keywords and topics related to patient safety campaigns. Methods: The data collection period was from [...] Read more.
Background/Objectives: This study aimed to identify the main issues related to public patient safety campaigns reflected in Korean online news. This study utilized a text-mining method to identify keywords and topics related to patient safety campaigns. Methods: The data collection period was from 1 January 2022 to 31 December 2023, and 4110 news articles were extracted. Through data preprocessing, 2661 duplicated news and 1213 unrelated news were removed, and 236 news were selected. Using the NetMiner program, keyword co-occurrence frequency calculation, keyword centrality analysis, and topic modeling analysis were performed. Results: The results showed that the most frequently mentioned keywords with high degree centrality, betweenness centrality, and closeness centrality in online news were “hospital”, “medical”, “medicine”, “project”, and “treatment”. The topics of online news related to the patient safety campaign were “patient-centered care for medical safety”, “health promotion projects at a regional institution”, “hand hygiene education to prevent infection”, “healthcare quality improvement through the Mint Festival”, and “safe use of medicines”. Conclusions: This study analyzed patient safety campaign news topics using text network analysis and topic modeling. It was confirmed that patient safety campaigns are essential for fostering a patient safety culture, improving medical quality, and encouraging patient participation in hospitals. Therefore, to build a safe medical environment, it is necessary to establish an effective patient safety campaign for not only medical staff providing medical care, but also patients and their caregivers, and for this, cooperation and participation from various professional occupations are necessary. Full article
Show Figures

Figure 1

15 pages, 1549 KB  
Article
Antimicrobial Activity against Cronobacter of Plant Extracts and Essential Oils in a Matrix of Bacterial Cellulose
by Lidia Stasiak-Różańska, Anna Berthold-Pluta, Tamara Aleksandrzak-Piekarczyk, Anna Koryszewska-Bagińska and Monika Garbowska
Polymers 2024, 16(16), 2316; https://doi.org/10.3390/polym16162316 - 16 Aug 2024
Cited by 4 | Viewed by 2372
Abstract
Bacterial cellulose (BC) is a biodegradable polymer resembling paper after being dried. It finds a growing number of applications in many branches of industry and in medicine. In the present study, BC was produced after Gluconacetobacter hansenii ATCC 23769 strain culture and used [...] Read more.
Bacterial cellulose (BC) is a biodegradable polymer resembling paper after being dried. It finds a growing number of applications in many branches of industry and in medicine. In the present study, BC was produced after Gluconacetobacter hansenii ATCC 23769 strain culture and used as a matrix for plant extracts (tulsi, brahmi, lemon, blackberry, nettle root, and nettle leave) and essential oils (cinnamon, sage, clove, mint, thyme, lemongrass, rosemary, lemon, anise, tea tree, lime, grapefruit, and tangerine), and the antimicrobial properties of these biomaterials was determined. The growth-inhibiting effects of plant extracts and essential oils combined with BC were analyzed against five Cronobacter species isolated from food matrix and two reference strains from the ATCC (513229 and 29544). Additional analyses were conducted for BC water activity and for its capability to absorb biologically active plant compounds. The cellulose matrix with a 50% extract from brahmi was found to effectively inhibit the growth of the selected Cronobacter strains. The other plant water extracts did not show any antimicrobial activity against the tested strains. It was demonstrated that BC soaked with thyme essential oil was characterized with the strongest antimicrobial activity in comparison to the other tested EOs. These study results indicate the feasibility of deploying BC impregnated with natural plant components as an active and environmentally-friendly packaging material. Full article
(This article belongs to the Special Issue Polymers in Food Technology and Food Packaging)
Show Figures

