Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = mining electric shovels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6971 KiB  
Article
Study on Dust Hazard Levels and Dust Suppression Technologies in Cabins of Typical Mining Equipment in Large Open-Pit Coal Mines in China
by Xiaoliang Jiao, Wei Zhou, Junpeng Zhu, Xinlu Zhao, Junlong Yan, Ruixin Wang, Yaning Li and Xiang Lu
Atmosphere 2025, 16(4), 461; https://doi.org/10.3390/atmos16040461 - 16 Apr 2025
Viewed by 688
Abstract
As the world’s largest open-pit coal producer, China faces severe dust pollution in mining operations. Cabins of mining equipment (electric shovels, haul trucks, drills) exhibit unique micro-environmental contamination due to dual-source pollution (external infiltration and internal secondary dust generation), posing severe health risks [...] Read more.
As the world’s largest open-pit coal producer, China faces severe dust pollution in mining operations. Cabins of mining equipment (electric shovels, haul trucks, drills) exhibit unique micro-environmental contamination due to dual-source pollution (external infiltration and internal secondary dust generation), posing severe health risks to miners. This study focused on electric shovel cabins at the Heidaigou open-pit coal mine to address cabin dust pollution. Through analysis of dust physicochemical properties, a pollution characteristic database was established. Field measurements and statistical methods revealed temporal–spatial variation patterns of dust concentrations, quantifying occupational exposure risks and providing theoretical foundations for dust control. A novel gradient-pressurized air purification system was developed for harsh mining conditions. Key findings include the following. (1) Both coal-shovel and rock-shovel operators were exposed to Level I (mild hazard level), with rock-shovel operators approaching Level II (moderate hazard level). (2) The system reduced respirable dust concentrations from 0.313 mg/m3 to 0.208 mg/m3 (≥33.34% improvement) in coal-shovel cabins and from 0.625 mg/m3 to 0.421 mg/m3 (≥32.64% improvement) in rock-shovel cabins. These findings offer vital guidance for optimizing cabin design, improving dust control, and developing scientific management strategies, thereby effectively protecting miners’ health and ensuring operational safety. Full article
(This article belongs to the Special Issue Air Pollution: Health Risks and Mitigation Strategies)
Show Figures

Figure 1

18 pages, 11509 KiB  
Article
Multidisciplinary Collaborative Design Optimization of Electric Shovel Working Devices
by Juan Wu, Junkang Zhao, Xin Wang and Baoguo Lin
Machines 2024, 12(8), 520; https://doi.org/10.3390/machines12080520 - 30 Jul 2024
Cited by 2 | Viewed by 1189
Abstract
The development of the open-pit mining industry has set higher performance standards for mining electric shovels. Addressing issues such as low efficiency, high energy consumption, and high failure rates in working mining electric shovel devices, this paper comprehensively considers bulk mechanics, structural mechanics, [...] Read more.
The development of the open-pit mining industry has set higher performance standards for mining electric shovels. Addressing issues such as low efficiency, high energy consumption, and high failure rates in working mining electric shovel devices, this paper comprehensively considers bulk mechanics, structural mechanics, and dynamics to conduct a multidisciplinary, collaborative design optimization for electric shovels by introducing the BLISCO method, which is based on an approximated model, into the structural-optimization design process of working electric shovel devices, aiming to enhance the overall performance of electric shovels. Firstly, a dynamic model of an electric shovel is established to analyze the hoist force and crowd force during the excavation process, and an accurate load input for the dynamic analysis is provided through the bulk material mechanics model. Additionally, to ensure that the stiffness of the boom meets the requirements, the maximum stress at the most critical position of the optimized boom is considered. Subsequently, the design variables are screened through experimental design, and an approximate model is established. Focusing on the hoist force, crowd force, maximum stress at the critical position of the boom, and the angle between the dipper arm and the wire rope, a mathematical model is constructed and optimized using a two-level integrated system co-optimization framework based on an approximate model (BLISCO-AM), followed by a simulation. Finally, a test bench for the electric shovel working device is constructed to compare pre- and post-optimization performance. Experimental results show that through the optimized design, the hoist force and crowd force required in a single excavation process are reduced by 6% and 8.48%, respectively, and the maximum angle between the wire rope and the dipper arm is increased by 4%, significantly improving excavation efficiency while ensuring the safety and reliability of the equipment. Full article
(This article belongs to the Special Issue Design and Manufacture of Advanced Machines, Volume II)
Show Figures