Figure 1

29 pages, 6884 KB  
Article
Orodispersible Dosage Forms with Rhinacanthin-Rich Extract as a Convenient Formulation Dedicated to Pediatric Patients
by Thongtham Suksawat, Witold Brniak, Ewelina Łyszczarz, Małgorzata Wesoły, Patrycja Ciosek-Skibińska and Aleksander Mendyk
Pharmaceuticals 2024, 17(8), 994; https://doi.org/10.3390/ph17080994 - 27 Jul 2024
Cited by 3 | Viewed by 1808
Abstract
Rhinacanthins, derived from Rhinacanthus nasutus, widely used in traditional medicine, exhibit antifungal, anticancer, antiviral, antibacterial, and antiplatelet aggregation effects. Recently, their anti-diabetic activity was confirmed, which makes them an interesting natural alternative in the therapy of the early stage of diabetes mellitus. [...] Read more.
Rhinacanthins, derived from Rhinacanthus nasutus, widely used in traditional medicine, exhibit antifungal, anticancer, antiviral, antibacterial, and antiplatelet aggregation effects. Recently, their anti-diabetic activity was confirmed, which makes them an interesting natural alternative in the therapy of the early stage of diabetes mellitus. The aim of this study was to demonstrate the possibility of formulating orodispersible tablets (ODTs) and orodispersible films (ODFs) containing rhinacanthin-rich extract (RRE). Tablets with 50 mg or 100 mg of RRE were produced by direct compression. ODFs were manufactured by casting of Lycoat RS 720 or polyvinyl alcohol solution with RRE and additional excipients. The mechanical properties and disintegration times of the prepared formulations were studied. The effectiveness of taste masking was analyzed with an electronic tongue system. Six months simplified stability studies were performed in conditions complying to ICH guidelines. Appropriate friability of ODTs was achieved, despite low tensile strength (0.45–0.62 MPa). All prepared ODFs successfully met the acceptance criteria regarding Young’s modulus, tensile strength, and elongation at break. The observed variations in their mechanical properties were dependent on the type and quantity of polymers and plasticizers used. Disintegration time of ODTs ranged from 38.7 s to 54.2 s, while for ODFs from 24.2 to 40 s in the pharmacopoeial apparatus. Analyses made with the electronic tongue showed the significant taste-masking effect in both formulations. The addition of sucralose as a sweetener and menthol with mint flavor as a taste-masking agent was sufficient to mask an RRE’s taste in the case of ODTs and ODFs. Stability studies of ODTs packed in the PVC/Alu blisters showed a decrease in the RRE content below 90% after 6 months. However, ODFs with PVA were physicochemically stable for 6 months while being stored in Alu/Alu sachets. Our study proved for the first time the possibility of the formulation of orodispersible dosage forms with RRE, characterized by good mechanical properties, disintegration time, and appropriate taste masking. Full article
Show Figures

Graphical abstract

17 pages, 1040 KB  
Article
The Impact of Plant Essential Oils on the Growth of the Pathogens Botrytis cinerea, Fusarium solani, and Phytophthora pseudocryptogea
by Petya K. Christova, Ana M. Dobreva, Anatoli G. Dzhurmanski, Ivayla N. Dincheva, Stela D. Dimkova and Nadejda G. Zapryanova
Life 2024, 14(7), 817; https://doi.org/10.3390/life14070817 - 27 Jun 2024
Cited by 9 | Viewed by 2048
Abstract
Essential oils (EOs) extracted from aromatic and medicinal plants have the potential to inhibit the growth of various pathogens and, thus, be useful in the control of dangerous diseases. The application of environmentally friendly approaches to protect agricultural and forestry ecosystems from invasive [...] Read more.
Essential oils (EOs) extracted from aromatic and medicinal plants have the potential to inhibit the growth of various pathogens and, thus, be useful in the control of dangerous diseases. The application of environmentally friendly approaches to protect agricultural and forestry ecosystems from invasive and hazardous species has become more significant in last decades. Therefore, the identification and characterization of essential oils with a strong inhibitory activity against aggressive and widespread pathogens are of key importance in plant protection research. The main purpose of our study is to evaluate the impact of essential oils originating from different genotypes of bee balm, mint, and marigold on Botrytis cinerea, Fusarium solani, and Phytophthora pseudocryptogea. Twelve essential oils, including five EOs originating from Monarda fistulosa, one oil each from Monarda russeliana, Mentha longifolia, Mentha piperita, Tagetes patula, and Tagetes erecta, and two EOs from Tagetes tenuifolia were derived by steam or water distillation. The chemical composition of the tested EOs was determined by GS-MS analyses and their corresponding chemotypes were identified. The most effective against all three pathogens were determined to be the EOs originating from M. fistulosa and M. russeliana. B. cinerea, and P. pseudocryptogea were also significantly affected by the M. piperita essential oil. The most efficient EOs involved in this investigation and their potential to control plant pathogens are discussed. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 3259 KB  
Article
Effects of Gold Nanoparticles on Mentha spicata L., Soil Microbiota, and Human Health Risks: Impact of Exposure Routes
by Alexandra Peshkova, Inga Zinicovscaia, Liliana Cepoi, Ludmila Rudi, Tatiana Chiriac, Nikita Yushin, Tran Tuan Anh, Ho Manh Dung and Serghei Corcimaru
Nanomaterials 2024, 14(11), 955; https://doi.org/10.3390/nano14110955 - 29 May 2024
Cited by 12 | Viewed by 2186
Abstract
Nanoparticles, due to their extensive production and application, can have significant consequences for the environment, including soil and plant pollution. Therefore, it is very important to assess how nanoparticles will affect plants depending on the exposure pathways. The effect of gold nanoparticles in [...] Read more.
Nanoparticles, due to their extensive production and application, can have significant consequences for the environment, including soil and plant pollution. Therefore, it is very important to assess how nanoparticles will affect plants depending on the exposure pathways. The effect of gold nanoparticles in a concentration range of 1–100 mg/L on Mentha spicata L. during a 28-day experiment was investigated. Two routes of nanoparticles exposure were applied: root and foliar. Transmission electron microscopy was used to characterize nanoparticles and their effect on plant leaves’ ultrastructure. Gold content in soil and plant segments was determined using k0-neutron activation analysis. For root exposure, gold was mainly accumulated in soil (15.2–1769 mg/kg) followed by root systems (2.99–454 mg/kg). The maximum accumulation of gold in leaves (5.49 mg/kg) was attained at a nanoparticle concentration of 100 mg/L. Foliar exposure resulted in the maximum uptake of gold in leaves (552 mg/kg) and stems (18.4 mg/kg) at the highest applied nanoparticle concentration. The effect of nanoparticles on the Mentha spicata L. leaves’ biochemical composition was assessed. Nanoparticles affected the content of chlorophyll and carotenoids and led to an increase in antioxidant activity. Root exposure to gold nanoparticles resulted in an increase in the number of starch grains in chloroplasts and also suppressed the activity of the soil microbiota. Gold extraction from mint leaves into herbal infusion varied from 2 to 90% depending on the concentration of nanoparticles in the solution and the exposure route. The health risk as a result of gold exposure via herbal tea intake was assessed through estimated daily intake. The hazard quotient values were found to be less than the cutoff, indicating that a cup of tea infusion should not cause a serious impact to human health. Full article
Show Figures

Figure 1

15 pages, 4429 KB  
Article
The Effect of Biotic Stress in Plant Species Induced by ‘Candidatus Phytoplasma solani’—An Artificial Neural Network Approach
by Ivica Djalovic, Petar Mitrovic, Goran Trivan, Aleksandra Jelušić, Lato Pezo, Elizabet Janić Hajnal and Tatjana Popović Milovanović
Horticulturae 2024, 10(5), 426; https://doi.org/10.3390/horticulturae10050426 - 23 Apr 2024
Viewed by 2080
Abstract
Infections with phytoplasma present one of the most significant biotic stresses influencing plant health, growth, and production. The phytoplasma ‘Candidatus Phytoplasma solani’ infects a variety of plant species. This pathogen impacts the physiological and morphological characteristics of plants causing stunting, yellowing, leaf [...] Read more.
Infections with phytoplasma present one of the most significant biotic stresses influencing plant health, growth, and production. The phytoplasma ‘Candidatus Phytoplasma solani’ infects a variety of plant species. This pathogen impacts the physiological and morphological characteristics of plants causing stunting, yellowing, leaf curling, and other symptoms that can lead to significant economic losses. The aim of this study was to determine biochemical changes in peony (Paeonia tenuifolia L.), mint (Mentha × piperita L.), and dill (Anethum graveolens L.) induced by ‘Ca. Phytoplasma solani’ in Serbia as well as to predict the impact of the biotic stress using artificial neural network (ANN) modeling. The phylogenetic position of the Serbian ‘Ca. Phytoplasma solani’ strains originated from the tested hosts using 16S rRNA (peony and carrot strains) and plsC (mint and dill strains) sequences indicated by their genetic homogeneity despite the host of origin. Biochemical parameters significantly differed in asymptomatic and symptomatic plants, except for total anthocyanidins contents in dill and the capacity of peony and mint extracts to neutralize superoxide anions and hydroxyl radicals, respectively. Principal Component Analysis (PCA) showed a correlation between different chemical parameters and revealed a clear separation among the samples. Based on the ANN performance, the optimal number of hidden neurons for the calculation of TS, RG, PAL, LP, NBT, OH, TP, TT, Tflav, Tpro, Tant, DPPH, and Car was nine (using MLP 8-9-13), as it produced high r2 values (1.000 during the training period) and low SOS values. Developing an effective early warning system for the detection of plant diseases in different plant species is critical for improving crop yield and quality. Full article
(This article belongs to the Special Issue The Diagnosis, Management, and Epidemiology of Plant Diseases)
Show Figures