Figure 1

16 pages, 13419 KiB  
Article
Mining Electric Shovel Working Device Configuration Synthesis and Performance Analysis
by Chenhao Guo, Juan Wu, Yinnan Feng, Xin Wang and Yuliang Wang
Actuators 2023, 12(8), 317; https://doi.org/10.3390/act12080317 - 5 Aug 2023
Cited by 1 | Viewed by 2939
Abstract
Mining electric shovels (MES) are one of the key pieces of equipment for mining, and their comprehensive performance plays an important role in mining efficiency. Based on the screw theory, this paper proposes a comprehensive configuration method for an MES working device and [...] Read more.
Mining electric shovels (MES) are one of the key pieces of equipment for mining, and their comprehensive performance plays an important role in mining efficiency. Based on the screw theory, this paper proposes a comprehensive configuration method for an MES working device and selects a new mining electric shovel working device with a larger excavation range, taking the working device as an example for dimensional optimization and simulation analysis. Firstly, based on the closed-loop vector equation, the position inverse solution of the mechanism is analyzed, and the correctness of the position equation is verified by the simulation and by numerical solutions. Then, the constraints of the mechanism are analyzed, and the numerical method and the position equation are combined to solve for the workspace of the mechanism. The dimensional parameters of the mechanism are optimized by genetic algorithms. The workspace of the optimized working device is increased by 13.4789%. Finally, the mining results of the two MES, the working devices, are simulated and verified by experiment. It is shown that the experimental results are basically consistent with the simulation results. The excavation quality difference of the two working devices are 2.02% and 2.20%, which verifies the correctness of the kinematics equation of the working device and the feasibility of the new working device. Full article
(This article belongs to the Special Issue Innovative and Intelligent Actuation for Heavy-Duty Applications)
Show Figures

Figure 1

18 pages, 5642 KiB  
Article
The Enhancement of Overall Performance of Lubricating Grease by Adding Layered Double Hydroxides
by Yong Li, Weidong Zhou, Wanan Xue, Yongwang Huang, Qiang Zhang and Jingbin Han
Lubricants 2023, 11(6), 260; https://doi.org/10.3390/lubricants11060260 - 13 Jun 2023
Cited by 5 | Viewed by 2455
Abstract
In this work, MgAl-layered double hydroxides (LDH) were synthesized by co-precipitation method using a colloid mill and characterized by XRD and SEM. It was found that the environmentally friendly LDHs had greater performance than the traditional antioxidant. By adding LDHs into large electric [...] Read more.
In this work, MgAl-layered double hydroxides (LDH) were synthesized by co-precipitation method using a colloid mill and characterized by XRD and SEM. It was found that the environmentally friendly LDHs had greater performance than the traditional antioxidant. By adding LDHs into large electric shovel grease (GRK-A) in open-pit coal mine, the service lifetime of grease was extended by 20%. With the increase in LDH addition, the grease sample attains greater activation energy, and the thermal oxidation and decomposition resistance become stronger. Comparing the energy storage modulus and flow transition index at different temperatures, adding the right amount of LDHs needs close attention for the system oxidation resistance and viscoelasticity. For the electric shovel grease, the best oxidation resistance and rheological properties can be achieved by adding 2% of LDHs. The rheological viscosity–temperature curves show that the grease samples with different ratios of solid LDHs have better low-temperature properties than the mine grease. This work outlines a simple method for creating an environmentally sustainable lubricant additive with the use of LDH. LDH serves as a novel inorganic antioxidant additive that is optimal for open gear lubrication and sliding friction. Full article
Show Figures

Figure 1

25 pages, 6826 KiB  
Review
Electrification Alternatives for Open Pit Mine Haulage
by Haiming Bao, Peter Knights, Mehmet Kizil and Micah Nehring
Mining 2023, 3(1), 1-25; https://doi.org/10.3390/mining3010001 - 1 Jan 2023
Cited by 22 | Viewed by 9807
Abstract
Truck-Shovel (TS) systems are the most common mining system currently used in large surface mines. They offer high productivity combined with the flexibility to be rapidly relocated and to adjust load/haul capacity and capital expenditure according to market conditions. As the world moves [...] Read more.
Truck-Shovel (TS) systems are the most common mining system currently used in large surface mines. They offer high productivity combined with the flexibility to be rapidly relocated and to adjust load/haul capacity and capital expenditure according to market conditions. As the world moves to decarbonise as part of the transition to net zero emission targets, it is relevant to examine options for decarbonising the haulage systems in large surface mines. In-Pit Crushing and Conveying (IPCC) systems offer a smaller environmental footprint regarding emissions, but they are associated with a number of limitations related to high initial capital expenditure, capacity limits, mine planning and inflexibility during mine operation. Among the emerging technological options, innovative Trolley Assist (TA) technology promises to reduce energy consumption for lower carbon footprint mining systems. TA systems have demonstrated outstanding potential for emission reduction from their application cases. Battery and energy recovery technology advancements are shaping the evolution of TAs from diesel-electric truck-based patterns toward purely electrified BT ones. Battery Trolley (BT) systems combined with autonomous battery-electric trucks and Energy Recovery Systems (ERSs) are novel and capable of achieving further significant emission cuts for surface mining operations associated with safety, energy saving and operational improvements. This article reviews and compares electrification alternatives for large surface mines, including IPCC, TA and BT systems. These emerging technologies provide opportunities for mining companies and associated industries to adopt zero-emission solutions and help transition to an intelligent electric mining future. Full article
(This article belongs to the Special Issue Envisioning the Future of Mining)
Show Figures

Figure 1

17 pages, 12193 KiB  
Article
Numerical Simulation and Experiment on Excavating Resistance of an Electric Cable Shovel Based on EDEM-RecurDyn Bidirectional Coupling
by Yinnan Feng, Juan Wu, Chenhao Guo and Baoguo Lin
Machines 2022, 10(12), 1203; https://doi.org/10.3390/machines10121203 - 12 Dec 2022
Cited by 11 | Viewed by 2732
Abstract
The electric cable shovel (ECS) is one of the core pieces of equipment used in open-pit mining, and the prediction of its excavating resistance is the basis and focus of optimization design, such as excavation trajectory planning and structure optimization of the ECS. [...] Read more.
The electric cable shovel (ECS) is one of the core pieces of equipment used in open-pit mining, and the prediction of its excavating resistance is the basis and focus of optimization design, such as excavation trajectory planning and structure optimization of the ECS. Aiming to predict the excavating resistance of an ECS, a computer simulation method for the excavating resistance based on EDEM-RecurDyn bidirectional coupling simulation is proposed herein. Taking the China-made WK series ECS as the research object, a 1/30 scale model of the ECS was set up, a prototype model test bench of the ECS was built, and the kinematics solution and force analysis of the excavating process were carried out. According to the actual excavation conditions and excavating process of the ECS, a discrete element model of the material stack and a multibody dynamics model of the ECS prototype were established. The EDEM-RecurDyn bidirectional coupling simulation of the excavating process were realized using interface technology, and the excavating resistance levels under different speed combinations and different material repose angles were simulated and analyzed. In order to verify the accuracy of the simulation results, the feasibility and reliability of the EDEM-RecurDyn bidirectional coupling simulation were verified by physical experiments. The results show that the simulated excavating resistance is basically consistent with the excavating resistance measured in the experiment in terms of peak value and change trend, which verifies the feasibility and reliability of the EDEM-RecurDyn bidirectional coupling simulation to study the excavating resistance of an ECS. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

13 pages, 1633 KiB  
Article
Autonomous and Operator-Assisted Electric Rope Shovel Performance Study
by Ali Yaghini, Robert Hall and Derek Apel
Mining 2022, 2(4), 699-711; https://doi.org/10.3390/mining2040038 - 10 Nov 2022
Cited by 5 | Viewed by 4350
Abstract
Automation has been changing the mining industry for the past two decades. Material handling is a critical task in a mining operation, and truck-shovel handling systems are the primary method for surface mining. Mines have deployed autonomous trucks, and their positive impact on [...] Read more.
Automation has been changing the mining industry for the past two decades. Material handling is a critical task in a mining operation, and truck-shovel handling systems are the primary method for surface mining. Mines have deployed autonomous trucks, and their positive impact on both production and safety has been reported. This paper aims to study the extent to which autonomous and operator-assisted loading units could improve different aspects of a mining operation. Four different levels of automation ranging from operator-assisted swing and return to fully autonomous for a shovel were considered. A discrete event simulation model was developed and verified using detailed data from a shovel monitoring system. Later, the developed model was deployed to assess how each of the proposed technologies could improve productivity and efficiency. Results show that up to a 41% increase in production can be achieved. Both mining companies and equipment manufacturers can use the methodology and results of this study for future decision-making and product development. Full article
(This article belongs to the Special Issue Mine Automation and New Technologies)
Show Figures