Figure 1

19 pages, 2040 KB  
Article
Quality of Refrigerated Squid Mantle Cut Treated with Mint Extract Subjected to High-Pressure Processing
by Krisana Nilsuwan, Suriya Palamae, Jasmin Naher, Natchaphol Buamard, Bin Zhang and Soottawat Benjakul
Foods 2024, 13(8), 1264; https://doi.org/10.3390/foods13081264 - 20 Apr 2024
Cited by 2 | Viewed by 2929
Abstract
Squid (Loligo vulgaris) is commonly prone to spoilage, leading to a short shelf-life. High-pressure processing (HPP) can play a role in maintaining the quality and freshness of squid. Along with HPP, food preservatives from natural sources such as mint extract (ME), [...] Read more.
Squid (Loligo vulgaris) is commonly prone to spoilage, leading to a short shelf-life. High-pressure processing (HPP) can play a role in maintaining the quality and freshness of squid. Along with HPP, food preservatives from natural sources such as mint extract (ME), which are effective, safe, available, and cost-effective, are required. The present study aimed to investigate the combined effect of ME and HPP on the quality of refrigerated squid mantle cuts (SMC) over a period of 15 days. The time-kill profiles of ME and planktonic cell inactivation by HPP were assessed. ME (400 mg/L) inhibited bacterial growth, while planktonic cells treated with HPP (400 MPa) exhibited a reduction at 5 min. Physicochemical and microbial qualities of SMC treated with ME (0, 200, 400 mg/L) followed by HPP (0.1, 200, 400 MPa) for 5 min were monitored during refrigerated storage. Samples treated with ME (400 mg/L) and HPP (400 MPa) exhibited lower weight loss, cooking loss, pH changes, volatile base content, microbial counts, and higher textural properties than other samples. Based on next-generation sequencing results, Brochothrix campestris from family Listeriaceae was the predominant spoilage bacteria in treated sample after 12 days of storage. Therefore, ME and HPP combined treatments exhibited effectiveness in extending the shelf-life of refrigerated SMC. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

22 pages, 2812 KB  
Article
Green Solvent Extraction of Antioxidants from Herbs and Agro-Food Wastes: Optimization and Capacity Determination
by Malo Hamieau, Patrick Loulergue and Aleksandra Szydłowska-Czerniak
Appl. Sci. 2024, 14(7), 2936; https://doi.org/10.3390/app14072936 - 30 Mar 2024
Cited by 17 | Viewed by 2515
Abstract
Herbs and agro-food wastes are rich sources of bioactive compounds vital for organisms and valuable for many fields of industry. Therefore, in this study, green deep eutectic solvents (DESs) such as choline chloride/citric acid (ChCl:CitA), glucose/citric acid (Gu:CitA), glucose/urea (Gu:U), betaine/citric acid (B:CitA), [...] Read more.
Herbs and agro-food wastes are rich sources of bioactive compounds vital for organisms and valuable for many fields of industry. Therefore, in this study, green deep eutectic solvents (DESs) such as choline chloride/citric acid (ChCl:CitA), glucose/citric acid (Gu:CitA), glucose/urea (Gu:U), betaine/citric acid (B:CitA), and betaine/urea (B:U) at a molar ratio of 1:1 for ultrasound-assisted extraction (UAE) of antioxidants from four herbs (chamomile—Cha, lemon balm—LB, mint—M, and nettle—N) and two agro-food wastes (buckwheat husk—BH and chokeberry pomace—ChoP) were proposed. The antioxidant capacity (AC) of the obtained extracts was evaluated utilizing three antioxidant assays: cupric reducing antioxidant capacity (CUPRAC = 0.0–429.9 μmol of Trolox (TE)/g); 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS = 0.0–146.5 μmol TE/g); and 2,2-diphenyl-1-picrylhydrazyl (DPPH = 11.9–170.3 μmol TE/g). The LB extracts revealed the highest CUPRAC (59.3–429.9 μmol TE/g), ABTS (30.7–144.3 μmol TE/g), and DPPH (32.6–170.3 μmol TE/g) values. Due to the lowest antioxidant potential of LB extracts prepared using ChCl:CitA (AC = 30.7–59.3 μmol TE/g) and the highest AC demonstrated by extracts based on B:U (AC = 144.3–429.9 μmol TE/g), the UAE conditions using a new DES consisting of ChCl and U were optimized by the Box–Behnken design (BBD). Effects of three independent variables, molar ratios of the ChCl and U (mol/mol), water content (%), and sonication time (t) on the AC of LB extracts were studied by response surface methodology (RSM). The results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) demonstrated that different DESs had great differences in the extraction of antioxidant compounds from herbs and agro-food residues. Full article
Show Figures

Figure 1

Back to TopTop