Figure 1

19 pages, 6422 KiB  
Article
Research on Path Planning and Trajectory Tracking of an Unmanned Electric Shovel Based on Improved APF and Preview Deviation Fuzzy Control
by Yi Fang, Shuai Wang, Qiushi Bi, Guohua Wu, Wei Guan, Yongpeng Wang and Chuliang Yan
Machines 2022, 10(8), 707; https://doi.org/10.3390/machines10080707 - 18 Aug 2022
Cited by 8 | Viewed by 2550
Abstract
With the development and upgrading of intelligent mines, research on the unmanned walking of intelligent electric shovels (ES) has been carried out to improve the moving efficiency of extra-large excavators. This paper first introduces an electric shovel’s primary moving condition in an open-pit [...] Read more.
With the development and upgrading of intelligent mines, research on the unmanned walking of intelligent electric shovels (ES) has been carried out to improve the moving efficiency of extra-large excavators. This paper first introduces an electric shovel’s primary moving condition in an open-pit mine. According to the moving characteristics of the heavy-duty crawler, the artificial potential field (APF) algorithm is improved to plan the moving trajectory of the electric shovel and carry out simulation verification. A dynamic model of an electric shovel is established. A fuzzy control tracking method is proposed based on preview displacement and centroid displacement deviation. The robustness of the tracking algorithm is verified by multi-condition simulation. Finally, the electric shovel prototype is tested through path planning and tracking experiments. The experimental results show that the improved artificial potential field algorithm can plan an obstacle-free path that satisfies the movement of an electric shovel, and the electric shovel can quickly track the preset trajectory. The maximum deviation of the track tracking center of mass is no more than 10 cm, and the deviation of the heading angle when the shovel reaches the endpoint is within 2°. Full article
(This article belongs to the Topic Intelligent Systems and Robotics)
Show Figures

Figure 1

11 pages, 1282 KiB  
Article
Multibody Dynamic Stress Simulation of Rigid-Flexible Shovel Crawler Shoes
by Samuel Frimpong and Magesh Thiruvengadam
Minerals 2016, 6(3), 61; https://doi.org/10.3390/min6030061 - 25 Jun 2016
Cited by 3 | Viewed by 7730
Abstract
Electric shovels are used in surface mining operations to achieve economic production capacities. The capital investments and operating costs associated with the shovels deployed in the Athabasca oil sands formation are high due to the abrasive conditions. The shovel crawler shoes interact with [...] Read more.
Electric shovels are used in surface mining operations to achieve economic production capacities. The capital investments and operating costs associated with the shovels deployed in the Athabasca oil sands formation are high due to the abrasive conditions. The shovel crawler shoes interact with sharp and abrasive sand particles, and, thus, are subjected to high transient dynamic stresses. These high stresses cause wear and tear leading to crack initiation, propagation and premature fatigue failure. The objective of this paper is to develop a model to characterize the crawler stresses and deformation for the P&H 4100C BOSS during propel and loading using rigid-flexible multi-body dynamic theory. A 3-D virtual prototype model of the rigid-flexible crawler track assembly and its interactions with oil sand formation is simulated to capture the model dynamics within multibody dynamics software MSC ADAMS. The modal and stress shapes and modal loads due to machine weight for each flexible crawler shoes are generated from finite element analysis (FEA). The modal coordinates from the simulation are combined with mode and stress shapes using modal superposition method to calculate real-time stresses and deformation of flexible crawler shoes. The results show a maximum von Mises stress value of 170 MPa occurring in the driving crawler shoe during the propel motion. This study provides a foundation for the subsequent fatigue life analysis of crawler shoes for extending crawler service life. Full article
(This article belongs to the Special Issue Frontiers of Surface Mining Research)
Show Figures

Graphical abstract

17 pages, 3255 KiB  
Article
A Study of Digging Productivity of an Electric Rope Shovel for Different Operators
by Mohammad Babaei Khorzoughi and Robert Hall
Minerals 2016, 6(2), 48; https://doi.org/10.3390/min6020048 - 25 May 2016
Cited by 18 | Viewed by 8122
Abstract
A performance monitoring study of an electric rope shovel operating in an open pit coal mine was conducted. As the mining industry moves toward higher productivity, profitability and predictability, the need for more reliable, productive and efficient mining shovels increases. Consequently, it is [...] Read more.
A performance monitoring study of an electric rope shovel operating in an open pit coal mine was conducted. As the mining industry moves toward higher productivity, profitability and predictability, the need for more reliable, productive and efficient mining shovels increases. Consequently, it is critical to study the productivity of these machines and to understand the effect of different operational parameters on that. In this paper a clustering analysis is performed to classify shovel digging effort and behaviour based on digging energy, dig time and payload per pass. Then the influence of the operator on the digging efficiency and productivity of the machine is analyzed with a focus on operator technique during digging. A statistical analysis is conducted on different cycle time components (dig time, swing time, return time) for different operators. In addition to time components, swing and return angles as well as loading rate and mucking rate are observed and analyzed. The results of this study help to understand the effect of different operators on the digging productivity of the shovel and then to set the best operator practice. Full article
(This article belongs to the Special Issue Frontiers of Surface Mining Research)
Show Figures

Graphical abstract

Back to TopTop